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Motivation

Consider formalizing and reasoning about these sentences in propositional logic

English PL
Every natural number is greater than 0 p

Not every natural number is greater than 0 ¬p

What facts can we logically deduce? Only: p ∨ ¬p
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about individual objects and formalize correct deductions about them
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Consider formalizing and reasoning about these sentences in propositional logic

English PL
Every natural number is greater than 0 p

Not every natural number is greater than 0 ¬p

What facts can we logically deduce? Only: p ∨ ¬p

First-order Logic (FOL) allows us to (dis)prove the validity of sentences like the above

In this case, we need a first-order language for number theory
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Motivation

“Every positive integer number different from 1 is smaller than its square”
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“Every positive integer number different from 1 is smaller than its square”

Intuitively, a first-order language has the following features:

● A sublanguage to denote individual things (numbers, people, colors, . . . )

● A sublanguage to express properties of individuals and relations among them

● A sublanguage to denote groups of individuals with common features and ascribe them
to specific individuals

● A way to quantify statements about individuals
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Motivation

“Every positive integer number different from 1 is smaller than its square”

English FOL language
generic number x

the number 1 1
the square of x square(x)
“x is positive” positive(x)

“x is different from 1” x ≠ 1
“x is smaller than its square” x < square(x)
“for every integer number” ∀x ∶ Int
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Motivation

“Every positive integer number different from 1 is smaller than its square”

English FOL language
generic number x

the number 1 1
the square of x square(x)
“x is positive” positive(x)

“x is different from 1” x ≠ 1
“x is smaller than its square” x < square(x)
“for every integer number” ∀x ∶ Int

Sentence above in FOL: ∀x ∶ Int. (positive(x) ∧ x ≠ 1 ⇒ x < square(x))

The formula is true in the intended interpretation
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Outline

● Syntax (ML 7.1-2)

● Semantics (ML 7.3)

ML presents a one-sorted first-order logic

We will use a many-sorted first-order logic

This makes it convenient to present Satisfiability Modulo Theories later
Note: Many-sorted FOL is not more expressive than one-sorted FOL:
It is possible to faithfully encode the former in the latter

However, using different sorts makes it more convenient to rule out non-sensical expressions
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Symbols

Review: what does the syntax of a logic consist of?

Symbols + rules for combining them

First-order logic is an umbrella term for different first-order languages

The symbols of a first-order language consist of:

1. Logical symbols (⇒,⊺,∧,¬, (, ))

2. Signature, Σ ∶= ⟨ΣS,ΣF⟩, where:
● ΣS is a set of sorts: e.g., Real, Int,Set

● ΣF is a set of function symbols: e.g., =, +, +[2], <,≬

Note: We consider symbols as atomic (not divisible further)
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Signature
The syntax of a first-order language is defined w.r.t. a signature, Σ ∶= ⟨ΣS,ΣF⟩, where:
● ΣS is a set of sorts: e.g., Real, Int,Set,

● ΣF is a set of function symbols: e.g., =, +, +[2], <,≬

We associate each function symbol f ∈ ΣF with:
● an arity n: a natural number denoting the number of arguments f takes
● a rank a (n + 1)-tuple of sorts: rank(f) = ⟨σ1, . . . , σn, σn+1⟩

5 / 34



Signature
The syntax of a first-order language is defined w.r.t. a signature, Σ ∶= ⟨ΣS,ΣF⟩, where:
● ΣS is a set of sorts: e.g., Real, Int,Set,

● ΣF is a set of function symbols: e.g., =, +, +[2], <,≬

We associate each function symbol f ∈ ΣF with:
● an arity n: a natural number denoting the number of arguments f takes
● a rank a (n + 1)-tuple of sorts: rank(f) = ⟨σ1, . . . , σn, σn+1⟩

5 / 34



Signature
The syntax of a first-order language is defined w.r.t. a signature, Σ ∶= ⟨ΣS,ΣF⟩, where:
● ΣS is a set of sorts: e.g., Real, Int,Set,

● ΣF is a set of function symbols: e.g., =, +, +[2], <,≬

We associate each function symbol f ∈ ΣF with:
● an arity n: a natural number denoting the number of arguments f takes
● a rank a (n + 1)-tuple of sorts: rank(f) = ⟨σ1, . . . , σn, σn+1⟩

5 / 34



Signature
The syntax of a first-order language is defined w.r.t. a signature, Σ ∶= ⟨ΣS,ΣF⟩, where:
● ΣS is a set of sorts: e.g., Real, Int,Set,

● ΣF is a set of function symbols: e.g., =, +, +[2], <,≬

We associate each function symbol f ∈ ΣF with:
● an arity n: a natural number denoting the number of arguments f takes
● a rank a (n + 1)-tuple of sorts: rank(f) = ⟨σ1, . . . , σn, σn+1⟩

Intuitively, f denotes a function that takes n values of respective sort σ1, . . . , σn as input and
returns an output of sort σn+1
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Intuitively, f denotes a function that takes n values of respective sort σ1, . . . , σn as input and
returns an output of sort σn+1

σ1, . . . , σn are the input sorts of f and σn+1 is the output sort
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The syntax of a first-order language is defined w.r.t. a signature, Σ ∶= ⟨ΣS,ΣF⟩, where:
● ΣS is a set of sorts: e.g., Real, Int,Set,
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Intuitively, f denotes a function that takes n values of respective sort σ1, . . . , σn as input and
returns an output of sort σn+1

We call function symbols a of arity 0 constants and say they have sort σ when rank(a) = ⟨σ⟩
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Signature
The syntax of a first-order language is defined w.r.t. a signature, Σ ∶= ⟨ΣS,ΣF⟩, where:
● ΣS is a set of sorts: e.g., Real, Int,Set,

● ΣF is a set of function symbols: e.g., =, +, +[2], <,≬

We associate each function symbol f ∈ ΣF with:
● an arity n: a natural number denoting the number of arguments f takes
● a rank a (n + 1)-tuple of sorts: rank(f) = ⟨σ1, . . . , σn, σn+1⟩

We also assume an infinite set of variable (symbols) x, y, . . .
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Signature
The syntax of a first-order language is defined w.r.t. a signature, Σ ∶= ⟨ΣS,ΣF⟩, where:
● ΣS is a set of sorts: e.g., Real, Int,Set,

● ΣF is a set of function symbols: e.g., =, +, +[2], <,≬

We associate each function symbol f ∈ ΣF with:
● an arity n: a natural number denoting the number of arguments f takes
● a rank a (n + 1)-tuple of sorts: rank(f) = ⟨σ1, . . . , σn, σn+1⟩

Example: In the first-order language of number theory
● ΣS contains a sort Nat and ΣF contains a function symbols 0, 1, +
● 0 and 1 have arity 0 and rank(0) = rank(1) = ⟨Nat⟩
● + has arity 2 and rank(+) = ⟨Nat,Nat,Nat⟩
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Signature

