CS:4980 Topics in Computer Science II Introduction to Automated Reasoning

First-order Logic: Syntax and Semantics

Cesare Tinelli

Spring 2024

Motivation

Consider formalizing and reasoning about these sentences in propositional logic

English	PL
Every natural number is greater than 0	P
Not every natural number is greater than 0	$\neg P$

What facts can we logically deduce?

Motivation

Consider formalizing and reasoning about these sentences in propositional logic

English	PL
Every natural number is greater than 0	P
Not every natural number is greater than 0	$\neg P$

What facts can we logically deduce? Only: $p \vee \neg p$

Motivation

Consider formalizing and reasoning about these sentences in propositional logic

English	PL
Every natural number is greater than 0	P
Not every natural number is greater than 0	$\neg P$

What facts can we logically deduce? Only: $p \vee \neg p$

Propositional logic is often too coarse to express information about individual objects and formalize correct deductions about them

Motivation

Consider formalizing and reasoning about these sentences in propositional logic

English	PL
Every natural number is greater than 0	P
Not every natural number is greater than 0	$\neg P$

What facts can we logically deduce? Only: $p \vee \neg p$
First-order Logic (FOL) allows us to (dis)prove the validity of sentences like the above

Motivation

Consider formalizing and reasoning about these sentences in propositional logic

English	PL
Every natural number is greater than 0	P
Not every natural number is greater than 0	$\neg P$

What facts can we logically deduce? Only: $p \vee \neg p$

First-order Logic (FOL) allows us to (dis)prove the validity of sentences like the above In this case, we need a first-order language for number theory

Motivation

"Every positive integer number different from 1 is smaller than its square"

Motivation

"Every positive integer number different from 1 is smaller than its square"
Intuitively, a first-order language has the following features:

- A sublanguage to denote individual things (numbers, people, colors, ...)

Motivation

"Every positive integer number different from 1 is smaller than its square"
Intuitively, a first-order language has the following features:

- A sublanguage to denote individual things (numbers, people, colors, ...)
- A sublanguage to express properties of individuals and relations among them

Motivation

"Every positive integer number different from 1 is smaller than its square"
Intuitively, a first-order language has the following features:

- A sublanguage to denote individual things (numbers, people, colors, ...)
- A sublanguage to express properties of individuals and relations among them
- A sublanguage to denote groups of individuals with common features and ascribe them to specific individuals

Motivation

"Every positive integer number different from 1 is smaller than its square"

Intuitively, a first-order language has the following features:

- A sublanguage to denote individual things (numbers, people, colors, ...)
- A sublanguage to express properties of individuals and relations among them
- A sublanguage to denote groups of individuals with common features and ascribe them to specific individuals
- A way to quantify statements about individuals

Motivation

"Every positive integer number different from 1 is smaller than its square"

English	FOL language
generic number	x
the number 1	1
the square of x	square (x)
" x is positive"	positive (x)
" x is different from 1"	$x \neq 1$
" x is smaller than its square"	$x<\operatorname{square}(x)$
"for every integer number"	$\forall x: \operatorname{lnt}$

Motivation

"Every positive integer number different from 1 is smaller than its square"

English	FOL language
generic number	x
the number 1	1
the square of x	square (x)
" x is positive"	positive (x)
" x is different from 1"	$x \neq 1$
" x is smaller than its square"	$x<\operatorname{square}(x)$
"for every integer number"	$\forall x: \operatorname{lnt}$

Sentence above in FOL: $\quad \forall x$: Int. (positive $(x) \wedge x \neq 1 \Rightarrow x<\operatorname{square}(x)$)

Motivation

"Every positive integer number different from 1 is smaller than its square"

English	FOL language
generic number	x
the number 1	1
the square of x	square (x)
" x is positive"	positive (x)
" x is different from 1"	$x \neq 1$
" x is smaller than its square"	$x<\operatorname{square}(x)$
"for every integer number"	$\forall x: \ln t$

Sentence above in FOL: $\quad \forall x$: Int. (positive $(x) \wedge x \neq 1 \Rightarrow x<$ square (x))
The formula is true in the intended interpretation

Outline

- Syntax (ML 7.1-2)
- Semantics (ML 7.3)

ML presents a one-sorted first-order logic
We will use a many-sorted first-order logic
This makes it convenient to present Satisfiability Modulo Theories later

Outline

- Syntax (ML 7.1-2)
- Semantics (ML 7.3)

ML presents a one-sorted first-order logic
We will use a many-sorted first-order logic
This makes it convenient to present Satisfiability Modulo Theories later
Note: Many-sorted FOL is not more expressive than one-sorted FOL:
It is possible to faithfully encode the former in the latter

Outline

- Syntax (ML 7.1-2)
- Semantics (ML 7.3)

ML presents a one-sorted first-order logic
We will use a many-sorted first-order logic
This makes it convenient to present Satisfiability Modulo Theories later
Note: Many-sorted FOL is not more expressive than one-sorted FOL:
It is possible to faithfully encode the former in the latter
However, using different sorts makes it more convenient to rule out non-sensical expressions

Symbols

Review: what does the syntax of a logic consist of?

Symbols

Review: what does the syntax of a logic consist of?
Symbols + rules for combining them

Symbols

Review: what does the syntax of a logic consist of?
Symbols + rules for combining them
First-order logic is an umbrella term for different first-order languages

Symbols

Review: what does the syntax of a logic consist of?
Symbols + rules for combining them

First-order logic is an umbrella term for different first-order languages

The symbols of a first-order language consist of:

1. Logical symbols $(\Rightarrow, T, \wedge, \neg,()$,
2. Signature, $\Sigma:=\left\langle\Sigma^{S}, \Sigma^{F}\right\rangle$, where:

- Σ^{S} is a set of sorts: e.g., Real, Int, Set
- Σ^{F} is a set of function symbols: e.g., $=,+,+[2],<, X$

Symbols

Review: what does the syntax of a logic consist of?
Symbols + rules for combining them

First-order logic is an umbrella term for different first-order languages

The symbols of a first-order language consist of:

1. Logical symbols $(\Rightarrow, T, \wedge, \neg,()$,
2. Signature, $\Sigma:=\left\langle\Sigma^{S}, \Sigma^{F}\right\rangle$, where:

- Σ^{S} is a set of sorts: e.g., Real, Int, Set
- Σ^{F} is a set of function symbols: e.g., $=,+,+[2],<, \ell$

Note: We consider symbols as atomic (not divisible further)

Signature

The syntax of a first-order language is defined w.r.t. a signature, $\Sigma:=\left\langle\Sigma^{S}, \Sigma^{F}\right\rangle$, where:

- Σ^{S} is a set of sorts: e.g., Real, Int, Set,
- Σ^{F} is a set of function symbols: e.g., $=,+,+[2],<, \ell$

Signature

The syntax of a first-order language is defined w.r.t. a signature, $\Sigma:=\left\langle\Sigma^{S}, \Sigma^{F}\right\rangle$, where:

- Σ^{S} is a set of sorts: e.g., Real, Int, Set,
- Σ^{F} is a set of function symbols: e.g., $=,+,+[2],<, \ell$

We associate each function symbol $f \in \Sigma^{\digamma}$ with:

Signature

The syntax of a first-order language is defined w.r.t. a signature, $\Sigma:=\left\langle\Sigma^{S}, \Sigma^{F}\right\rangle$, where:

- Σ^{s} is a set of sorts: e.g., Real, Int, Set,
- Σ^{F} is a set of function symbols: e.g., $=,+,+[2],<, \ell$

We associate each function symbol $f \in \Sigma^{F}$ with:

- an arity n : a natural number denoting the number of arguments f takes
- \boldsymbol{a} ranka $(n+1)$-tuple of sorts: $\operatorname{rank}(f)=\left\langle\sigma_{1}, \ldots, \sigma_{n}, \sigma_{n+1}\right\rangle$

Signature

The syntax of a first-order language is defined w.r.t. a signature, $\Sigma:=\left\langle\Sigma^{S}, \Sigma^{F}\right\rangle$, where:

- Σ^{s} is a set of sorts: e.g., Real, Int, Set,
- Σ^{F} is a set of function symbols: e.g., $=,+,+{ }_{[2]},<, \ell$

We associate each function symbol $f \in \Sigma^{F}$ with:

- an arity n : a natural number denoting the number of arguments f takes
- \boldsymbol{a} ranka $(n+1)$-tuple of sorts: $\operatorname{rank}(f)=\left\langle\sigma_{1}, \ldots, \sigma_{n}, \sigma_{n+1}\right\rangle$

Intuitively, f denotes a function that takes n values of respective sort $\sigma_{1}, \ldots, \sigma_{n}$ as input and returns an output of sort σ_{n+1}

Signature

The syntax of a first-order language is defined w.r.t. a signature, $\Sigma:=\left\langle\Sigma^{S}, \Sigma^{F}\right\rangle$, where:

- Σ^{S} is a set of sorts: e.g., Real, Int, Set,
- Σ^{F} is a set of function symbols: e.g., $=,+,+{ }_{[2]},<, \ell$

We associate each function symbol $f \in \Sigma^{F}$ with:

- an arity n : a natural number denoting the number of arguments f takes
- \boldsymbol{a} ranka $(n+1)$-tuple of sorts: $\operatorname{rank}(f)=\left\langle\sigma_{1}, \ldots, \sigma_{n}, \sigma_{n+1}\right\rangle$

Intuitively, f denotes a function that takes n values of respective sort $\sigma_{1}, \ldots, \sigma_{n}$ as input and returns an output of sort σ_{n+1}
$\sigma_{1}, \ldots, \sigma_{n}$ are the input sorts of f and σ_{n+1} is the output sort

Signature

The syntax of a first-order language is defined w.r.t. a signature, $\Sigma:=\left\langle\Sigma^{S}, \Sigma^{F}\right\rangle$, where:

- Σ^{s} is a set of sorts: e.g., Real, Int, Set,
- Σ^{F} is a set of function symbols: e.g., $=,+,+{ }_{[2]},<, \ell$

We associate each function symbol $f \in \Sigma^{F}$ with:

- an arity n : a natural number denoting the number of arguments f takes
- \boldsymbol{a} ranka $(n+1)$-tuple of sorts: $\operatorname{rank}(f)=\left\langle\sigma_{1}, \ldots, \sigma_{n}, \sigma_{n+1}\right\rangle$

Intuitively, f denotes a function that takes n values of respective sort $\sigma_{1}, \ldots, \sigma_{n}$ as input and returns an output of sort σ_{n+1}
We call function symbols a of arity 0 constants and say they have sort σ when rank $(a)=\langle\sigma\rangle$

Signature

The syntax of a first-order language is defined w.r.t. a signature, $\Sigma:=\left\langle\Sigma^{S}, \Sigma^{F}\right\rangle$, where:

- Σ^{S} is a set of sorts: e.g., Real, Int, Set,
- Σ^{F} is a set of function symbols: e.g., $=,+,+[2],<, \ell$

We associate each function symbol $f \in \Sigma^{F}$ with:

- an arity n : a natural number denoting the number of arguments f takes
- \boldsymbol{a} ranka $(n+1)$-tuple of sorts: $\operatorname{rank}(f)=\left\langle\sigma_{1}, \ldots, \sigma_{n}, \sigma_{n+1}\right\rangle$

We also assume an infinite set of variable (symbols) x, y, \ldots

Signature

The syntax of a first-order language is defined w.r.t. a signature, $\Sigma:=\left\langle\Sigma^{S}, \Sigma^{F}\right\rangle$, where:

- Σ^{s} is a set of sorts: e.g., Real, Int, Set,
- Σ^{F} is a set of function symbols: e.g., $=,+,+{ }_{[2]},<, \ell$

We associate each function symbol $f \in \Sigma^{F}$ with:

- an arity n : a natural number denoting the number of arguments f takes
- \boldsymbol{a} ranka $(n+1)$-tuple of sorts: $\operatorname{rank}(f)=\left\langle\sigma_{1}, \ldots, \sigma_{n}, \sigma_{n+1}\right\rangle$