We assume for every signature Σ that

● ΣS includes a distinguished sort Bool

● ΣF contains distinguished constants ⊺ and � with sort(�) = sort(⊺) = Bool, and
distinguished functions symbols ≐σ with rank(≐σ) = ⟨σ,σ,Bool⟩ for all σ ∈ ΣS

There are two special kinds of function symbols:

Constant symbols: function symbols of 0 arity (e.g., �, ⊺, π, John, 0)

Predicate symbols: function symbols of return sort Bool (e.g., ≐σ, <)
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First-Order Languages: Examples

Recall that a first-order language is defined wrt a signature Σ ∶= ⟨ΣS,ΣF⟩

Elementary Number Theory

● ΣS ∶ {Nat,Bool}
● ΣF ∶ {<,0,S,+,×,≐Nat } ∪ {⊺,�,≐Bool }

where:

● rank(<) = ⟨Nat,Nat,Bool⟩
● rank(0) = ⟨Nat⟩
● rank(S) = ⟨Nat,Nat⟩
● rank(+) = rank(×) = ⟨Nat,Nat,Nat⟩

7 / 34



First-Order Languages: Examples

Set Theory

● ΣS ∶ {Set,Bool}
● ΣF ∶ { ∈,∅,∪,∩,≐Set } ∪ {⊺,�,≐Bool }

where:

● rank(∅) = ⟨Set⟩
● rank(∪) = rank(∩) = ⟨Set,Set,Set⟩
● rank(∈) = ⟨Set,Set,Bool⟩
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First-Order Languages: Examples

Propositional logic formulas

● ΣS ∶ {Bool}
● ΣF ∶ {¬,∧,∨, . . . ,p1,p2, . . .} ∪ {⊺,�,≐Bool }

where:

● rank(pi) = ⟨Bool⟩
● rank(¬) = ⟨Bool,Bool⟩
● rank(∧) = rank(∨) = ⟨Bool,Bool,Bool⟩
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Expressions

Recall that an expression is any finite sequence of symbols

Example

● ∀x1((< 0x1)⇒ (¬∀x2(< x1x2)))
● x1 < ∀x2))
● x1 < x2 ⇒ ∀x∶Nat. x > 0

Most expressions are not well-formed

Expressions of interest in FOL are terms and well-formed formulas (wffs)
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Terms
Expressions built up from function symbols, variables, and parentheses ((, ))

Formally, let B be the set of all variables and all constant symbols in some signature Σ

For each function symbol f ∈ ΣF of arity n > 0, we define a term-building operation Tf :

Tf(ε1, . . . , εn) ∶= (f ε1 ⋯ εn)

Terms are expressions that are generated from B by T = {Tf ∣ f ∈ ΣF }

Examples of terms in the language of number theory:

✓ (+ x2 (S 0))
✓ (S (S (S (S 0))))
✗ (S (0 0))

✗ (x2 + 0)
✗ (S 0 0)
✓ (S (< 0 0))

✓ (+ x2 �)
✓ (S �)
✓ (≐ 0 �)
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Well-sorted terms

Not all well-formed terms are meaningful

We consider only terms that are well-sorted wrt a given signature Σ
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Well-sortedness

We formulate the notion of well-sortedness wrt Σ with a sort system, a proof system
over sequents of the form Γ ⊢ t ∶ σ
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Well-sortedness

We formulate the notion of well-sortedness wrt Σ with a sort system, a proof system
over sequents of the form Γ ⊢ t ∶ σ
where

● Γ = x1 ∶ σ1, . . . , xn ∶ σn is sort context, a set of sorted variables

● t is a well-formed term

● σ is a sort of Σ
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Well-sortedness

We formulate the notion of well-sortedness wrt Σ with a sort system, a proof system
over sequents of the form Γ ⊢ t ∶ σ

VAR x ∶ σ ∈ Γ
Γ ⊢ x ∶ σ CONST c ∈ ΣF rank(c) = ⟨σ⟩

Γ ⊢ c ∶ σ

FUN f ∈ ΣF rank(f) = ⟨σ1, . . . , σn, σ⟩ Γ ⊢ t1 ∶ σ1 ⋯ Γ ⊢ tn ∶ σn

Γ ⊢ (f t1 ⋯ tn) ∶ σ

A term t is well-sorted wrt Σ and has sort σ in a sort context Γ
if Γ ⊢ t ∶ σ is derivable in the sort system above
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Γ ⊢ (f t1 ⋯ tn) ∶ σ

A term t is well-sorted wrt Σ and has sort σ in a sort context Γ
if Γ ⊢ t ∶ σ is derivable in the sort system above We call t a Σ-term

Note: Every well-sorted term is also well-formed
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Well-sorted terms example: Elementary number theory
Let ΣS = {Nat} ( ∪ {Bool}) and ΣF = {0,S,+,×,<,≐Nat } ( ∪ {⊺,�,≐Bool })
● rank(0) = ⟨Nat⟩
● rank(S) = ⟨Nat,Nat⟩
● rank(+) = rank(×) = ⟨Nat,Nat,Nat⟩
● rank(<) = rank(≐Nat) = ⟨Nat,Nat,Bool⟩

Are these well-formed terms also well-sorted in context Γ = { x1 ∶ Bool, x2 ∶ Nat, x3 ∶ Nat} ?

1. (+ 0 x2) ✓

2. (+ (+ 0 x1) x2) ✗

3. (S (+ 0 x5)) ✓

4. (< (S x3) (+ (S 0) x1)) ✓

5. (≐Nat (S x3) (+ (S 0) x1)) ✓
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14 / 34

Note: As a notational convention, we will use an
infix notation for parentheses and common op-
erators like ≐, <, + and so on

So we will often write S(x3) ≐Nat S(0) + x1

instead of (≐Nat (S x3) (+ (S 0) x1))



Σ-Formulas
Given a signature Σ, an atomic Σ-formula is any term that is a Σ-term t of sort Bool
under some sort context Γ
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Σ-Formulas
Given a signature Σ, an atomic Σ-formula is any term that is a Σ-term t of sort Bool
under some sort context Γ

We define the following formula-building operations, denotedF :

F∨(α,β) ∶= (α ∨ β) F∧(α,β) ∶= (α ∧ β) F¬(α) ∶= (¬α)
F⇒(α,β) ∶= (α⇒ β) F⇔(α,β) ∶= (α⇔ β)

Ex,σ(α) ∶= (∃ x ∶ σ. α) for each var x and sort σ ∈ ΣS

Ax,σ(α) ∶= (∀ x ∶ σ. α) for each var x and sort σ ∈ ΣS
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from the atomic Σ-formulas byF
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Each ∃ x ∶ σ is an existential quantifier
Each ∀ x ∶ σ is a universal quantifier
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Ex,σ(α) ∶= (∃ x ∶ σ. α) for each var x and sort σ ∈ ΣS

Ax,σ(α) ∶= (∀ x ∶ σ. α) for each var x and sort σ ∈ ΣS

We simplify the notation as in PL by
● forgoing parentheses around top-level formulas — e.g., (x ≐ y) ∨ ((y ≐ z) ∨ (x ≐ z))
● forgoing parentheses around atomic formulas in infix form — e.g., x ≐ y ∨ (y ≐ z ∨ x ≐ z)
● treating the binary connectives as n-ary and right associative — e.g., x ≐ y ∨ y ≐ z ∨ x ≐ z
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Σ-Formulas: Examples

Let Σ = ⟨ΣS ∶= {Nat},ΣF ∶= {0,S,+,×,<,≐Nat }⟩ a xi be variables for all i
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Let Σ = ⟨ΣS ∶= {Nat},ΣF ∶= {0,S,+,×,<,≐Nat }⟩ a xi be variables for all i

Which of the following formulas (with atomic subformulas in infix form) are
well-formed?