Example: In the first-order language of number theory

- Σ^{S} contains a sort Nat and Σ^{F} contains a function symbols $0,1,+$
- 0 and 1 have arity 0 and $\operatorname{rank}(0)=\operatorname{rank}(1)=\langle$ Nat \rangle
- + has arity 2 and $\operatorname{rank}(+)=\langle$ Nat, Nat, Nat \rangle

Signature

We assume for every signature Σ that

- Σ S includes a distinguished sort Bool
- \sum^{F} contains distinguished constants T and \perp with $\operatorname{sort}(\perp)=\operatorname{sort}(T)=$ Bool, and distinguished functions symbols \doteq_{σ} with $\operatorname{rank}\left(\doteq_{\sigma}\right)=\langle\sigma, \sigma$, Bool \rangle for all $\sigma \in \Sigma^{S}$

Signature

We assume for every signature Σ that

- ΣS includes a distinguished sort Bool
- \sum^{F} contains distinguished constants T and \perp with sort $(\perp)=\operatorname{sort}(T)=$ Bool, and distinguished functions symbols \doteq_{σ} with $\operatorname{rank}\left(\doteq_{\sigma}\right)=\langle\sigma, \sigma$, Bool \rangle for all $\sigma \in \Sigma^{S}$

There are two special kinds of function symbols:

Signature

We assume for every signature Σ that

- ΣS includes a distinguished sort Bool
- Σ^{F} contains distinguished constants T and \perp with $\operatorname{sort}(\perp)=\operatorname{sort}(T)=$ Bool, and distinguished functions symbols \doteq_{σ} with $\operatorname{rank}\left(\doteq_{\sigma}\right)=\langle\sigma, \sigma$, Bool \rangle for all $\sigma \in \Sigma^{S}$

There are two special kinds of function symbols:
Constant symbols: function symbols of 0 arity (e.g., $\perp, T, \pi, J o h n, 0$)

Signature

We assume for every signature Σ that

- ΣS includes a distinguished sort Bool
- \sum^{F} contains distinguished constants T and \perp with $\operatorname{sort}(\perp)=\operatorname{sort}(T)=$ Bool, and distinguished functions symbols \doteq_{σ} with $\operatorname{rank}\left(\doteq_{\sigma}\right)=\langle\sigma, \sigma$, Bool \rangle for all $\sigma \in \Sigma^{S}$

There are two special kinds of function symbols:
Constant symbols: function symbols of 0 arity (e.g., \perp, \top, π, John, 0)
Predicate symbols: function symbols of return sort Bool (e.g., $\left.\dot{=}_{\sigma},<\right)$

First-Order Languages: Examples

Recall that a first-order language is defined wrt a signature $\Sigma:=\left\langle\Sigma^{S}, \Sigma^{F}\right\rangle$

Elementary Number Theory

- $\Sigma^{S}:\{$ Nat, Bool $\}$
- $\sum F:\left\{<, 0, S,+, \times, \dot{\doteq}_{\text {Nat }}\right\} \cup\left\{T, \perp, \dot{=}_{\text {Bool }}\right\}$
where:
- $\operatorname{rank}(<)=\langle$ Nat, Nat, Bool \rangle
- $\operatorname{rank}(0)=\langle$ Nat \rangle
- $\operatorname{rank}(S)=\langle$ Nat, Nat \rangle
- $\operatorname{rank}(+)=\operatorname{rank}(\times)=\langle$ Nat, Nat, Nat \rangle

First-Order Languages: Examples

Set Theory

- $\Sigma^{s}:\{$ Set, Bool $\}$
- $\Sigma^{F}:\{\epsilon, \varnothing, \cup, \cap, \dot{=}$ Set $\} \cup\{T, \perp, \dot{=}$ Bool $\}$
where:
- $\operatorname{rank}(\varnothing)=\langle$ Set \rangle
- $\operatorname{rank}(\cup)=\operatorname{rank}(\cap)=\langle$ Set, Set, Set \rangle
- $\operatorname{rank}(\epsilon)=\langle$ Set, Set, Bool \rangle

First-Order Languages: Examples

Propositional logic formulas

- $\Sigma^{s}:\{$ Bool $\}$
- $\Sigma^{F}:\left\{\neg, \wedge, \vee, \ldots, p_{1}, p_{2}, \ldots\right\} \cup\left\{T, \perp, \dot{=}_{\text {Bool }}\right\}$
where:
- $\operatorname{rank}\left(p_{i}\right)=\langle$ Bool \rangle
- $\operatorname{rank}(\neg)=\langle$ Bool, Bool \rangle
- $\operatorname{rank}(\wedge)=\operatorname{rank}(\vee)=\langle$ Bool, Bool, Bool \rangle

Expressions

Recall that an expression is any finite sequence of symbols

Example

- $\forall x_{1}\left(\left(<0 x_{1}\right) \Rightarrow\left(\neg \forall x_{2}\left(<x_{1} x_{2}\right)\right)\right)$
- $\left.\left.x_{1}<\forall x_{2}\right)\right)$
- $x_{1}<x_{2} \Rightarrow \forall x:$ Nat. $x>0$

Most expressions are not well-formed

Expressions

Recall that an expression is any finite sequence of symbols

Example

- $\forall x_{1}\left(\left(<0 x_{1}\right) \Rightarrow\left(\neg \forall x_{2}\left(<x_{1} x_{2}\right)\right)\right)$
- $\left.\left.x_{1}<\forall x_{2}\right)\right)$
- $x_{1}<x_{2} \Rightarrow \forall x:$ Nat. $x>0$

Most expressions are not well-formed
Expressions of interest in FOL are terms and well-formed formulas (wffs)

Terms

Expressions built up from function symbols, variables, and parentheses ((,))

Terms

Expressions built up from function symbols, variables, and parentheses ((,))

Formally, let \mathcal{B} be the set of all variables and all constant symbols in some signature Σ

Terms

Expressions built up from function symbols, variables, and parentheses ((,))

Formally, let \mathcal{B} be the set of all variables and all constant symbols in some signature Σ
For each function symbol $f \in \Sigma^{F}$ of arity $n>0$, we define a term-building operation \mathcal{T}_{f} :

$$
\mathcal{T}_{f}\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right):=\left(f \varepsilon_{1} \cdots \varepsilon_{n}\right)
$$

Terms

Expressions built up from function symbols, variables, and parentheses ((,))

Formally, let \mathcal{B} be the set of all variables and all constant symbols in some signature Σ
For each function symbol $f \in \Sigma^{F}$ of arity $n>0$, we define a term-building operation \mathcal{T}_{f} :

$$
\mathcal{T}_{f}\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right):=\left(f \varepsilon_{1} \cdots \varepsilon_{n}\right)
$$

Terms are expressions that are generated from \mathcal{B} by $\mathcal{T}=\left\{\mathcal{T}_{f} \mid f \in \Sigma^{F}\right\}$

Terms

Expressions built up from function symbols, variables, and parentheses ((,))

Formally, let \mathcal{B} be the set of all variables and all constant symbols in some signature Σ
For each function symbol $f \in \Sigma^{F}$ of arity $n>0$, we define a term-building operation \mathcal{T}_{f} :

$$
\mathcal{T}_{f}\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right):=\left(f \varepsilon_{1} \cdots \varepsilon_{n}\right)
$$

Terms are expressions that are generated from \mathcal{B} by $\mathcal{T}=\left\{\mathcal{T}_{f} \mid f \in \Sigma^{F}\right\}$
Examples of terms in the language of number theory:
$\checkmark\left(+x_{2}\left(\begin{array}{ll}0\end{array}\right)\right)$
$\checkmark(S(S(S(S 0))))$
$x\left(x_{2}+0\right)$
$\checkmark\left(+x_{2} \perp\right)$
$\boldsymbol{x}\left(\begin{array}{lll}S & 0 & 0\end{array}\right)$
$\checkmark\left(S_{\perp}\right)$
$\boldsymbol{x}\left(\begin{array}{l}(00)\end{array}\right)$
$\checkmark(S(<00))$
$\checkmark(\doteq 0 \perp)$

Well-sorted terms

Not all well-formed terms are meaningful

We consider only terms that are well-sorted wrt a given signature Σ

Well-sortedness

We formulate the notion of well-sortedness wrt Σ with a sort system, a proof system over sequents of the form $\Gamma \vdash t: \sigma$

Well-sortedness

We formulate the notion of well-sortedness wrt Σ with a sort system, a proof system over sequents of the form $\Gamma \vdash t: \sigma$
where

- $\Gamma=x_{1}: \sigma_{1}, \ldots, x_{n}: \sigma_{n}$ is sort context, a set of sorted variables
- t is a well-formed term
- σ is a sort of Σ

Well-sortedness

We formulate the notion of well-sortedness wrt Σ with a sort system, a proof system over sequents of the form $\Gamma \vdash t: \sigma$

$$
\text { VAR } \frac{x: \sigma \in \Gamma}{\Gamma \vdash x: \sigma} \quad \text { CONST } \frac{c \in \Sigma^{F} \operatorname{rank}(c)=\langle\sigma\rangle}{\Gamma \vdash c: \sigma}
$$

$$
\text { FuN } \frac{f \in \Sigma^{F} \operatorname{rank}(f)=\left\langle\sigma_{1}, \ldots, \sigma_{n}, \sigma\right\rangle \quad \Gamma \vdash t_{1}: \sigma_{1} \cdots \quad \Gamma \vdash t_{n}: \sigma_{n}}{\Gamma \vdash\left(f t_{1} \cdots t_{n}\right): \sigma}
$$

A term t is well-sorted wrt Σ and has sort σ in a sort context Γ if $\Gamma \vdash t: \sigma$ is derivable in the sort system above

Well-sortedness

We formulate the notion of well-sortedness wrt Σ with a sort system, a proof system over sequents of the form $\Gamma \vdash t: \sigma$

$$
\text { VAR } \frac{x: \sigma \in \Gamma}{\Gamma \vdash x: \sigma} \quad \text { Const } \frac{c \in \Sigma^{F} \operatorname{rank}(c)=\langle\sigma\rangle}{\Gamma \vdash c: \sigma}
$$

$$
\text { FuN } \frac{f \in \Sigma^{F} \operatorname{rank}(f)=\left\langle\sigma_{1}, \ldots, \sigma_{n}, \sigma\right\rangle \Gamma \vdash t_{1}: \sigma_{1} \cdots \quad \Gamma \vdash t_{n}: \sigma_{n}}{\Gamma \vdash\left(f t_{1} \cdots t_{n}\right): \sigma}
$$

A term t is well-sorted wrt \sum and has sort σ in a sort context Γ if $\Gamma \vdash t: \sigma$ is derivable in the sort system above

We call t a Σ-term

Well-sortedness

We formulate the notion of well-sortedness wrt Σ with a sort system, a proof system over sequents of the form $\Gamma \vdash t: \sigma$

$$
\text { VAR } \frac{x: \sigma \in \Gamma}{\Gamma \vdash x: \sigma} \quad \text { Const } \frac{c \in \Sigma^{F} \operatorname{rank}(c)=\langle\sigma\rangle}{\Gamma \vdash c: \sigma}
$$

$$
\text { FuN } \frac{f \in \Sigma^{F} \operatorname{rank}(f)=\left\langle\sigma_{1}, \ldots, \sigma_{n}, \sigma\right\rangle \Gamma \vdash t_{1}: \sigma_{1} \cdots \quad \Gamma \vdash t_{n}: \sigma_{n}}{\Gamma \vdash\left(f t_{1} \cdots t_{n}\right): \sigma}
$$

A term t is well-sorted wrt \sum and has sort σ in a sort context Γ if $\Gamma \vdash t: \sigma$ is derivable in the sort system above

$$
\text { We call } t \text { a } \Sigma \text {-term }
$$

Note: Every well-sorted term is also well-formed

Well-sorted terms example: Elementary number theory

Let $\Sigma^{S}=\{\operatorname{Nat}\}(\cup\{$ Bool $\})$ and $\Sigma^{F}=\{0, S,+, \times,<, \dot{=}$ Nat $\}\left(\cup\left\{T, \perp, \dot{\epsilon}_{\text {Bool }}\right\}\right)$

- $\operatorname{rank}(0)=\langle$ Nat \rangle
- $\operatorname{rank}(S)=\langle$ Nat, Nat \rangle
- $\operatorname{rank}(+)=\operatorname{rank}(\times)=\langle$ Nat, Nat, Nat \rangle
- $\operatorname{rank}(<)=\operatorname{rank}\left(\doteq_{\text {© }}^{\text {Nat }}\right)=\langle$ Nat, Nat, Bool \rangle

Well-sorted terms example: Elementary number theory

Let $\Sigma^{S}=\{\operatorname{Nat}\}(\cup\{$ Bool $\})$ and $\Sigma^{F}=\left\{0, S,+, \times,<, \doteq_{\text {Nat }}\right\}\left(\cup\left\{T, \perp, \dot{=}_{\text {Bool }}\right\}\right)$

- $\operatorname{rank}(0)=\langle$ Nat \rangle
- $\operatorname{rank}(S)=\langle$ Nat, Nat \rangle
- $\operatorname{rank}(+)=\operatorname{rank}(\times)=\langle$ Nat, Nat, Nat \rangle
- $\operatorname{rank}(<)=\operatorname{rank}\left(\doteq_{\text {© }}^{\text {Nat }}\right)=\langle$ Nat, Nat, Bool \rangle

Are these well-formed terms also well-sorted in context $\Gamma=\left\{x_{1}:\right.$ Bool, $x_{2}:$ Nat, $x_{3}:$ Nat $\}$?