1. (≐Nat (+ x1 0) x2) ✓
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3. (+ 0 x3) ∧ (< 0 (S 0)) ✗
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5. ∀ x3 ∶ Bool. (≐Nat (+ 0 x3) x2) ✓

6. ¬∃ x0 ∶ Nat. (< 0 x0 (S 0)) ✗
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Note: Formula (5) is well-formed but not
well-sorted

To know which formulas are well-sorted
we need to extend our sort system to the
logical operators



Well-sorted formulas

We extend the sort system for terms with rules for the logical connectives and
quantifiers
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We extend the sort system for terms with rules for the logical connectives and
quantifiers

BCONST c ∈ {⊺,�}
Γ ⊢ c ∶ Bool NOT Γ ⊢ α ∶ Bool

Γ ⊢ (¬α) ∶ Bool

CONN Γ ⊢ α ∶ Bool Γ ⊢ β ∶ Bool & ∈ {∧,∨,⇒,⇔}
Γ ⊢ (α & β) ∶ Bool

QUANT Γ[x ∶ σ] ⊢ α ∶ Bool σ ∈ ΣS Q ∈ {∀,∃}
Γ ⊢ (Q x ∶ σ.α) ∶ Bool

Γ[x ∶ σ] is a context that assigns sort σ to x and is otherwise identical to Γ
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A formula α is well-sorted wrt Σ in a sort context Γ
if Γ ⊢ α ∶ Bool is derivable in the sort system above We call α a Σ-formula
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Exercise

Draw two Venn Diagram that illustrate the relations between

A: terms

B: well-formed terms

C: well-sorted terms

D: well-sorted atomic formulas

and between

D: well-sorted atomic formulas

E: well-formed formulas

F: well-sorted formulas
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Notational conventions for formulas
From now on, to improve readability:

● We will use the infix notation for logical operators and function symbols typically written
in that notation (≐σ, <, +, . . . )

● Finally, we will omit the sort symbol in equalities and quantifiers when it is clear from the
context or not important:
Example: ∀ x1.∀ y1. x1 ≐ x2 instead of ∀ x∶σ1.∀ x2∶σ2. x1 ≐ x2

● We may also omit parentheses by defining precedence:
● Same precedence for propositional connectives as in propositional logic
● Quantifiers have the highest precedence after ¬
Example: ¬∀x. (p x) ∧ (q x) abbreviates (¬(∀x. (p x))) ∧ (q x))

● Finally, we will allow the use of parentheses following function symbols.
Example: ∀x.p(r(x)) ∧ q(x) instead of ∀x. (p (r x)) ∧ (q x)
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Free and Bound Variables
A variable x may occur free in a Σ-formula α or not

We formalize that by defining inductively the setFV of free variables of α

FV(α) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

{ x ∣ x is a var in α } if α is atomic
FV(β) if α = ¬β
FV(β) ∪FV(γ) if α = β & γ with & ∈ {∧,∨,⇒,⇔}
FV(β) ∖ { v } if α = Q v ∶ σ. β with Q ∈ {∀,∃}
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FV(β) ∪FV(γ) if α = β & γ with & ∈ {∧,∨,⇒,⇔}
FV(β) ∖ { v } if α = Q v ∶ σ. β with Q ∈ {∀,∃}

Examples: Let x, y, z be variables
● FV(x) = { x } (provided x has sort Bool)
● FV(x < S(0) + y) = { x, y }
● FV(x < S(0)+y∧x ≐ z) = FV(x < S(0)+y)∪FV(x ≐ z) = { x, y }∪{ x, z } = { x, y, z }
● FV(∀x ∶ Nat. x < S(0) + y) = FV(x < S(0) + y) ∖ { x } = { x, y } ∖ { x } = { y }
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FV(β) ∪FV(γ) if α = β & γ with & ∈ {∧,∨,⇒,⇔}
FV(β) ∖ { v } if α = Q v ∶ σ. β with Q ∈ {∀,∃}

A variable x occurs free in a Σ-formula α if x ∈ FV(α)

For α = Q v ∶ σ. β, we say that v is bound in α

The scope of x in α is the subformula β

20 / 34



Free and Bound Variables
A variable x may occur free in a Σ-formula α or not

We formalize that by defining inductively the setFV of free variables of α

FV(α) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

{ x ∣ x is a var in α } if α is atomic
FV(β) if α = ¬β
FV(β) ∪FV(γ) if α = β & γ with & ∈ {∧,∨,⇒,⇔}
FV(β) ∖ { v } if α = Q v ∶ σ. β with Q ∈ {∀,∃}
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FV(β) ∖ { v } if α = Q v ∶ σ. β with Q ∈ {∀,∃}

Can a variable both occur free and be bound in α? Yes! (e.g., x < x⇒ ∀x ∶ Nat.0 < x )

This can be confusing, so we typically rename the bound variables of a formula so that
they are distinct from its free variables (e.g., x < x⇒ ∀y ∶ Nat.0 < y )
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FOL Semantics
Recall: The syntax of a first-order language is defined wrt a signature Σ ∶= ⟨ΣS,ΣF⟩
where:

● ΣS is a set of sorts

● ΣF is a set of function symbols

In propositional logic, the truth of a formula depends on the meaning of its variables

In first-order logic, the truth of a Σ-formula depends on:

1. the meaning of each sort symbol σ
2. the meaning of each function symbol f
3. the meaning of each free variable x

in the formula
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Semantics
Let α be a Σ-formula and let Γ be a sorting context that includes α’s free variables

The truth of α is determined by interpretations I of Σ and Γ consisting of:

1. an interpretation σI of each σ ∈ ΣS as a nonempty set, the domain of σ

2. an interpretation fI of each f ∈ ΣF of rank ⟨σ1, . . . , σn, σn+1⟩ as an n-ary total function
from σI1 ×⋯ × σIn to σIn+1

3. an interpretation xI of each x ∶ σ ∈ Γ as an element of σI

Note: We consider only interpretations I such that

● BoolI = { true, false}, �I = false, ⊺I = true
● for all σ ∈ ΣS, =Iσ maps its two arguments to true iff they are identical
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Semantics: Example

Consider a signature Σ = ⟨ΣS,ΣF⟩ for a fragment of set theory with non-set elements:

ΣS = {Elem,Set}, ΣF = {∅,⊏−}, rank(∅) = ⟨Set⟩, rank(⊏−) = ⟨Elem,Set,Bool⟩
Γ = { ei ∶ Elem ∣ i ≥ 0} ∪ { si ∶ Set ∣ i ≥ 0}
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A possible interpretation I of Σ,Γ:

1. ElemI = N, the natural numbers
2. SetI = 2N, all sets of natural numbers
3. ∅I = {}
4. for all n ∈ N and s ⊆ N, ⊏−I(n, s) = true iff n ∈ s
5. for i = 0,1, . . ., ei

I = i and si
I = [0, i] = {0,1, . . . , i }
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I = i and si
I = 2

23 / 34



Semantics: Example

Consider a signature Σ = ⟨ΣS,ΣF⟩ for a fragment of set theory with non-set elements:

ΣS = {Elem,Set}, ΣF = {∅,⊏−}, rank(∅) = ⟨Set⟩, rank(⊏−) = ⟨Elem,Set,Bool⟩
Γ = { ei ∶ Elem ∣ i ≥ 0} ∪ { si ∶ Set ∣ i ≥ 0}

There is an infinity of interpretations of Σ,Γ!
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Term Semantics

Interpretations are analogous to a variable assignments in propositional logic

We define how to determine the truth value of a Σ-formula in an interpretation I in FOL in
analogy to how to determine the truth value of a formula under a variable assignment v in PL
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Formula Semantics
We further extend I to well-sorted non-atomic formulas by structural induction as follows:

● (¬α)I = true iff αI = false

● (α ∧ β)I = true iff αI = βI = true

● (α ∨ β)I = true iff αI = true or βI = true

● (α⇒ β)I = true iff αI = false or βI = true

● (α⇔ β)I = true iff αI = βI

● (∃x ∶ σ.α)I = true iff αI[x↦a] = true for some a ∈ σI

● (∀x ∶ σ.α)I = true iff αI[x↦a] = true for all a ∈ σI
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where I[x ↦ a] denotes the interpretation that maps x to a and is otherwise identical to I
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Entailment, validity

Let Φ be a set of Σ-formulas. We write I ⊧ Φ to mean that I ⊧ α for every α ∈ Φ

If Φ is a set of Σ-formulas and α is a Σ-formula, then Φ entails or logically implies α, written
Φ ⊧ α, if I ⊧ α for every interpretation I of Σ such that I ⊧ Φ

We write α ⊧ β as an abbreviation for {α} ⊧ β

α and β are logically equivalent, written α ≡ β, iff α ⊧ β and β ⊧ α

A Σ-formula α is valid, written ⊧ α if {} ⊧ α iff I ⊧ α for every interpretation I

Suppose that ΣS = {A}, ΣF = {p,q}, rank(p) = ⟨A,Bool⟩, rank(q) = ⟨A,A,Bool⟩, and all
variables vi have sort A. Do the following entailment actually hold?

1. ∀ v1.p(v1) ⊧ p(v2) ✓ 2. p(v1) ⊧ ∀ v1.p(v1) ✗

3. ∀ v1.p(v1) ⊧ ∃ v2.p(v2) ✓ 4. ∃ v2.∀ v1.q(v1, v2) ⊧ ∀ v1.∃ v2.q(v1, v2) ✓

5. ∀ v1.∃ v2.q(v1, v2) ⊧ ∃ v2.∀ v1.q(v1, v2) ✗ 6. ⊧ ∃ v1. (p(v1)⇒ ∀ v2.p(v2)) ✓

26 / 34



Entailment, validity

Let Φ be a set of Σ-formulas. We write I ⊧ Φ to mean that I ⊧ α for every α ∈ Φ

If Φ is a set of Σ-formulas and α is a Σ-formula, then Φ entails or logically implies α, written
Φ ⊧ α, if I ⊧ α for every interpretation I of Σ such that I ⊧ Φ

We write α ⊧ β as an abbreviation for {α} ⊧ β

α and β are logically equivalent, written α ≡ β, iff α ⊧ β and β ⊧ α

A Σ-formula α is valid, written ⊧ α if {} ⊧ α iff I ⊧ α for every interpretation I

Suppose that ΣS = {A}, ΣF = {p,q}, rank(p) = ⟨A,Bool⟩, rank(q) = ⟨A,A,Bool⟩, and all
variables vi have sort A. Do the following entailment actually hold?

1. ∀ v1.p(v1) ⊧ p(v2) ✓ 2. p(v1) ⊧ ∀ v1.p(v1) ✗

3. ∀ v1.p(v1) ⊧ ∃ v2.p(v2) ✓ 4. ∃ v2.∀ v1.q(v1, v2) ⊧ ∀ v1.∃ v2.q(v1, v2) ✓

5. ∀ v1.∃ v2.q(v1, v2) ⊧ ∃ v2.∀ v1.q(v1, v2) ✗ 6. ⊧ ∃ v1. (p(v1)⇒ ∀ v2.p(v2)) ✓

26 / 34



Entailment, validity

Let Φ be a set of Σ-formulas. We write I ⊧ Φ to mean that I ⊧ α for every α ∈ Φ

If Φ is a set of Σ-formulas and α is a Σ-formula, then Φ entails or logically implies α, written
Φ ⊧ α, if I ⊧ α for every interpretation I of Σ such that I ⊧ Φ

We write α ⊧ β as an abbreviation for {α} ⊧ β

α and β are logically equivalent, written α ≡ β, iff α ⊧ β and β ⊧ α

A Σ-formula α is valid, written ⊧ α if {} ⊧ α iff I ⊧ α for every interpretation I

Suppose that ΣS = {A}, ΣF = {p,q}, rank(p) = ⟨A,Bool⟩, rank(q) = ⟨A,A,Bool⟩, and all
variables vi have sort A. Do the following entailment actually hold?

1. ∀ v1.p(v1) ⊧ p(v2) ✓ 2. p(v1) ⊧ ∀ v1.p(v1) ✗

3. ∀ v1.p(v1) ⊧ ∃ v2.p(v2) ✓ 4. ∃ v2.∀ v1.q(v1, v2) ⊧ ∀ v1.∃ v2.q(v1, v2) ✓

5. ∀ v1.∃ v2.q(v1, v2) ⊧ ∃ v2.∀ v1.q(v1, v2) ✗ 6. ⊧ ∃ v1. (p(v1)⇒ ∀ v2.p(v2)) ✓

26 / 34



Entailment, validity

Let Φ be a set of Σ-formulas. We write I ⊧ Φ to mean that I ⊧ α for every α ∈ Φ

If Φ is a set of Σ-formulas and α is a Σ-formula, then Φ entails or logically implies α, written
Φ ⊧ α, if I ⊧ α for every interpretation I of Σ such that I ⊧ Φ

We write α ⊧ β as an abbreviation for {α} ⊧ β

α and β are logically equivalent, written α ≡ β, iff α ⊧ β and β ⊧ α

A Σ-formula α is valid, written ⊧ α if {} ⊧ α iff I ⊧ α for every interpretation I

Suppose that ΣS = {A}, ΣF = {p,q}, rank(p) = ⟨A,Bool⟩, rank(q) = ⟨A,A,Bool⟩, and all
variables vi have sort A. Do the following entailment actually hold?