1. $\left(+0 x_{2}\right)$

Well-sorted terms example: Elementary number theory

Let $\Sigma^{S}=\{\operatorname{Nat}\}(\cup\{$ Bool $\})$ and $\Sigma^{F}=\left\{0, S,+, \times,<, \doteq_{\text {Nat }}\right\}\left(\cup\left\{T, \perp, \dot{=}_{\text {Bool }}\right\}\right)$

- $\operatorname{rank}(0)=\langle$ Nat \rangle
- $\operatorname{rank}(S)=\langle$ Nat, Nat \rangle
- $\operatorname{rank}(+)=\operatorname{rank}(\times)=\langle$ Nat, Nat, Nat \rangle
- $\operatorname{rank}(<)=\operatorname{rank}\left(\doteq_{\text {© }}^{\text {Nat }}\right)=\langle$ Nat, Nat, Bool \rangle

Are these well-formed terms also well-sorted in context $\Gamma=\left\{x_{1}:\right.$ Bool, $x_{2}:$ Nat, $x_{3}:$ Nat $\}$?

1. $\left(+0 x_{2}\right)$

Well-sorted terms example: Elementary number theory

Let $\Sigma^{S}=\{\operatorname{Nat}\}(\cup\{$ Bool $\})$ and $\Sigma^{F}=\left\{0, S,+, \times,<, \doteq_{\text {Nat }}\right\}\left(\cup\left\{T, \perp, \dot{=}_{\text {Bool }}\right\}\right)$

- $\operatorname{rank}(0)=\langle$ Nat \rangle
- $\operatorname{rank}(S)=\langle$ Nat, Nat \rangle
- $\operatorname{rank}(+)=\operatorname{rank}(\times)=\langle$ Nat, Nat, Nat \rangle
- $\operatorname{rank}(<)=\operatorname{rank}\left(\doteq_{\text {© }}^{\text {Nat }}\right)=\langle$ Nat, Nat, Bool \rangle

Are these well-formed terms also well-sorted in context $\Gamma=\left\{x_{1}:\right.$ Bool, $x_{2}:$ Nat, $x_{3}:$ Nat $\}$?

1. $\left(+0 x_{2}\right)$
2. $\left(+\left(+0 x_{1}\right) x_{2}\right)$

Well-sorted terms example: Elementary number theory

Let $\Sigma^{S}=\{\operatorname{Nat}\}(\cup\{$ Bool $\})$ and $\Sigma^{F}=\left\{0, S,+, \times,<, \doteq_{\text {Nat }}\right\}\left(\cup\left\{T, \perp, \dot{=}_{\text {Bool }}\right\}\right)$

- $\operatorname{rank}(0)=\langle$ Nat \rangle
- $\operatorname{rank}(S)=\langle$ Nat, Nat \rangle
- $\operatorname{rank}(+)=\operatorname{rank}(\times)=\langle$ Nat, Nat, Nat \rangle
- $\operatorname{rank}(<)=\operatorname{rank}\left(\doteq_{\text {© }}^{\text {Nat }}\right)=\langle$ Nat, Nat, Bool \rangle

Are these well-formed terms also well-sorted in context $\Gamma=\left\{x_{1}:\right.$ Bool, $x_{2}:$ Nat, $x_{3}:$ Nat $\}$?

1. $\left(+0 x_{2}\right)$
2. $\left(+\left(+0 x_{1}\right) x_{2}\right) \boldsymbol{x}$

Well-sorted terms example: Elementary number theory

Let $\Sigma^{S}=\{\operatorname{Nat}\}(\cup\{$ Bool $\})$ and $\Sigma^{F}=\left\{0, S,+, \times,<, \doteq_{\text {Nat }}\right\}\left(\cup\left\{T, \perp, \dot{=}_{\text {Bool }}\right\}\right)$

- $\operatorname{rank}(0)=\langle$ Nat \rangle
- $\operatorname{rank}(S)=\langle$ Nat, Nat \rangle
- $\operatorname{rank}(+)=\operatorname{rank}(\times)=\langle$ Nat, Nat, Nat \rangle
- $\operatorname{rank}(<)=\operatorname{rank}\left(\doteq_{\text {© }}^{\text {Nat }}\right)=\langle$ Nat, Nat, Bool \rangle

Are these well-formed terms also well-sorted in context $\Gamma=\left\{x_{1}:\right.$ Bool, $x_{2}:$ Nat, $x_{3}:$ Nat $\}$?

1. $\left(+0 x_{2}\right)$
2. $\left(+\left(+0 x_{1}\right) x_{2}\right) \boldsymbol{x}$
3. $\left(S\left(+0 x_{5}\right)\right)$

Well-sorted terms example: Elementary number theory

Let $\Sigma^{S}=\{\operatorname{Nat}\}(\cup\{$ Bool $\})$ and $\Sigma^{F}=\left\{0, S,+, \times,<, \doteq_{\text {Nat }}\right\}\left(\cup\left\{T, \perp, \dot{=}_{\text {Bool }}\right\}\right)$

- $\operatorname{rank}(0)=\langle$ Nat \rangle
- $\operatorname{rank}(S)=\langle$ Nat, Nat \rangle
- $\operatorname{rank}(+)=\operatorname{rank}(\times)=\langle$ Nat, Nat, Nat \rangle
- $\operatorname{rank}(<)=\operatorname{rank}\left(\doteq_{\text {© }}^{\text {Nat }}\right)=\langle$ Nat, Nat, Bool \rangle

Are these well-formed terms also well-sorted in context $\Gamma=\left\{x_{1}:\right.$ Bool, $x_{2}:$ Nat, $x_{3}:$ Nat $\}$?

1. $\left(+0 x_{2}\right)$
2. $\left(+\left(+0 x_{1}\right) x_{2}\right) \boldsymbol{x}$
3. $\left(S\left(+0 x_{5}\right)\right)$

Well-sorted terms example: Elementary number theory

Let $\Sigma^{S}=\{\operatorname{Nat}\}(\cup\{$ Bool $\})$ and $\Sigma^{F}=\left\{0, S,+, \times,<, \doteq_{\text {Nat }}\right\}\left(\cup\left\{T, \perp, \dot{=}_{\text {Bool }}\right\}\right)$

- $\operatorname{rank}(0)=\langle$ Nat \rangle
- $\operatorname{rank}(S)=\langle$ Nat, Nat \rangle
- $\operatorname{rank}(+)=\operatorname{rank}(\times)=\langle$ Nat, Nat, Nat \rangle
- $\operatorname{rank}(<)=\operatorname{rank}\left(\doteq_{\text {© }}^{\text {Nat }}\right)=\langle$ Nat, Nat, Bool \rangle

Are these well-formed terms also well-sorted in context $\Gamma=\left\{x_{1}:\right.$ Bool, $x_{2}:$ Nat, $x_{3}:$ Nat $\}$?

1. $\left(+0 x_{2}\right)$
2. $\left(+\left(+0 x_{1}\right) x_{2}\right) \boldsymbol{x}$
3. $\left(S\left(+0 x_{5}\right)\right)$
4. $\left(<\left(S x_{3}\right)\left(+(S 0) x_{1}\right)\right)$

Well-sorted terms example: Elementary number theory

Let $\Sigma^{S}=\{\operatorname{Nat}\}(\cup\{$ Bool $\})$ and $\Sigma^{F}=\left\{0, S,+, \times,<, \doteq_{\text {Nat }}\right\}\left(\cup\left\{T, \perp, \dot{=}_{\text {Bool }}\right\}\right)$

- $\operatorname{rank}(0)=\langle$ Nat \rangle
- $\operatorname{rank}(S)=\langle$ Nat, Nat \rangle
- $\operatorname{rank}(+)=\operatorname{rank}(\times)=\langle$ Nat, Nat, Nat \rangle
- $\operatorname{rank}(<)=\operatorname{rank}\left(\doteq_{\text {© }}^{\text {Nat }}\right)=\langle$ Nat, Nat, Bool \rangle

Are these well-formed terms also well-sorted in context $\Gamma=\left\{x_{1}:\right.$ Bool, $x_{2}:$ Nat, $x_{3}:$ Nat $\}$?

1. $\left(+0 x_{2}\right)$
2. $\left(+\left(+0 x_{1}\right) x_{2}\right) \boldsymbol{x}$
3. $\left(S\left(+0 x_{5}\right)\right)$
4. $\left(<\left(S x_{3}\right)\left(+(S 0) x_{1}\right)\right)$
5. $\left(\doteq_{\mathrm{Nat}}\left(S_{x_{3}}\right)\left(+(S 0) x_{1}\right)\right)$

Well-sorted terms example: Elementary number theory

Let $\Sigma^{S}=\{\operatorname{Nat}\}(\cup\{$ Bool $\})$ and $\Sigma^{F}=\left\{0, S,+, \times,<, \dot{\epsilon}_{\text {Nat }}\right\}\left(\cup\left\{T, \perp, \dot{=}_{\text {Bool }}\right\}\right)$

- $\operatorname{rank}(0)=\langle$ Nat \rangle
- $\operatorname{rank}(S)=\langle$ Nat, Nat \rangle
- $\operatorname{rank}(+)=\operatorname{rank}(\times)=\langle$ Nat, Nat, Nat \rangle
- $\operatorname{rank}(<)=\operatorname{rank}\left(\doteq_{\text {© }}^{\text {Nat }}\right)=\langle$ Nat, Nat, Bool \rangle

Are these well-formed terms also well-s

1. $\left(+0 x_{2}\right)$
2. $\left(+\left(+0 x_{1}\right) x_{2}\right)$

3. $\left(S\left(+0 x_{5}\right)\right)$
4. $\left(<\left(S x_{3}\right)\left(+(S 0) x_{1}\right)\right)$ Note: As a notational convention, we will use an infix notation for parentheses and common operators like $\doteq,<,+$ and so on

So we will often write $S\left(x_{3}\right) \doteq_{\text {Nat }} S(0)+x_{1}$
instead of $\left(\doteq_{\text {Nat }}\left(S x_{3}\right)\left(+(S 0) x_{1}\right)\right)$
5. $\left(\doteq_{\mathrm{Nat}}\left(S x_{3}\right)\left(+(S 0) x_{1}\right)\right)$