1. ∀ v1.p(v1) ⊧ p(v2) ✓ 2. p(v1) ⊧ ∀ v1.p(v1) ✗

3. ∀ v1.p(v1) ⊧ ∃ v2.p(v2) ✓ 4. ∃ v2.∀ v1.q(v1, v2) ⊧ ∀ v1.∃ v2.q(v1, v2) ✓

5. ∀ v1.∃ v2.q(v1, v2) ⊧ ∃ v2.∀ v1.q(v1, v2) ✗ 6. ⊧ ∃ v1. (p(v1)⇒ ∀ v2.p(v2)) ✓

26 / 34



Entailment, validity

Let Φ be a set of Σ-formulas. We write I ⊧ Φ to mean that I ⊧ α for every α ∈ Φ

If Φ is a set of Σ-formulas and α is a Σ-formula, then Φ entails or logically implies α, written
Φ ⊧ α, if I ⊧ α for every interpretation I of Σ such that I ⊧ Φ

We write α ⊧ β as an abbreviation for {α} ⊧ β

α and β are logically equivalent, written α ≡ β, iff α ⊧ β and β ⊧ α

A Σ-formula α is valid, written ⊧ α if {} ⊧ α iff I ⊧ α for every interpretation I

Suppose that ΣS = {A}, ΣF = {p,q}, rank(p) = ⟨A,Bool⟩, rank(q) = ⟨A,A,Bool⟩, and all
variables vi have sort A. Do the following entailment actually hold?

1. ∀ v1.p(v1) ⊧ p(v2) ✓ 2. p(v1) ⊧ ∀ v1.p(v1) ✗

3. ∀ v1.p(v1) ⊧ ∃ v2.p(v2) ✓ 4. ∃ v2.∀ v1.q(v1, v2) ⊧ ∀ v1.∃ v2.q(v1, v2) ✓

5. ∀ v1.∃ v2.q(v1, v2) ⊧ ∃ v2.∀ v1.q(v1, v2) ✗ 6. ⊧ ∃ v1. (p(v1)⇒ ∀ v2.p(v2)) ✓

26 / 34



Entailment, validity

Let Φ be a set of Σ-formulas. We write I ⊧ Φ to mean that I ⊧ α for every α ∈ Φ

If Φ is a set of Σ-formulas and α is a Σ-formula, then Φ entails or logically implies α, written
Φ ⊧ α, if I ⊧ α for every interpretation I of Σ such that I ⊧ Φ

We write α ⊧ β as an abbreviation for {α} ⊧ β

α and β are logically equivalent, written α ≡ β, iff α ⊧ β and β ⊧ α

A Σ-formula α is valid, written ⊧ α if {} ⊧ α iff I ⊧ α for every interpretation I

Suppose that ΣS = {A}, ΣF = {p,q}, rank(p) = ⟨A,Bool⟩, rank(q) = ⟨A,A,Bool⟩, and all
variables vi have sort A. Do the following entailment actually hold?

1. ∀ v1.p(v1) ⊧ p(v2) ✓ 2. p(v1) ⊧ ∀ v1.p(v1) ✗

3. ∀ v1.p(v1) ⊧ ∃ v2.p(v2) ✓ 4. ∃ v2.∀ v1.q(v1, v2) ⊧ ∀ v1.∃ v2.q(v1, v2) ✓

5. ∀ v1.∃ v2.q(v1, v2) ⊧ ∃ v2.∀ v1.q(v1, v2) ✗ 6. ⊧ ∃ v1. (p(v1)⇒ ∀ v2.p(v2)) ✓

26 / 34



Entailment, validity

Let Φ be a set of Σ-formulas. We write I ⊧ Φ to mean that I ⊧ α for every α ∈ Φ

If Φ is a set of Σ-formulas and α is a Σ-formula, then Φ entails or logically implies α, written
Φ ⊧ α, if I ⊧ α for every interpretation I of Σ such that I ⊧ Φ

We write α ⊧ β as an abbreviation for {α} ⊧ β

α and β are logically equivalent, written α ≡ β, iff α ⊧ β and β ⊧ α

A Σ-formula α is valid, written ⊧ α if {} ⊧ α iff I ⊧ α for every interpretation I

Suppose that ΣS = {A}, ΣF = {p,q}, rank(p) = ⟨A,Bool⟩, rank(q) = ⟨A,A,Bool⟩, and all
variables vi have sort A. Do the following entailment actually hold?

1. ∀ v1.p(v1) ⊧ p(v2) ✓ 2. p(v1) ⊧ ∀ v1.p(v1) ✗

3. ∀ v1.p(v1) ⊧ ∃ v2.p(v2) ✓ 4. ∃ v2.∀ v1.q(v1, v2) ⊧ ∀ v1.∃ v2.q(v1, v2) ✓

5. ∀ v1.∃ v2.q(v1, v2) ⊧ ∃ v2.∀ v1.q(v1, v2) ✗ 6. ⊧ ∃ v1. (p(v1)⇒ ∀ v2.p(v2)) ✓

26 / 34



Entailment, validity

Let Φ be a set of Σ-formulas. We write I ⊧ Φ to mean that I ⊧ α for every α ∈ Φ

If Φ is a set of Σ-formulas and α is a Σ-formula, then Φ entails or logically implies α, written
Φ ⊧ α, if I ⊧ α for every interpretation I of Σ such that I ⊧ Φ

We write α ⊧ β as an abbreviation for {α} ⊧ β

α and β are logically equivalent, written α ≡ β, iff α ⊧ β and β ⊧ α

A Σ-formula α is valid, written ⊧ α if {} ⊧ α iff I ⊧ α for every interpretation I

Suppose that ΣS = {A}, ΣF = {p,q}, rank(p) = ⟨A,Bool⟩, rank(q) = ⟨A,A,Bool⟩, and all
variables vi have sort A. Do the following entailment actually hold?