\sum-Formulas

Given a signature Σ, an atomic Σ-formula is any term that is a Σ-term t of sort Bool under some sort context \lceil

\sum-Formulas

Given a signature Σ, an atomic Σ-formula is any term that is a Σ-term t of sort Bool under some sort context 「

Examples: $\left(\doteq_{\text {Nat }} 0(S 0)\right),\left(<\left(S x_{3}\right)\left(+(S 0) x_{1}\right)\right)$

\sum-Formulas

Given a signature Σ, an atomic Σ-formula is any term that is a Σ-term t of sort Bool under some sort context \lceil

We define the following formula-building operations, denoted \mathcal{F} :

$$
\begin{array}{ll}
\mathcal{F}_{\vee}(\alpha, \beta):=(\alpha \vee \beta) & \mathcal{F}_{\wedge}(\alpha, \beta):=(\alpha \wedge \beta) \\
\mathcal{F}_{\Rightarrow}(\alpha, \beta):=(\alpha \Rightarrow \beta) & \mathcal{F}_{\Leftrightarrow}(\alpha, \beta):=(\alpha \Leftrightarrow \beta) \\
\mathcal{E}_{x, \sigma}(\alpha):=(\exists x: \sigma \cdot \alpha) & \text { for each var } x \text { and sort } \sigma \in \Sigma^{S} \\
\mathcal{A}_{x, \sigma}(\alpha):=(\forall x: \sigma \cdot \alpha) & \text { for each var } x \text { and sort } \sigma \in \Sigma^{S}
\end{array}
$$

$$
\mathcal{F}_{\neg}(\alpha):=(\neg \alpha)
$$

\sum-Formulas

Given a signature Σ, an atomic Σ-formula is any term that is a Σ-term t of sort Bool under some sort context \lceil

We define the following formula-building operations, denoted \mathcal{F} :

$$
\begin{array}{lr}
\mathcal{F}_{\vee}(\alpha, \beta):=(\alpha \vee \beta) & \mathcal{F}_{\wedge}(\alpha, \beta):=(\alpha \wedge \beta) \\
\mathcal{F}_{\Rightarrow}(\alpha, \beta):=(\alpha \Rightarrow \beta) & \mathcal{F}_{\Leftrightarrow}(\alpha, \beta):=(\alpha \Leftrightarrow \beta) \\
\mathcal{E}_{x, \sigma}(\alpha):=(\exists x: \sigma \cdot \alpha) & \text { for each var } x \text { and sort } \sigma \in \Sigma^{s} \\
\mathcal{A}_{x, \sigma}(\alpha):=(\forall x: \sigma \cdot \alpha) & \text { for each var } x \text { and sort } \sigma \in \Sigma^{s}
\end{array}
$$

The set of well-formed formulas is the set of expressions generated from the atomic Σ-formulas by \mathcal{F}

\sum-Formulas

Given a signature Σ, an atomic Σ-formula is any term that is a Σ-term t of sort Bool under some sort context \lceil

We define the following formula-building operations, denoted \mathcal{F} :

$$
\begin{array}{ll}
\mathcal{F}_{\vee}(\alpha, \beta):=(\alpha \vee \beta) & \mathcal{F}_{\wedge}(\alpha, \beta):=(\alpha \wedge \beta) \\
\mathcal{F}_{\Rightarrow}(\alpha, \beta):=(\alpha \Rightarrow \beta) & \mathcal{F}_{\Leftrightarrow}(\alpha, \beta):=(\alpha \Leftrightarrow \beta) \\
\mathcal{E}_{x, \sigma}(\alpha):=(\exists x: \sigma \cdot \alpha) & \text { for each var } x \text { and sort } \sigma \in \Sigma^{s}(\alpha):=(\neg \alpha) \\
\mathcal{A}_{x, \sigma}(\alpha):=(\forall x: \sigma \cdot \alpha) & \text { for each var } x \text { and sort } \sigma \in \Sigma^{s}
\end{array}
$$

Each $\exists x: \sigma$ is an existential quantifier
Each $\forall x: \sigma$ is a universal quantifier

Σ-Formulas

Given a signature Σ, an atomic Σ-formula is any term that is a Σ-term t of sort Bool under some sort context \lceil

We define the following formula-building operations, denoted \mathcal{F} :

$$
\begin{array}{ll}
\mathcal{F}_{\vee}(\alpha, \beta):=(\alpha \vee \beta) & \mathcal{F}_{\wedge}(\alpha, \beta):=(\alpha \wedge \beta) \\
\mathcal{F}_{\Rightarrow}(\alpha, \beta):=(\alpha \Rightarrow \beta) & \mathcal{F}_{\Leftrightarrow}(\alpha, \beta):=(\alpha \Leftrightarrow \beta) \\
\mathcal{E}_{x, \sigma}(\alpha):=(\exists x: \sigma \cdot \alpha) & \text { for each var } x \text { and sort } \sigma \in \Sigma^{s}(\alpha):=(\neg \alpha) \\
\mathcal{A}_{x, \sigma}(\alpha):=(\forall x: \sigma \cdot \alpha) & \text { for each var } x \text { and sort } \sigma \in \Sigma^{s}
\end{array}
$$

We simplify the notation as in PL by

- forgoing parentheses around top-level formulas - e.g., $(x \doteq y) \vee((y \doteq z) \vee(x \doteq z))$
- forgoing parentheses around atomic formulas in infix form - e.g., $x \doteq y \vee(y \doteq z \vee x \doteq z)$
- treating the binary connectives as n-ary and right associative - e.g., $x \doteq y \vee y \doteq z \vee x \doteq z$

Σ-Formulas: Examples

Let $\Sigma=\left\langle\Sigma^{S}:=\{\right.$ Nat $\left.\}, \Sigma^{F}:=\left\{0, S,+, \times,<, \dot{=}_{\text {Nat }}\right\}\right\rangle$ a x_{i} be variables for all i

Σ-Formulas: Examples

Let $\Sigma=\left\langle\Sigma^{S}:=\{N a t\}, \Sigma^{F}:=\left\{0, S,+, \times,<, \dot{=}_{\mathrm{Nat}}\right\}\right\rangle$ a x_{i} be variables for all i
Which of the following formulas (with atomic subformulas in infix form) are well-formed?

1. $\left(\doteq_{\text {Nat }}\left(+X_{1} 0\right) X_{2}\right)$
2. $\left(\doteq_{\mathrm{Nat}}\left(+x_{1} 0\right) x_{2}\right) \Rightarrow \perp$
3. $\left(+0 x_{3}\right) \wedge(<0(S 0))$
4. $\forall x_{3}: \operatorname{Nat} .\left(+\left(+0 x_{3}\right) x_{2}\right)$
5. $\forall x_{3}$: Bool. $\left(\doteq_{\mathrm{Nat}}\left(+0 x_{3}\right) x_{2}\right)$
6. $\neg \exists x_{0}:$ Nat. $\left(<0 x_{0}(S 0)\right)$

Σ-Formulas: Examples

Let $\Sigma=\left\langle\Sigma^{S}:=\{\mathrm{Nat}\}, \Sigma \Sigma^{F}:=\left\{0, S,+, \times,<, \dot{=}_{\mathrm{Nat}}\right\}\right\rangle$ a x_{i} be variables for all i
Which of the following formulas (with atomic subformulas in infix form) are well-formed?

1. $\left(\doteq_{\operatorname{Nat}}\left(+x_{1} 0\right) x_{2}\right)$
2. $\left(\doteq_{\mathrm{Nat}}\left(+x_{1} 0\right) x_{2}\right) \Rightarrow \perp$
3. $\left(+0 x_{3}\right) \wedge(<0(S 0))$
4. $\forall x_{3}:$ Nat. $\left(+\left(+0 x_{3}\right) x_{2}\right)$
5. $\forall x_{3}$: Bool. $\left(\doteq_{\mathrm{Nat}}\left(+0 x_{3}\right) x_{2}\right)$
6. $\neg \exists x_{0}:$ Nat. $\left(<0 x_{0}(S 0)\right)$

Σ-Formulas: Examples

Let $\Sigma=\left\langle\Sigma^{S}:=\{N a t\}, \Sigma^{F}:=\left\{0, S,+, \times,<, \dot{=}_{\mathrm{Nat}}\right\}\right\rangle$ a x_{i} be variables for all i
Which of the following formulas (with atomic subformulas in infix form) are well-formed?

1. $\left(\overline{\#}_{\text {Nat }}\left(+x_{1} 0\right) x_{2}\right) \quad \checkmark$
2. $\left(\doteq_{\mathrm{Nat}}\left(+x_{1} 0\right) x_{2}\right) \Rightarrow \perp$
3. $\left(+0 x_{3}\right) \wedge(<0(S 0))$
4. $\forall x_{3}: \operatorname{Nat} .\left(+\left(+0 x_{3}\right) x_{2}\right)$
5. $\forall x_{3}$: Bool. $\left(\doteq_{\mathrm{Nat}}\left(+0 x_{3}\right) x_{2}\right)$
6. $\neg \exists x_{0}:$ Nat. $\left(<0 x_{0}(S 0)\right)$

Σ-Formulas: Examples

Let $\Sigma=\left\langle\Sigma^{S}:=\{N a t\}, \Sigma^{F}:=\left\{0, S,+, \times,<, \dot{=}_{\mathrm{Nat}}\right\}\right\rangle$ a x_{i} be variables for all i
Which of the following formulas (with atomic subformulas in infix form) are well-formed?

1. $\left(\overline{\#}_{\text {Nat }}\left(+x_{1} 0\right) x_{2}\right) \quad \checkmark$
2. $\left(\doteq_{\text {Nat }}\left(+x_{1} 0\right) x_{2}\right) \Rightarrow \perp$
3. $\left(+0 x_{3}\right) \wedge(<0(S 0)) \quad x$
4. $\forall x_{3}: \operatorname{Nat} .\left(+\left(+0 x_{3}\right) x_{2}\right)$
5. $\forall x_{3}$: Bool. $\left(\doteq_{\mathrm{Nat}}\left(+0 x_{3}\right) x_{2}\right)$
6. $\neg \exists x_{0}:$ Nat. $\left(<0 x_{0}(S 0)\right)$

Σ-Formulas: Examples

Let $\Sigma=\left\langle\Sigma^{S}:=\{N a t\}, \Sigma^{F}:=\left\{0, S,+, \times,<, \dot{=}_{\mathrm{Nat}}\right\}\right\rangle$ a x_{i} be variables for all i
Which of the following formulas (with atomic subformulas in infix form) are well-formed?

1. $\left(\overline{\#}_{\text {Nat }}\left(+x_{1} 0\right) x_{2}\right) \quad \checkmark$
2. $\left(\doteq_{\text {Nat }}\left(+x_{1} 0\right) x_{2}\right) \Rightarrow \perp$
3. $\left(+0 x_{3}\right) \wedge(<0(S 0)) \quad x$
4. $\forall x_{3}$: Nat. $\left(+\left(+0 x_{3}\right) x_{2}\right) \quad x$
5. $\forall x_{3}$: Bool. $\left(\doteq_{\mathrm{Nat}}\left(+0 x_{3}\right) x_{2}\right)$
6. $\neg \exists x_{0}:$ Nat. $\left(<0 x_{0}(S 0)\right)$

Σ-Formulas: Examples

Let $\Sigma=\left\langle\Sigma^{S}:=\{N a t\}, \Sigma^{F}:=\left\{0, S,+, \times,<, \dot{=}_{\mathrm{Nat}}\right\}\right\rangle$ a x_{i} be variables for all i
Which of the following formulas (with atomic subformulas in infix form) are well-formed?

1. $\left(\overline{\#}_{\text {Nat }}\left(+x_{1} 0\right) x_{2}\right) \quad \checkmark$
2. $\left(\doteq_{\text {Nat }}\left(+x_{1} 0\right) x_{2}\right) \Rightarrow \perp$
3. $\left(+0 x_{3}\right) \wedge(<0(S 0)) \quad x$
4. $\forall x_{3}$: Nat. $\left(+\left(+0 x_{3}\right) x_{2}\right) \quad x$
5. $\forall x_{3}:$ Bool. $\left(\doteq_{\mathrm{Nat}}\left(+0 x_{3}\right) x_{2}\right)$
6. $\neg \exists x_{0}:$ Nat. $\left(<0 x_{0}(S 0)\right)$

Σ-Formulas: Examples

Let $\Sigma=\left\langle\Sigma^{S}:=\{N a t\}, \Sigma^{F}:=\left\{0, S,+, \times,<, \dot{=}_{\mathrm{Nat}}\right\}\right\rangle$ a x_{i} be variables for all i
Which of the following formulas (with atomic subformulas in infix form) are well-formed?

1. $\left(\overline{\#}_{\text {Nat }}\left(+x_{1} 0\right) x_{2}\right) \quad \checkmark$
2. $\left(\doteq_{\text {Nat }}\left(+x_{1} 0\right) x_{2}\right) \Rightarrow \perp$
3. $\left(+0 x_{3}\right) \wedge(<0(S 0)) \quad x$
4. $\forall x_{3}$: Nat. $\left(+\left(+0 x_{3}\right) x_{2}\right) \quad x$
5. $\forall x_{3}$: Bool. $\left(\doteq_{\mathrm{Nat}}\left(+0 x_{3}\right) x_{2}\right)$
6. $\neg \exists x_{0}:$ Nat. (<0 $\left.x_{0}(S 0)\right) \quad \boldsymbol{x}$

¿-Formulas: Examples

Let $\Sigma=\left\langle\Sigma^{S}:=\{\right.$ Nat $\left.\}, \Sigma^{F}:=\left\{0, S,+, \times,<, \dot{\bar{N}}_{\text {Nat }}\right\}\right\rangle$ a x_{i} be variables for all i
Which of the following formulas (with atomic subformulas in infix form) are well-formed?

1. $\left(\doteq_{\text {Nat }}\left(+x_{1} 0\right) x_{2}\right)$
2. $\left(\dot{=}_{\text {Nat }}\left(+x_{1} 0\right) x_{2}\right) \Rightarrow \perp$
3. $\left(+0 x_{3}\right) \wedge(<0(S 0)) x$
4. $\forall x_{3}$:Nat. $\left(+\left(+0 x_{3}\right) x_{2}\right) \boldsymbol{x}$
5. $\forall x_{3}$: Bool. $\left(\dot{=}_{\text {Nat }}\left(+0 x_{3}\right) x_{2}\right)$
6. $\neg \exists x_{0}$: Nat. $\left(<0 x_{0}(S 0)\right)$

Well-sorted formulas

We extend the sort system for terms with rules for the logical connectives and quantifiers

Well-sorted formulas

We extend the sort system for terms with rules for the logical connectives and quantifiers

$$
\begin{aligned}
& \text { BCONST } \frac{c \in\{T, \perp\}}{\Gamma \vdash c: \text { Bool }} \quad \text { Not } \frac{\Gamma \vdash \alpha: \text { Bool }}{\Gamma \vdash(\neg \alpha): \text { Bool }} \\
& \text { CONN } \frac{\Gamma \vdash \alpha: \text { Bool } \Gamma \vdash \beta: \text { Bool } \bowtie \in\{\wedge, \vee, \Rightarrow, \Leftrightarrow\}}{\Gamma \vdash(\alpha \bowtie \beta): \text { Bool }} \\
& \text { QUANT } \frac{\Gamma[x: \sigma] \vdash \alpha: \text { Bool } \sigma \in \Sigma^{S} \quad Q \in\{\forall, \exists\}}{\Gamma \vdash(Q x: \sigma \cdot \alpha): \text { Bool }}
\end{aligned}
$$

$\Gamma[x: \sigma]$ is a context that assigns sort σ to x and is otherwise identical to Γ

Well-sorted formulas

We extend the sort system for terms with rules for the logical connectives and quantifiers

$$
\begin{gathered}
\text { BCONST } \frac{c \in\{T, \perp\}}{\Gamma \vdash c: \text { Bool }} \quad \text { Not } \frac{\Gamma \vdash \alpha: \text { Bool }}{\Gamma \vdash(\neg \alpha): \text { Bool }} \\
\text { CONN } \frac{\Gamma \vdash \alpha: \text { Bool } \Gamma \vdash \beta: \text { Bool } \bowtie \in\{\wedge, \vee, \Rightarrow, \Leftrightarrow\}}{\Gamma \vdash(\alpha \bowtie \beta): \text { Bool }} \\
\text { QUANT } \frac{\Gamma[x: \sigma] \vdash \alpha: \text { Bool } \sigma \in \Sigma^{S} \quad Q \in\{\forall, \exists\}}{\Gamma \vdash(Q x: \sigma \cdot \alpha): \text { Bool }}
\end{gathered}
$$

A formula α is well-sorted wrt Σ in a sort context Γ if $\Gamma \vdash \alpha$: Bool is derivable in the sort system above

Well-sorted formulas

We extend the sort system for terms with rules for the logical connectives and quantifiers

$$
\begin{gathered}
\text { BCONST } \frac{c \in\{T, \perp\}}{\Gamma \vdash c: \text { Bool }} \quad \text { Not } \frac{\Gamma \vdash \alpha: \text { Bool }}{\Gamma \vdash(\neg \alpha): \text { Bool }} \\
\text { CONN } \frac{\Gamma \vdash \alpha: \text { Bool } \Gamma \vdash \beta: \text { Bool } \bowtie \in\{\wedge, \vee, \Rightarrow, \Leftrightarrow\}}{\Gamma \vdash(\alpha \bowtie \beta): \text { Bool }} \\
\text { QUANT } \frac{\Gamma[x: \sigma] \vdash \alpha: \text { Bool } \sigma \in \Sigma^{s} \quad Q \in\{\forall, \exists\}}{\Gamma \vdash(Q x: \sigma \cdot \alpha): \text { Bool }}
\end{gathered}
$$

A formula α is well-sorted wrt Σ in a sort context Γ if $\Gamma \vdash \alpha$: Bool is derivable in the sort system above

Exercise

Draw two Venn Diagram that illustrate the relations between
A: terms
B: well-formed terms
C: well-sorted terms
D : well-sorted atomic formulas
and between
D : well-sorted atomic formulas
E : well-formed formulas
F: well-sorted formulas

Notational conventions for formulas

From now on, to improve readability:

- We will use the infix notation for logical operators and function symbols typically written in that notation $\left(\dot{\ni}_{\sigma},<,+, \ldots\right)$

Notational conventions for formulas

From now on, to improve readability:

- We will use the infix notation for logical operators and function symbols typically written in that notation ($\stackrel{\epsilon}{\sigma},<,+, \ldots$)
- We may also omit parentheses by defining precedence:
- Same precedence for propositional connectives as in propositional logic
- Quantifiers have the highest precedence after \neg Example: $\neg \forall x .(p x) \wedge(q x)$ abbreviates $(\neg(\forall x .(p x))) \wedge(q x))$

Notational conventions for formulas

From now on, to improve readability:

- We will use the infix notation for logical operators and function symbols typically written in that notation ($\stackrel{\epsilon}{\sigma}^{\sigma},<,+, \ldots$)
- Finally, we will omit the sort symbol in equalities and quantifiers when it is clear from the context or not important:

Example: $\forall x_{1}, \forall y_{1} \cdot x_{1} \doteq x_{2}$ instead of $\forall x: \sigma_{1}, \forall x_{2}: \sigma_{2} \cdot x_{1} \doteq x_{2}$

- We may also omit parentheses by defining precedence:
- Same precedence for propositional connectives as in propositional logic
- Quantifiers have the highest precedence after \neg Example: $\neg \forall x .(p x) \wedge(q x)$ abbreviates $(\neg(\forall x .(p x))) \wedge(q x))$
- Finally, we will allow the use of parentheses following function symbols.

Example: $\forall x \cdot p(r(x)) \wedge q(x)$ instead of $\forall x \cdot(p(r x)) \wedge(q x)$

Free and Bound Variables

A variable x may occur free in a Σ-formula α or not
We formalize that by defining inductively the set $\mathcal{F} \mathcal{V}$ of free variables of α

Free and Bound Variables

A variable x may occur free in a Σ-formula α or not
We formalize that by defining inductively the set $\mathcal{F} \mathcal{V}$ of free variables of α

$$
\mathcal{F} \mathcal{V}(\alpha):= \begin{cases}\{x \mid x \text { is a var in } \alpha\} & \text { if } \alpha \text { is atomic } \\ \mathcal{F} \mathcal{V}(\beta) & \text { if } \alpha=\neg \beta \\ \mathcal{F} \mathcal{V}(\beta) \cup \mathcal{F} \mathcal{V}(\gamma) & \text { if } \alpha=\beta \bowtie \gamma \text { with } \bowtie \in\{\wedge, \vee, \Rightarrow, \Leftrightarrow\} \\ \mathcal{F} \mathcal{V}(\beta) \backslash\{v\} & \text { if } \alpha=Q v: \sigma . \beta \text { with } Q \in\{\forall, \exists\}\end{cases}
$$

Free and Bound Variables

A variable \times may occur free in a Σ-formula α or not
We formalize that by defining inductively the set $\mathcal{F} \mathcal{V}$ of free variables of α

$$
\mathcal{F} \mathcal{V}(\alpha):= \begin{cases}\{x \mid x \text { is a var in } \alpha\} & \text { if } \alpha \text { is atomic } \\ \mathcal{F} \mathcal{V}(\beta) & \text { if } \alpha=\neg \beta \\ \mathcal{F} \mathcal{V}(\beta) \cup \mathcal{F} \mathcal{V}(\gamma) & \text { if } \alpha=\beta \bowtie \gamma \text { with } \bowtie \in\{\wedge, \vee, \Rightarrow, \Leftrightarrow\} \\ \mathcal{F} \mathcal{V}(\beta) \backslash\{v\} & \text { if } \alpha=Q v: \sigma . \beta \text { with } Q \in\{\forall, \exists\}\end{cases}
$$

Examples: Let x, y, z be variables

- $\mathcal{F V}(x)=\{x\} \quad$ (provided x has sort Bool)
- $\mathcal{F V}(x<S(0)+y)=\{x, y\}$
- $\mathcal{F} \mathcal{V}(x<S(0)+y \wedge x \doteq z)=\mathcal{F} \mathcal{V}(x<S(0)+y) \cup \mathcal{F} \mathcal{V}(x \doteq z)=\{x, y\} \cup\{x, z\}=\{x, y, z\}$
- $\mathcal{F V}(\forall x:$ Nat. $x<S(0)+y)=\mathcal{F V}(x<S(0)+y) \backslash\{x\}=\{x, y\} \backslash\{x\}=\{y\}$

Free and Bound Variables

A variable x may occur free in a Σ-formula α or not
We formalize that by defining inductively the set $\mathcal{F} \mathcal{V}$ of free variables of α

$$
\mathcal{F} \mathcal{V}(\alpha):= \begin{cases}\{x \mid x \text { is a var in } \alpha\} & \text { if } \alpha \text { is atomic } \\ \mathcal{F} \mathcal{V}(\beta) & \text { if } \alpha=\neg \beta \\ \mathcal{F} \mathcal{V}(\beta) \cup \mathcal{F} \mathcal{V}(\gamma) & \text { if } \alpha=\beta \bowtie \gamma \text { with } \bowtie \in\{\wedge, \vee, \Rightarrow, \Leftrightarrow\} \\ \mathcal{F} \mathcal{V}(\beta) \backslash\{v\} & \text { if } \alpha=Q v: \sigma . \beta \text { with } Q \in\{\forall, \exists\}\end{cases}
$$