1. ∀ v1.p(v1) ⊧ p(v2) ✓ 2. p(v1) ⊧ ∀ v1.p(v1) ✗

3. ∀ v1.p(v1) ⊧ ∃ v2.p(v2) ✓ 4. ∃ v2.∀ v1.q(v1, v2) ⊧ ∀ v1.∃ v2.q(v1, v2) ✓

5. ∀ v1.∃ v2.q(v1, v2) ⊧ ∃ v2.∀ v1.q(v1, v2) ✗ 6. ⊧ ∃ v1. (p(v1)⇒ ∀ v2.p(v2)) ✓

26 / 34



Entailment, validity

Let Φ be a set of Σ-formulas. We write I ⊧ Φ to mean that I ⊧ α for every α ∈ Φ

If Φ is a set of Σ-formulas and α is a Σ-formula, then Φ entails or logically implies α, written
Φ ⊧ α, if I ⊧ α for every interpretation I of Σ such that I ⊧ Φ

We write α ⊧ β as an abbreviation for {α} ⊧ β

α and β are logically equivalent, written α ≡ β, iff α ⊧ β and β ⊧ α

A Σ-formula α is valid, written ⊧ α if {} ⊧ α iff I ⊧ α for every interpretation I

Suppose that ΣS = {A}, ΣF = {p,q}, rank(p) = ⟨A,Bool⟩, rank(q) = ⟨A,A,Bool⟩, and all
variables vi have sort A. Do the following entailment actually hold?

1. ∀ v1.p(v1) ⊧ p(v2) ✓ 2. p(v1) ⊧ ∀ v1.p(v1) ✗

3. ∀ v1.p(v1) ⊧ ∃ v2.p(v2) ✓ 4. ∃ v2.∀ v1.q(v1, v2) ⊧ ∀ v1.∃ v2.q(v1, v2) ✓

5. ∀ v1.∃ v2.q(v1, v2) ⊧ ∃ v2.∀ v1.q(v1, v2) ✗ 6. ⊧ ∃ v1. (p(v1)⇒ ∀ v2.p(v2)) ✓

26 / 34



Entailment, validity

Let Φ be a set of Σ-formulas. We write I ⊧ Φ to mean that I ⊧ α for every α ∈ Φ

If Φ is a set of Σ-formulas and α is a Σ-formula, then Φ entails or logically implies α, written
Φ ⊧ α, if I ⊧ α for every interpretation I of Σ such that I ⊧ Φ

We write α ⊧ β as an abbreviation for {α} ⊧ β

α and β are logically equivalent, written α ≡ β, iff α ⊧ β and β ⊧ α

A Σ-formula α is valid, written ⊧ α if {} ⊧ α iff I ⊧ α for every interpretation I

Suppose that ΣS = {A}, ΣF = {p,q}, rank(p) = ⟨A,Bool⟩, rank(q) = ⟨A,A,Bool⟩, and all
variables vi have sort A. Do the following entailment actually hold?

1. ∀ v1.p(v1) ⊧ p(v2) ✓ 2. p(v1) ⊧ ∀ v1.p(v1) ✗

3. ∀ v1.p(v1) ⊧ ∃ v2.p(v2) ✓ 4. ∃ v2.∀ v1.q(v1, v2) ⊧ ∀ v1.∃ v2.q(v1, v2) ✓

5. ∀ v1.∃ v2.q(v1, v2) ⊧ ∃ v2.∀ v1.q(v1, v2) ✗ 6. ⊧ ∃ v1. (p(v1)⇒ ∀ v2.p(v2)) ✓

26 / 34



Entailment, validity

Let Φ be a set of Σ-formulas. We write I ⊧ Φ to mean that I ⊧ α for every α ∈ Φ

If Φ is a set of Σ-formulas and α is a Σ-formula, then Φ entails or logically implies α, written
Φ ⊧ α, if I ⊧ α for every interpretation I of Σ such that I ⊧ Φ

We write α ⊧ β as an abbreviation for {α} ⊧ β

α and β are logically equivalent, written α ≡ β, iff α ⊧ β and β ⊧ α

A Σ-formula α is valid, written ⊧ α if {} ⊧ α iff I ⊧ α for every interpretation I

Suppose that ΣS = {A}, ΣF = {p,q}, rank(p) = ⟨A,Bool⟩, rank(q) = ⟨A,A,Bool⟩, and all
variables vi have sort A. Do the following entailment actually hold?

1. ∀ v1.p(v1) ⊧ p(v2) ✓ 2. p(v1) ⊧ ∀ v1.p(v1) ✗

3. ∀ v1.p(v1) ⊧ ∃ v2.p(v2) ✓ 4. ∃ v2.∀ v1.q(v1, v2) ⊧ ∀ v1.∃ v2.q(v1, v2) ✓

5. ∀ v1.∃ v2.q(v1, v2) ⊧ ∃ v2.∀ v1.q(v1, v2) ✗ 6. ⊧ ∃ v1. (p(v1)⇒ ∀ v2.p(v2)) ✓

26 / 34



Entailment, validity

Let Φ be a set of Σ-formulas. We write I ⊧ Φ to mean that I ⊧ α for every α ∈ Φ

If Φ is a set of Σ-formulas and α is a Σ-formula, then Φ entails or logically implies α, written
Φ ⊧ α, if I ⊧ α for every interpretation I of Σ such that I ⊧ Φ

We write α ⊧ β as an abbreviation for {α} ⊧ β

α and β are logically equivalent, written α ≡ β, iff α ⊧ β and β ⊧ α

A Σ-formula α is valid, written ⊧ α if {} ⊧ α iff I ⊧ α for every interpretation I

Suppose that ΣS = {A}, ΣF = {p,q}, rank(p) = ⟨A,Bool⟩, rank(q) = ⟨A,A,Bool⟩, and all
variables vi have sort A. Do the following entailment actually hold?

1. ∀ v1.p(v1) ⊧ p(v2) ✓ 2. p(v1) ⊧ ∀ v1.p(v1) ✗

3. ∀ v1.p(v1) ⊧ ∃ v2.p(v2) ✓ 4. ∃ v2.∀ v1.q(v1, v2) ⊧ ∀ v1.∃ v2.q(v1, v2) ✓

5. ∀ v1.∃ v2.q(v1, v2) ⊧ ∃ v2.∀ v1.q(v1, v2) ✗ 6. ⊧ ∃ v1. (p(v1)⇒ ∀ v2.p(v2)) ✓

26 / 34



Entailment, validity

Let Φ be a set of Σ-formulas. We write I ⊧ Φ to mean that I ⊧ α for every α ∈ Φ

If Φ is a set of Σ-formulas and α is a Σ-formula, then Φ entails or logically implies α, written
Φ ⊧ α, if I ⊧ α for every interpretation I of Σ such that I ⊧ Φ

We write α ⊧ β as an abbreviation for {α} ⊧ β

α and β are logically equivalent, written α ≡ β, iff α ⊧ β and β ⊧ α

A Σ-formula α is valid, written ⊧ α if {} ⊧ α iff I ⊧ α for every interpretation I

Suppose that ΣS = {A}, ΣF = {p,q}, rank(p) = ⟨A,Bool⟩, rank(q) = ⟨A,A,Bool⟩, and all
variables vi have sort A. Do the following entailment actually hold?

1. ∀ v1.p(v1) ⊧ p(v2) ✓ 2. p(v1) ⊧ ∀ v1.p(v1) ✗

3. ∀ v1.p(v1) ⊧ ∃ v2.p(v2) ✓ 4. ∃ v2.∀ v1.q(v1, v2) ⊧ ∀ v1.∃ v2.q(v1, v2) ✓

5. ∀ v1.∃ v2.q(v1, v2) ⊧ ∃ v2.∀ v1.q(v1, v2) ✗ 6. ⊧ ∃ v1. (p(v1)⇒ ∀ v2.p(v2)) ✓

26 / 34



Entailment, validity

Let Φ be a set of Σ-formulas. We write I ⊧ Φ to mean that I ⊧ α for every α ∈ Φ

If Φ is a set of Σ-formulas and α is a Σ-formula, then Φ entails or logically implies α, written
Φ ⊧ α, if I ⊧ α for every interpretation I of Σ such that I ⊧ Φ

We write α ⊧ β as an abbreviation for {α} ⊧ β

α and β are logically equivalent, written α ≡ β, iff α ⊧ β and β ⊧ α

A Σ-formula α is valid, written ⊧ α if {} ⊧ α iff I ⊧ α for every interpretation I

Suppose that ΣS = {A}, ΣF = {p,q}, rank(p) = ⟨A,Bool⟩, rank(q) = ⟨A,A,Bool⟩, and all
variables vi have sort A. Do the following entailment actually hold?

1. ∀ v1.p(v1) ⊧ p(v2) ✓ 2. p(v1) ⊧ ∀ v1.p(v1) ✗

3. ∀ v1.p(v1) ⊧ ∃ v2.p(v2) ✓ 4. ∃ v2.∀ v1.q(v1, v2) ⊧ ∀ v1.∃ v2.q(v1, v2) ✓

5. ∀ v1.∃ v2.q(v1, v2) ⊧ ∃ v2.∀ v1.q(v1, v2) ✗ 6. ⊧ ∃ v1. (p(v1)⇒ ∀ v2.p(v2)) ✓

26 / 34



Entailment, validity

Let Φ be a set of Σ-formulas. We write I ⊧ Φ to mean that I ⊧ α for every α ∈ Φ

If Φ is a set of Σ-formulas and α is a Σ-formula, then Φ entails or logically implies α, written
Φ ⊧ α, if I ⊧ α for every interpretation I of Σ such that I ⊧ Φ

We write α ⊧ β as an abbreviation for {α} ⊧ β

α and β are logically equivalent, written α ≡ β, iff α ⊧ β and β ⊧ α

A Σ-formula α is valid, written ⊧ α if {} ⊧ α iff I ⊧ α for every interpretation I

Suppose that ΣS = {A}, ΣF = {p,q}, rank(p) = ⟨A,Bool⟩, rank(q) = ⟨A,A,Bool⟩, and all
variables vi have sort A. Do the following entailment actually hold?

1. ∀ v1.p(v1) ⊧ p(v2) ✓ 2. p(v1) ⊧ ∀ v1.p(v1) ✗

3. ∀ v1.p(v1) ⊧ ∃ v2.p(v2) ✓ 4. ∃ v2.∀ v1.q(v1, v2) ⊧ ∀ v1.∃ v2.q(v1, v2) ✓

5. ∀ v1.∃ v2.q(v1, v2) ⊧ ∃ v2.∀ v1.q(v1, v2) ✗ 6. ⊧ ∃ v1. (p(v1)⇒ ∀ v2.p(v2)) ✓

26 / 34



Entailment, validity

Let Φ be a set of Σ-formulas. We write I ⊧ Φ to mean that I ⊧ α for every α ∈ Φ

If Φ is a set of Σ-formulas and α is a Σ-formula, then Φ entails or logically implies α, written
Φ ⊧ α, if I ⊧ α for every interpretation I of Σ such that I ⊧ Φ

We write α ⊧ β as an abbreviation for {α} ⊧ β

α and β are logically equivalent, written α ≡ β, iff α ⊧ β and β ⊧ α

A Σ-formula α is valid, written ⊧ α if {} ⊧ α iff I ⊧ α for every interpretation I

Suppose that ΣS = {A}, ΣF = {p,q}, rank(p) = ⟨A,Bool⟩, rank(q) = ⟨A,A,Bool⟩, and all
variables vi have sort A. Do the following entailment actually hold?

1. ∀ v1.p(v1) ⊧ p(v2) ✓ 2. p(v1) ⊧ ∀ v1.p(v1) ✗

3. ∀ v1.p(v1) ⊧ ∃ v2.p(v2) ✓ 4. ∃ v2.∀ v1.q(v1, v2) ⊧ ∀ v1.∃ v2.q(v1, v2) ✓

5. ∀ v1.∃ v2.q(v1, v2) ⊧ ∃ v2.∀ v1.q(v1, v2) ✗ 6. ⊧ ∃ v1. (p(v1)⇒ ∀ v2.p(v2)) ✓

26 / 34



Exercise
Let α be a Σ-formula and let Γ be a sorting context that includes α’s free variables

The truth of α is determined by interpretations I of Σ and Γ consisting of:

1. an interpretation σI of each σ ∈ ΣS as a nonempty set, the domain of σ

2. an interpretation fI of each f ∈ ΣF of rank ⟨σ1, . . . , σn, σn+1⟩ as an n-ary total function from
σI1 ×⋯ × σIn to σIn+1

3. an interpretation xI of each x ∶ σ ∈ Γ as an element of σI

Consider the signature where

ΣS = {σ },ΣF = {Q,≐σ }, Γ = { x ∶ σ, y ∶ σ }, rank(Q) = ⟨σ,σ,Bool⟩

For each of the following Σ-formulas, describe an interpretation that satisfies it

1. ∀ x∶σ.∀ y∶σ. x ≐ y
2. ∀ x∶σ.∀ y∶σ.Q(x, y)
3. ∀ x∶σ.∃ y∶σ.Q(x, y)
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From English to FOL: Examples 1

1. There is a natural number that is smaller than any other natural number
∃x∶Nat.∀y∶Nat. (x ≐ y ∨ x < y)

2. For every natural number there is a greater one ∀x∶Nat.∃y∶Nat. (x < y)
3. Two natural numbers are equal only if their respective successors are equal

∀x∶Nat.∀y∶Nat. (x ≐ y⇒ S(x) ≐ S(y))
4. Two natural numbers are equal if their respective successors are equal

∀x∶Nat.∀y∶Nat. (S(x) ≐ S(y)⇒ x ≐ y)
5. No two distinct natural numbers have the same successor

∀x∶Nat.∀y∶Nat. (¬(x ≐ y)⇒ ¬(S(x) ≐ S(y)))
6. There are at least two natural numbers smaller than 3

∃x∶Nat.∃y∶Nat. (¬(x ≐ y) ∧ (x < S(S(S(0)))) ∧ (y < S(S(S(0)))))
7. There is no largest natural number ¬∃x∶Nat.∀y∶Nat. y ≐ x ∨ y < x
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From English to FOL: Examples 2