Free and Bound Variables

A variable \times may occur free in a Σ-formula α or not
We formalize that by defining inductively the set $\mathcal{F} \mathcal{V}$ of free variables of α

$$
\mathcal{F} \mathcal{V}(\alpha):= \begin{cases}\{x \mid x \text { is a var in } \alpha\} & \text { if } \alpha \text { is atomic } \\ \mathcal{F} \mathcal{V}(\beta) & \text { if } \alpha=\neg \beta \\ \mathcal{F} \mathcal{V}(\beta) \cup \mathcal{F} \mathcal{V}(\gamma) & \text { if } \alpha=\beta \bowtie \gamma \text { with } \bowtie \in\{\wedge, \vee, \Rightarrow, \Leftrightarrow\} \\ \mathcal{F} \mathcal{V}(\beta) \backslash\{v\} & \text { if } \alpha=Q v: \sigma . \beta \text { with } Q \in\{\forall, \exists\}\end{cases}
$$

A variable x occurs free in a Σ-formula α if $x \in \mathcal{F} \mathcal{V}(\alpha)$
For $\alpha=Q v: \sigma$. β, we say that v is bound in α
The scope of x in α is the subformula β

Free and Bound Variables

A variable \times may occur free in a Σ-formula α or not
We formalize that by defining inductively the set $\mathcal{F} \mathcal{V}$ of free variables of α

$$
\mathcal{F} \mathcal{V}(\alpha):= \begin{cases}\{x \mid x \text { is a var in } \alpha\} & \text { if } \alpha \text { is atomic } \\ \mathcal{F} \mathcal{V}(\beta) & \text { if } \alpha=\neg \beta \\ \mathcal{F} \mathcal{V}(\beta) \cup \mathcal{F} \mathcal{V}(\gamma) & \text { if } \alpha=\beta \bowtie \gamma \text { with } \bowtie \in\{\wedge, \vee, \Rightarrow, \Leftrightarrow\} \\ \mathcal{F} \mathcal{V}(\beta) \backslash\{v\} & \text { if } \alpha=Q v: \sigma . \beta \text { with } Q \in\{\forall, \exists\}\end{cases}
$$

A Σ-formula α is closed, or is a $(\Sigma$-)sentence, if $\mathcal{F V}(\alpha)=\varnothing$

Free and Bound Variables

A variable x may occur free in a Σ-formula α or not
We formalize that by defining inductively the set $\mathcal{F} \mathcal{V}$ of free variables of α

$$
\mathcal{F} \mathcal{V}(\alpha):= \begin{cases}\{x \mid x \text { is a var in } \alpha\} & \text { if } \alpha \text { is atomic } \\ \mathcal{F} \mathcal{V}(\beta) & \text { if } \alpha=\neg \beta \\ \mathcal{F} \mathcal{V}(\beta) \cup \mathcal{F} \mathcal{V}(\gamma) & \text { if } \alpha=\beta \bowtie \gamma \text { with } \bowtie \in\{\wedge, \vee, \Rightarrow, \Leftrightarrow\} \\ \mathcal{F} \mathcal{V}(\beta) \backslash\{v\} & \text { if } \alpha=Q v: \sigma . \beta \text { with } Q \in\{\forall, \exists\}\end{cases}
$$

Can a variable both occur free and be bound in α ?

Free and Bound Variables

A variable x may occur free in a Σ-formula α or not
We formalize that by defining inductively the set $\mathcal{F} \mathcal{V}$ of free variables of α

$$
\mathcal{F} \mathcal{V}(\alpha):= \begin{cases}\{x \mid x \text { is a var in } \alpha\} & \text { if } \alpha \text { is atomic } \\ \mathcal{F} \mathcal{V}(\beta) & \text { if } \alpha=\neg \beta \\ \mathcal{F} \mathcal{V}(\beta) \cup \mathcal{F} \mathcal{V}(\gamma) & \text { if } \alpha=\beta \bowtie \gamma \text { with } \bowtie \in\{\wedge, \vee, \Rightarrow, \Leftrightarrow\} \\ \mathcal{F} \mathcal{V}(\beta) \backslash\{v\} & \text { if } \alpha=Q v: \sigma . \beta \text { with } Q \in\{\forall, \exists\}\end{cases}
$$

Can a variable both occur free and be bound in α ? Yes! (e.g., $x<x \Rightarrow \forall x$: Nat. $0<x$)

Free and Bound Variables

A variable \times may occur free in a Σ-formula α or not
We formalize that by defining inductively the set $\mathcal{F} \mathcal{V}$ of free variables of α

$$
\mathcal{F} \mathcal{V}(\alpha):= \begin{cases}\{x \mid x \text { is a var in } \alpha\} & \text { if } \alpha \text { is atomic } \\ \mathcal{F} \mathcal{V}(\beta) & \text { if } \alpha=\neg \beta \\ \mathcal{F} \mathcal{V}(\beta) \cup \mathcal{F} \mathcal{V}(\gamma) & \text { if } \alpha=\beta \bowtie \gamma \text { with } \bowtie \in\{\wedge, \vee, \Rightarrow, \Leftrightarrow\} \\ \mathcal{F} \mathcal{V}(\beta) \backslash\{v\} & \text { if } \alpha=Q v: \sigma . \beta \text { with } Q \in\{\forall, \exists\}\end{cases}
$$

Can a variable both occur free and be bound in α ? Yes! (e.g., $x<x \Rightarrow \forall x$: Nat. $0<x$)
This can be confusing, so we typically rename the bound variables of a formula so that they are distinct from its free variables (e.g., $x<x \Rightarrow \forall y$: Nat. $0<y$)

FOL Semantics

Recall: The syntax of a first-order language is defined wrt a signature $\Sigma:=\left\langle\Sigma^{s}, \Sigma^{F}\right\rangle$ where:

- Σ^{s} is a set of sorts
- Σ^{F} is a set of function symbols

FOL Semantics

Recall: The syntax of a first-order language is defined wrt a signature $\Sigma:=\left\langle\Sigma^{S}, \Sigma^{F}\right\rangle$ where:

- Σ^{s} is a set of sorts
- Σ^{F} is a set of function symbols

In propositional logic, the truth of a formula depends on the meaning of its variables

FOL Semantics

Recall: The syntax of a first-order language is defined wrt a signature $\Sigma:=\left\langle\Sigma^{S}, \Sigma^{F}\right\rangle$ where:

- Σ^{s} is a set of sorts
- Σ^{F} is a set of function symbols

In propositional logic, the truth of a formula depends on the meaning of its variables
In first-order logic, the truth of a Σ-formula depends on:

1. the meaning of each sort symbol σ
2. the meaning of each function symbol f
3. the meaning of each free variable x
in the formula

Semantics

Let α be a \sum-formula and let Γ be a sorting context that includes α 's free variables
The truth of α is determined by interpretations \mathcal{I} of Σ and Γ consisting of:

1. an interpretation $\sigma^{\mathcal{I}}$ of each $\sigma \in \Sigma^{S}$ as a nonempty set, the domain of σ
2. an interpretation $f^{\mathcal{I}}$ of each $f \in \Sigma^{F}$ of rank $\left\langle\sigma_{1}, \ldots, \sigma_{n}, \sigma_{n+1}\right\rangle$ as an n-ary total function from $\sigma_{1}^{I} \times \cdots \times \sigma_{n}^{I}$ to $\sigma_{n+1}^{\mathcal{I}}$
3. an interpretation x^{I} of each $x: \sigma \in \Gamma$ as an element of $\sigma^{\mathcal{I}}$

Semantics

Let α be a \sum-formula and let Γ be a sorting context that includes α 's free variables
The truth of α is determined by interpretations \mathcal{I} of Σ and \ulcorner consisting of:

1. an interpretation $\sigma^{\mathcal{I}}$ of each $\sigma \in \Sigma^{S}$ as a nonempty set, the domain of σ
2. an interpretation $f^{\mathcal{I}}$ of each $f \in \Sigma^{F}$ of rank $\left\langle\sigma_{1}, \ldots, \sigma_{n}, \sigma_{n+1}\right\rangle$ as an n-ary total function from $\sigma_{1}^{I} \times \cdots \times \sigma_{n}^{I}$ to $\sigma_{n+1}^{\mathcal{I}}$
3. an interpretation x^{I} of each $x: \sigma \in \Gamma$ as an element of σ^{I}

Note: We consider only interpretations I such that

- Bool $^{\mathcal{I}}=\{$ true, false $\}, \quad \perp^{\mathcal{I}}=$ false, $\quad T^{\mathcal{I}}=$ true
- for all $\sigma \in \Sigma^{S},={ }_{\sigma}^{I}$ maps its two arguments to true iff they are identical

Semantics: Example

Consider a signature $\Sigma=\left\langle\Sigma^{S}, \Sigma^{F}\right\rangle$ for a fragment of set theory with non-set elements:
$\Sigma^{S}=\{$ Elem, Set $\}, \Sigma^{F}=\{\varnothing, E\}, \operatorname{rank}(\varnothing)=\langle\operatorname{Set}\rangle, \operatorname{rank}(E)=\langle$ Elem, Set, Bool \rangle
$\Gamma=\left\{e_{i}:\right.$ Elem $\left.\mid i \geq 0\right\} \cup\left\{s_{i}:\right.$ Set $\left.\mid i \geq 0\right\}$

Semantics: Example

Consider a signature $\Sigma=\left\langle\Sigma^{S}, \Sigma^{F}\right\rangle$ for a fragment of set theory with non-set elements:
$\Sigma^{S}=\{$ Elem, Set $\}, \Sigma^{F}=\{\varnothing, E\}, \operatorname{rank}(\varnothing)=\langle\operatorname{Set}\rangle, \operatorname{rank}(E)=\langle$ Elem, Set, Bool \rangle
$\Gamma=\left\{e_{i}:\right.$ Elem $\left.\mid i \geq 0\right\} \cup\left\{s_{i}:\right.$ Set $\left.\mid i \geq 0\right\}$

A possible interpretation \mathcal{I} of Σ, Γ :

1. $E^{\mathcal{L}} \mathrm{em}^{\mathcal{I}}=\mathbb{N}$, the natural numbers
2. $\operatorname{Set}^{\mathcal{I}}=2^{\mathbb{N}}$, all sets of natural numbers
3. $\varnothing^{\mathcal{I}}=\{ \}$
4. for all $n \in \mathbb{N}$ and $s \subseteq \mathbb{N}, \quad E^{\mathcal{I}}(n, s)=$ true iff $n \in S$
5. for $i=0,1, \ldots, \quad e_{i}^{\mathcal{I}}=i$ and $s_{i}{ }^{\mathcal{I}}=[0, i]=\{0,1, \ldots, i\}$

Semantics: Example

Consider a signature $\Sigma=\left\langle\Sigma^{S}, \Sigma^{F}\right\rangle$ for a fragment of set theory with non-set elements:
$\Sigma^{S}=\{$ Elem, Set $\}, \Sigma^{F}=\{\varnothing, E\}, \operatorname{rank}(\varnothing)=\langle\operatorname{Set}\rangle, \operatorname{rank}(E)=\langle$ Elem, Set, Bool \rangle
$\Gamma=\left\{e_{i}:\right.$ Elem $\left.\mid i \geq 0\right\} \cup\left\{s_{i}:\right.$ Set $\left.\mid i \geq 0\right\}$

Another interpretation \mathcal{I} of Σ, Γ :

1. Elem $^{\mathcal{I}}=\operatorname{Set}^{\mathcal{I}}=\mathbb{N}$, the natural numbers
2. $\nabla^{I}=0$
3. for all $m, n \in \mathbb{N}, \quad E^{\mathcal{I}}(m, n)=$ true iff m is divisible by n
4. for $i=0,1, \ldots, \quad e_{i}^{I}=i$ and $s_{i}^{I}=2$

Semantics: Example

Consider a signature $\Sigma=\left\langle\Sigma^{S}, \Sigma^{F}\right\rangle$ for a fragment of set theory with non-set elements:
$\Sigma^{S}=\{$ Elem, Set $\}, \Sigma^{F}=\{\varnothing, E\}, \operatorname{rank}(\varnothing)=\langle\operatorname{Set}\rangle, \operatorname{rank}(E)=\langle$ Elem, Set, Bool \rangle
$\Gamma=\left\{e_{i}:\right.$ Elem $\left.\mid i \geq 0\right\} \cup\left\{s_{i}:\right.$ Set $\left.\mid i \geq 0\right\}$

There is an infinity of interpretations of Σ, Γ !