1. Everyone has a father and a mother ∀x∶Pers.∃y∶Pers.∃z∶Pers. (y ≐ pa(x) ∧ z ≐ma(x))
2. The married relation is symmetric ∀x∶Pers.∀y∶Pers. (mar(x, y)⇒mar(y, x))
3. No one can be married to themselves ∀x∶Pers.¬mar(x, x)
4. Not all people are married ¬∀x∶Pers.∃y∶Pers.mar(x, y)
5. Some people have a father and a mother who are not married to each other

∃x∶Pers.¬mar(ma(x),pa(x))
6. You cannot marry more than one person

∀x∶Pers.∀y∶Pers.∀z∶Pers. (mar(x, y) ∧mar(x, z)⇒ y ≐ z)
7. Some people are not mothers ∃x∶Pers.∀y∶Pers.¬(x ≐ma(y))
8. Nobody can be both a father and a mother

∀x∶Pers.¬∃y∶Pers.¬∃z∶Pers. (x ≐ pa(y) ∧ z ≐ma(z))
9. You can’t be your own father or father’s father ∀x∶Pers.¬(x ≐ pa(x) ∨ x ≐ pa(pa(x)))

10. Some people are childless ∃x∶Pers.∀y∶Pers. (¬(x ≐ pa(y)) ∧ ∧(x ≐ma(y)))
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Invariance of term values
Consider a signature Σ, a Σ-context Γ, and two Σ-interpretations I and J that agree
on the sorts and symbols of Σ.

Lemma 1
If I and J also agree on the variables of a Σ-term t with variables in Γ, then tI = tJ .

Proof.
By structural induction on t.
● If t is a variable or a constant, then tI = tI , tJ = tJ .

Since tI = tJ by assumption, we have that tI = tI = tJ = tJ .

● If t = (f t1 ⋯ tn)with n > 1, then fI = fJ by assumption and tIi = tJi for i = 1, . . . ,n
by induction hypothesis.
It follows that tI = fI(tI1 , . . . , tIn ) = fJ (tJ1 , . . . , tJn ) = tJ
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Invariance of truth values
Consider a signature Σ, a Σ-context Γ, and two Σ-interpretations I and J that agree
on the sorts and symbols of Σ.

Theorem 2
If I and J also agree on the free variables of a Σ-formula α with free variables in Γ,
then αI = αJ .
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If I and J also agree on the free variables of a Σ-formula α with free variables in Γ,
then αI = αJ .

Proof.
By induction on α.
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If I and J also agree on the free variables of a Σ-formula α with free variables in Γ,
then αI = αJ .

Proof.
By induction on α.
● If α is an atomic formula, the results holds by the previous lemma since α is then

a term, and all of its variables occur free in it.
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then αI = αJ .

Proof.
By induction on α.
● If α is an atomic formula, the results holds by the previous lemma since α is then

a term, and all of its variables occur free in it.

● If α is ¬β or α1 & α2 with & ∈ {∧,∨,⇒,⇔}, the result follows from the inductive
hypothesis.
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Consider a signature Σ, a Σ-context Γ, and two Σ-interpretations I and J that agree
on the sorts and symbols of Σ.

Theorem 2
If I and J also agree on the free variables of a Σ-formula α with free variables in Γ,
then αI = αJ .

Proof.
By induction on α.
● If α = Q s∶σ.β with Q ∈ {∀,∃}. ThenFV(β) = FV(α) ∪ { x }.

For any d in σI , I[x ↦ d] and J [x ↦ d] agree on x by construction and onFV(α)
by assumption. The result follows from the inductive hypothesis and the
semantics of ∀ and ∃.
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Note: The theorem implies that the interpretation of formula α is independent from
the values assigned to variables that do not occur free in α.
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Consider a signature Σ, a Σ-context Γ, and two Σ-interpretations I and J that agree
on the sorts and symbols of Σ.

Theorem 2
If I and J also agree on the free variables of a Σ-formula α with free variables in Γ,
then αI = αJ .

Note: The theorem implies that the interpretation of formula α is independent from
the values assigned to variables that do not occur free in α.

Corollary 3
The truth value of sentences is independent from how variables are interpreted.
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The Deduction Theorem of FOL
Consider a signature Σ

Theorem 4
For all Σ-formulas α and β, we have that α ⊧ β iff ⊧ α⇒ β

Proof.
⇒)We argue that every Σ interpretation I satisfies γ ∶= α⇒ β. If I falsifies α, then it
trivially satisfies γ. If, instead, I satisfies α, then, since α ⊧ β, it must satisfy β as well.
Hence, it satisfies γ.
⇐)We argue that every Σ-interpretation I that satisfies α satisfies β as well. Any such
interpretation must indeed satisfy β; otherwise, it would falsify α⇒ β, against the
assumption that ⊧ α⇒ β.

Corollary 5
For all Σ-formulas α and β, we have that α ≡ β iff ⊧ α⇔ β
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The Free Variables Theorem 1
Consider a signature Σ and a Σ-context Γ

Let Φ be a set of Σ-formulas, let α be Σ-formula with free variables from Γ, and let
x ∈ FV(α)where x ∶ σ ∈ Γ.

Theorem 6
Suppose x occurs free in no formulas of Φ. Then, Φ ⊧ α iff Φ ⊧ ∀x∶σ.α

Proof.
⇒) Let I be any interpretation that satisfies Φ. Since x does not occur free in any
formula of Φ we can conclude that I[x ↦ a] ⊧ Φ for all a ∈ σI . Since Φ ⊧ α, we have
that I[x ↦ a] ⊧ α for all a ∈ σI . But then I ⊧ ∀x∶σ.α by definition of ∀. Hence, every
interpretation that satisfies Φ also satisfies ∀x∶σ.α, that is, Φ ⊧ ∀x∶σ.α.
⇐) Let I be any interpretation that satisfies Φ. By assumption I ⊧ ∀x∶σ.α. This
implies that I ⊧ α regardless of what xI is. Hence Φ ⊧ α.
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The Free Variables Theorem 2
Consider a signature Σ and a Σ-context Γ

Let β be Σ-formula, let α be a Σ-formula with free variables from Γ, and let x ∈ FV(α)
where x ∶ σ ∈ Γ.

Theorem 7
Suppose x does not occur free in β. Then, α ⊧ β iff ∃x∶σ.α ⊧ β

Proof.
⇒) Let I be any interpretation that satisfies ∃x∶σ.α. This means that I[x ↦ a] ⊧ α for
some a ∈ σI . By assumption, I[x ↦ a] satisfies β as well. Since x does not occur free in
β, changing the value assigned to x does not matter. It follows that I ⊧ β. Since I was
arbitrary, this shows that ∃x∶σ.α ⊧ β.
⇐) Let I be any interpretation that satisfies α. Then, trivially, I ⊧ ∃x∶σ.α. By
assumption, I ⊧ β. Since I was arbitrary, we can conclude that α ⊧ β.
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