Term Semantics

Interpretations are analogous to a variable assignments in propositional logic
We define how to determine the truth value of a Σ-formula in an interpretation \mathcal{I} in $F O L$ in analogy to how to determine the truth value of a formula under a variable assignment v in PL

Term Semantics

Interpretations are analogous to a variable assignments in propositional logic
We define how to determine the truth value of a Σ-formula in an interpretation \mathcal{I} in $F O L$ in analogy to how to determine the truth value of a formula under a variable assignment v in PL

The first step is to extend \mathcal{I} by structural induction to an interpretation $\overline{\mathcal{I}}$ for well-sorted terms

$$
t^{\overline{\mathcal{I}}}= \begin{cases}t^{\mathcal{I}} & \text { if } t \text { is a constant of } \Sigma \text { or a a variable } \\ f^{\mathcal{I}}\left(t_{1}^{\overline{\mathcal{I}}}, \ldots, t_{n}^{\overline{\mathcal{I}}}\right) & \text { if } t=\left(f t_{1} \cdots t_{n}\right)\end{cases}
$$

Term Semantics

The first step is to extend \mathcal{I} by structural induction to an interpretation \mathcal{I} for well-sorted terms

$$
t^{\bar{I}}= \begin{cases}t^{\mathcal{I}} & \text { if } t \text { is a constant of } \Sigma \text { or a a variable } \\ f^{\mathcal{I}}\left(t_{1}^{\overline{\mathcal{I}}}, \ldots, t_{n}^{\overline{\mathcal{I}}}\right) & \text { if } t=\left(f t_{1} \cdots t_{n}\right)\end{cases}
$$

```
Example: \(\Sigma^{S}=\{\) Pers \(\}, \Sigma^{f}=\{\) pa, ma, mar \(\}, \Gamma=\{x:\) Pers \(, y:\) Pers,\(\ldots\}\),
\(\operatorname{rank}(\mathrm{pa})=\operatorname{rank}(\mathrm{ma})=\langle\) Pers, Pers \(\rangle, \operatorname{rank}(\) mar \()=\langle\) Pers, Pers, Bool \(\rangle\)
```


Term Semantics

The first step is to extend I by structural induction to an interpretation I for well-sorted terms

$$
t^{\overline{\mathcal{I}}}= \begin{cases}t^{\mathcal{I}} & \text { if } t \text { is a constant of } \Sigma \text { or a a variable } \\ f^{\mathcal{I}}\left(t_{1}^{\overline{\mathcal{I}}}, \ldots, t_{n}^{\overline{\mathcal{I}}}\right) & \text { if } t=\left(f t_{1} \cdots t_{n}\right)\end{cases}
$$

```
Example: \(\Sigma^{S}=\{\) Pers \(\}, \Sigma^{f}=\{\) pa, ma, mar \(\}, \Gamma=\{x:\) Pers \(, y:\) Pers,\(\ldots\}\),
\(\operatorname{rank}(\mathrm{pa})=\operatorname{rank}(\mathrm{ma})=\langle\) Pers, Pers \(\rangle, \operatorname{rank}(\) mar \()=\langle\) Pers, Pers, Bool \(\rangle\)
Let \(I\) such that
\(\mathrm{ma}^{\mathcal{I}}=\{\) Jim \(\mapsto\) Jill, Joe \(\mapsto\) Jen, \(\ldots\}, \mathrm{pa}^{\mathcal{I}}=\{\) Jim \(\mapsto\) Joe, Jill \(\mapsto\) Jay, \(\ldots\}\),
mar \({ }^{\mathcal{I}}=\{(\) Jill, Joe \() \mapsto\) true, \((J o e, ~ J i l l) ~ \mapsto ~ t r u e, ~(J i l l, ~ J i l l) ~ \mapsto ~ f a l s e, ~ \ldots\}, ~ x^{I}=\) Jim, \(y^{I}=\) Joe
```


Term Semantics

The first step is to extend \mathcal{I} by structural induction to an interpretation \mathcal{I} for well-sorted terms

$$
t^{\bar{I}}= \begin{cases}t^{\mathcal{I}} & \text { if } t \text { is a constant of } \Sigma \text { or a a variable } \\ f^{\mathcal{I}}\left(t_{1}^{\overline{\mathcal{I}}}, \ldots, t_{n}^{\overline{\mathcal{I}}}\right) & \text { if } t=\left(f t_{1} \cdots t_{n}\right)\end{cases}
$$

```
Example: \(\Sigma^{\mathcal{S}}=\{\) Pers \(\}, \Sigma^{f}=\{\) pa, ma, mar \(\}, \Gamma=\{x:\) Pers \(, y:\) Pers,\(\ldots\}\), \(\operatorname{rank}(\) pa \()=\operatorname{rank}(m a)=\langle\) Pers, Pers \(\rangle, \operatorname{rank}(\) mar \()=\langle\) Pers, Pers, Bool \(\rangle\)
```

Let I such that

```
\(\mathrm{ma}^{\mathcal{I}}=\{\) Jim \(\mapsto\) Jill, Joe \(\mapsto\) Jen, \(\ldots\}\), pa \(^{\mathcal{I}}=\{\) Jim \(\mapsto\) Joe, Jill \(\mapsto\) Jay, \(\ldots\}\),
mar \({ }^{\mathcal{I}}=\{(\) Jill, Joe \() \mapsto\) true, (Joe, Jill) \(\mapsto\) true, (Jill, Jill) \(\mapsto\) false, \(\ldots\}, x^{\mathcal{I}}=\) Jim, \(y^{\mathcal{I}}=\) Joe
```

$$
\begin{aligned}
(\operatorname{pa}(\max x))^{\overline{\mathcal{I}}} & =\mathrm{pa}^{\mathcal{I}}\left((\operatorname{ma} x)^{\overline{\mathcal{I}}}\right)=\operatorname{pa}^{\mathcal{I}}\left(\operatorname{ma}^{\mathcal{I}}\left(x^{\overline{\mathcal{I}}}\right)\right)=\mathrm{pa}^{\mathcal{I}}\left(\operatorname{ma}^{\mathcal{I}}\left(x^{\mathcal{I}}\right)\right) \\
& =\mathrm{pa}^{\mathcal{I}}\left(\operatorname{ma}^{\mathcal{I}}(\mathrm{Jim})\right)=\operatorname{pa}^{\mathcal{I}}(\operatorname{Jill})=\operatorname{Jay}
\end{aligned}
$$

Term Semantics

The first step is to extend \mathcal{I} by structural induction to an interpretation \mathcal{I} for well-sorted terms

$$
t^{\bar{I}}= \begin{cases}t^{\mathcal{I}} & \text { if } t \text { is a constant of } \Sigma \text { or a a variable } \\ f^{\mathcal{I}}\left(t_{1}^{\overline{\mathcal{I}}}, \ldots, t_{n}^{\overline{\mathcal{I}}}\right) & \text { if } t=\left(f t_{1} \cdots t_{n}\right)\end{cases}
$$

```
Example: \(\Sigma^{\mathcal{S}}=\{\) Pers \(\}, \Sigma^{f}=\{\) pa, ma, mar \(\}, \Gamma=\{x:\) Pers \(, y:\) Pers,\(\ldots\}\), \(\operatorname{rank}(\mathrm{pa})=\operatorname{rank}(\mathrm{ma})=\langle\) Pers, Pers \(\rangle, \operatorname{rank}(\) mar \()=\langle\) Pers, Pers, Bool \(\rangle\)
```

Let I such that

```
\(\mathrm{ma}^{\mathcal{I}}=\{\) Jim \(\mapsto\) Jill, Joe \(\mapsto\) Jen, \(\ldots\}\), pa \(^{\mathcal{I}}=\{\) Jim \(\mapsto\) Joe, Jill \(\mapsto\) Jay, \(\ldots\}\),
mar \({ }^{\mathcal{I}}=\{(\) Jill, Joe \() \mapsto\) true, (Joe, Jill) \(\mapsto\) true, (Jill, Jill) \(\mapsto\) false, \(\ldots\}, x^{\mathcal{I}}=\) Jim, \(y^{\mathcal{I}}=\) Joe
```

$$
(\operatorname{mar}(\max x) y)^{\overline{\mathcal{I}}}=\operatorname{mar}^{\mathcal{I}}\left((\max)^{\overline{\mathcal{I}}}, y^{\overline{\mathcal{I}}}\right)=\operatorname{mar}^{\mathcal{I}}\left(\operatorname{ma}^{\mathcal{I}}\left(x^{\overline{\mathcal{I}}}\right), y^{\mathcal{I}}\right)=\operatorname{mar}^{\mathcal{I}}\left(\operatorname{ma}^{\mathcal{I}}\left(x^{\mathcal{I}}\right), \text { Joe }\right)
$$

$$
=\operatorname{mar}^{\mathcal{I}}\left(\operatorname{ma}^{\mathcal{I}}(\mathrm{Jim}), \mathrm{Joe}\right)=\operatorname{mar}^{\mathcal{I}}(\mathrm{Jill}, \mathrm{Joe})=\operatorname{true}
$$

Formula Semantics

We further extend $\overline{\mathcal{I}}$ to well-sorted non-atomic formulas by structural induction as follows:

Formula Semantics

We further extend $\overline{\mathcal{I}}$ to well-sorted non-atomic formulas by structural induction as follows:

- $(\neg \alpha)^{\bar{I}}=$ true iff $\alpha^{\bar{I}}=$ false
- $(\alpha \wedge \beta)^{\bar{I}}=$ true iff $\alpha^{\bar{I}}=\beta^{\bar{I}}=$ true
- $(\alpha \vee \beta)^{\bar{I}}=$ true iff $\alpha^{\bar{I}}=$ true or $\beta^{\bar{I}}=$ true
- $(\alpha \Rightarrow \beta)^{\bar{I}}=$ true iff $\alpha^{\bar{I}}=$ false or $\beta^{\bar{I}}=$ true
- $(\alpha \Leftrightarrow \beta)^{\bar{I}}=$ true iff $\alpha^{\overline{\mathcal{I}}}=\beta^{\overline{\mathcal{I}}}$
- $(\exists x: \sigma \cdot \alpha)^{\bar{I}}=$ true iff $\alpha^{\overline{\mathcal{I}}[x \mapsto a]}=$ true for some $a \in \sigma^{\mathcal{I}}$
- $(\forall x: \sigma \cdot \alpha)^{\overline{\mathcal{I}}}=$ true iff $\alpha^{\overline{\mathcal{L}}[x \mapsto a]}=$ true for all $a \in \sigma^{\mathcal{I}}$
where $\overline{\mathcal{I}}[x \mapsto a]$ denotes the interpretation that maps x to a and is otherwise identical to $\overline{\mathcal{I}}$

Formula Semantics

We further extend $\overline{\mathcal{I}}$ to well-sorted non-atomic formulas by structural induction as follows:

- $(\neg \alpha)^{\overline{\mathcal{I}}}=$ true iff $\alpha^{\overline{\mathcal{I}}}=$ false
- $(\alpha \wedge \beta)^{\bar{I}}=$ true iff $\alpha^{\bar{I}}=\beta^{\overline{\mathcal{I}}}=$ true
- $(\alpha \vee \beta)^{\bar{I}}=$ true iff $\alpha^{\bar{I}}=$ true or $\beta^{\bar{I}}=$ true
- $(\alpha \Rightarrow \beta)^{\overline{\mathcal{I}}}=$ true iff $\alpha^{\overline{\mathcal{I}}}=$ false or $\beta^{\overline{\mathcal{I}}}=$ true
- $(\alpha \Leftrightarrow \beta)^{\bar{I}}=$ true iff $\alpha^{\overline{\mathcal{I}}}=\beta^{\bar{I}}$
- $(\exists x: \sigma \cdot \alpha)^{\bar{I}}=$ true iff $\alpha^{\overline{\mathcal{I}}[x \mapsto a]}=$ true for some $a \in \sigma^{\mathcal{I}}$
- $(\forall x: \sigma \cdot \alpha)^{\overline{\mathcal{I}}}=$ true iff $\alpha^{\overline{\mathcal{L}}[x \mapsto a]}=$ true for all $a \in \sigma^{\mathcal{I}}$

We write $\mathcal{I} \vDash \alpha$, and say that \mathcal{I} satisfies α, to mean that $\alpha^{\overline{\mathcal{I}}}=$ true

Formula Semantics

We further extend $\overline{\mathcal{I}}$ to well-sorted non-atomic formulas by structural induction as follows:

- $(\neg \alpha)^{\bar{I}}=$ true iff $\alpha^{\bar{I}}=$ false
- $(\alpha \wedge \beta)^{\bar{I}}=$ true iff $\alpha^{\bar{I}}=\beta^{\bar{I}}=$ true
- $(\alpha \vee \beta)^{\bar{I}}=$ true iff $\alpha^{\bar{I}}=$ true or $\beta^{\bar{I}}=$ true
- $(\alpha \Rightarrow \beta)^{\bar{I}}=$ true iff $\alpha^{\bar{I}}=$ false or $\beta^{\bar{I}}=$ true
- $(\alpha \Leftrightarrow \beta)^{\bar{I}}=$ true iff $\alpha^{\bar{I}}=\beta^{\bar{I}}$
- $(\exists x: \sigma \cdot \alpha)^{\bar{I}}=$ true iff $\alpha^{\bar{I}[x \mapsto a]}=$ true for some $a \in \sigma^{I}$
- $(\forall x: \sigma \cdot \alpha)^{\overline{\mathcal{I}}}=$ true iff $\alpha^{\overline{\mathcal{L}}[x \mapsto a]}=$ true for all $a \in \sigma^{\mathcal{I}}$

We write $\mathcal{I} \vDash \alpha$, and say that \mathcal{I} satisfies α, to mean that $\alpha^{\bar{I}}=$ true
We write $\mathcal{I} \not \vDash \alpha$, and say that \mathcal{I} falsifies α, to mean that $\alpha^{\bar{I}}=$ false

Entailment, validity

Let Φ be a set of Σ-formulas. We write $\mathcal{I} \vDash \Phi$ to mean that $\mathcal{I} \vDash \alpha$ for every $\alpha \in \Phi$

Entailment, validity

Let Φ be a set of Σ-formulas. We write $\mathcal{I} \vDash \Phi$ to mean that $\mathcal{I} \vDash \alpha$ for every $\alpha \in \Phi$
If ϕ is a set of Σ-formulas and α is a Σ-formula, then ϕ entails or logically implies α, written $\phi \vDash \alpha$, if $\mathcal{I} \vDash \alpha$ for every interpretation \mathcal{I} of Σ such that $\mathcal{I} \vDash \Phi$

Entailment, validity

Let Φ be a set of Σ-formulas. We write $\mathcal{I} \vDash \Phi$ to mean that $\mathcal{I} \vDash \alpha$ for every $\alpha \in \Phi$
If ϕ is a set of Σ-formulas and α is a Σ-formula, then ϕ entails or logically implies α, written $\phi \vDash \alpha$, if $\mathcal{I} \vDash \alpha$ for every interpretation \mathcal{I} of Σ such that $\mathcal{I} \vDash \Phi$

We write $\alpha \vDash \beta$ as an abbreviation for $\{\alpha\} \vDash \beta$
α and β are logically equivalent, written $\alpha \equiv \beta$, iff $\alpha \vDash \beta$ and $\beta \vDash \alpha$

Entailment, validity

Let Φ be a set of Σ-formulas. We write $\mathcal{I} \vDash \Phi$ to mean that $\mathcal{I} \vDash \alpha$ for every $\alpha \in \Phi$
If ϕ is a set of Σ-formulas and α is a Σ-formula, then Φ entails or logically implies α, written $\phi \vDash \alpha$, if $\mathcal{I} \vDash \alpha$ for every interpretation \mathcal{I} of Σ such that $\mathcal{I} \vDash \Phi$

We write $\alpha \vDash \beta$ as an abbreviation for $\{\alpha\} \vDash \beta$
α and β are logically equivalent, written $\alpha \equiv \beta$, iff $\alpha \vDash \beta$ and $\beta \vDash \alpha$
A Σ-formula α is valid, written $\vDash \alpha$ if $\} \vDash \alpha$ iff $\mathcal{I} \vDash \alpha$ for every interpretation \mathcal{I}

Entailment, validity

Let Φ be a set of Σ-formulas. We write $\mathcal{I} \vDash \Phi$ to mean that $\mathcal{I} \vDash \alpha$ for every $\alpha \in \Phi$
If ϕ is a set of Σ-formulas and α is a Σ-formula, then ϕ entails or logically implies α, written $\phi \vDash \alpha$, if $\mathcal{I} \vDash \alpha$ for every interpretation \mathcal{I} of Σ such that $\mathcal{I} \vDash \Phi$

We write $\alpha \vDash \beta$ as an abbreviation for $\{\alpha\} \vDash \beta$
α and β are logically equivalent, written $\alpha \equiv \beta$, iff $\alpha \vDash \beta$ and $\beta \vDash \alpha$
A \sum-formula α is valid, written $\vDash \alpha$ if $\} \vDash \alpha$ iff $\mathcal{I} \vDash \alpha$ for every interpretation \mathcal{I}
Suppose that $\Sigma^{S}=\{A\}, \Sigma^{F}=\{p, q\}, \operatorname{rank}(p)=\langle A, \operatorname{Bool}\rangle, \operatorname{rank}(q)=\langle A, A, B o o l\rangle$, and all variables v_{i} have sort A. Do the following entailment actually hold?

1. $\forall v_{1} \cdot p\left(v_{1}\right) \vDash p\left(v_{2}\right)$

Entailment, validity

Let Φ be a set of Σ-formulas. We write $\mathcal{I} \vDash \Phi$ to mean that $\mathcal{I} \vDash \alpha$ for every $\alpha \in \Phi$
If ϕ is a set of Σ-formulas and α is a Σ-formula, then ϕ entails or logically implies α, written $\phi \vDash \alpha$, if $\mathcal{I} \vDash \alpha$ for every interpretation \mathcal{I} of Σ such that $\mathcal{I} \vDash \Phi$

We write $\alpha \vDash \beta$ as an abbreviation for $\{\alpha\} \vDash \beta$
α and β are logically equivalent, written $\alpha \equiv \beta$, iff $\alpha \vDash \beta$ and $\beta \vDash \alpha$
A \sum-formula α is valid, written $\vDash \alpha$ if $\} \vDash \alpha$ iff $\mathcal{I} \vDash \alpha$ for every interpretation \mathcal{I}
Suppose that $\Sigma^{S}=\{A\}, \Sigma^{F}=\{p, q\}, \operatorname{rank}(p)=\langle A, \operatorname{Bool}\rangle, \operatorname{rank}(q)=\langle A, A, B o o l\rangle$, and all variables v_{i} have sort A. Do the following entailment actually hold?

1. $\forall v_{1} \cdot p\left(v_{1}\right) \vDash p\left(v_{2}\right)$

Entailment, validity

Let Φ be a set of Σ-formulas. We write $\mathcal{I} \vDash \Phi$ to mean that $\mathcal{I} \vDash \alpha$ for every $\alpha \in \Phi$
If ϕ is a set of Σ-formulas and α is a Σ-formula, then ϕ entails or logically implies α, written $\phi \vDash \alpha$, if $\mathcal{I} \vDash \alpha$ for every interpretation \mathcal{I} of Σ such that $\mathcal{I} \vDash \Phi$

We write $\alpha \vDash \beta$ as an abbreviation for $\{\alpha\} \vDash \beta$
α and β are logically equivalent, written $\alpha \equiv \beta$, iff $\alpha \vDash \beta$ and $\beta \vDash \alpha$
A \sum-formula α is valid, written $\vDash \alpha$ if $\} \vDash \alpha$ iff $\mathcal{I} \vDash \alpha$ for every interpretation \mathcal{I}
Suppose that $\Sigma^{S}=\{A\}, \Sigma^{F}=\{p, q\}, \operatorname{rank}(p)=\langle A, \operatorname{Bool}\rangle, \operatorname{rank}(q)=\langle A, A, B o o l\rangle$, and all variables v_{i} have sort A. Do the following entailment actually hold?

1. $\forall v_{1} \cdot p\left(v_{1}\right) \vDash p\left(v_{2}\right)$
$\checkmark \quad$ 2. $p\left(v_{1}\right) \vDash \forall v_{1} . p\left(v_{1}\right)$

Entailment, validity

Let Φ be a set of Σ-formulas. We write $\mathcal{I} \vDash \Phi$ to mean that $\mathcal{I} \vDash \alpha$ for every $\alpha \in \Phi$
If ϕ is a set of Σ-formulas and α is a Σ-formula, then ϕ entails or logically implies α, written $\phi \vDash \alpha$, if $\mathcal{I} \vDash \alpha$ for every interpretation \mathcal{I} of Σ such that $\mathcal{I} \vDash \Phi$

We write $\alpha \vDash \beta$ as an abbreviation for $\{\alpha\} \vDash \beta$
α and β are logically equivalent, written $\alpha \equiv \beta$, iff $\alpha \vDash \beta$ and $\beta \vDash \alpha$
A \sum-formula α is valid, written $\vDash \alpha$ if $\} \vDash \alpha$ iff $\mathcal{I} \vDash \alpha$ for every interpretation \mathcal{I}
Suppose that $\Sigma^{S}=\{A\}, \Sigma^{F}=\{p, q\}, \operatorname{rank}(p)=\langle A, \operatorname{Bool}\rangle, \operatorname{rank}(q)=\langle A, A, B o o l\rangle$, and all variables v_{i} have sort A. Do the following entailment actually hold?

1. $\forall v_{1} \cdot p\left(v_{1}\right) \vDash p\left(v_{2}\right)$
\checkmark 2. $p\left(v_{1}\right) \vDash \forall v_{1} \cdot p\left(v_{1}\right)$

Entailment, validity

Let Φ be a set of Σ-formulas. We write $\mathcal{I} \vDash \Phi$ to mean that $\mathcal{I} \vDash \alpha$ for every $\alpha \in \Phi$
If ϕ is a set of Σ-formulas and α is a Σ-formula, then ϕ entails or logically implies α, written $\phi \vDash \alpha$, if $\mathcal{I} \vDash \alpha$ for every interpretation \mathcal{I} of Σ such that $\mathcal{I} \vDash \Phi$

We write $\alpha \vDash \beta$ as an abbreviation for $\{\alpha\} \vDash \beta$
α and β are logically equivalent, written $\alpha \equiv \beta$, iff $\alpha \vDash \beta$ and $\beta \vDash \alpha$
A \sum-formula α is valid, written $\vDash \alpha$ if $\} \vDash \alpha$ iff $\mathcal{I} \vDash \alpha$ for every interpretation \mathcal{I}
Suppose that $\Sigma^{S}=\{A\}, \Sigma^{F}=\{p, q\}, \operatorname{rank}(p)=\langle A, \operatorname{Bool}\rangle, \operatorname{rank}(q)=\langle A, A, B o o l\rangle$, and all variables v_{i} have sort A. Do the following entailment actually hold?

1. $\forall v_{1} \cdot p\left(v_{1}\right) \vDash p\left(v_{2}\right) \quad \checkmark \quad$ 2. $p\left(v_{1}\right) \vDash \forall v_{1} \cdot p\left(v_{1}\right)$
2. $\forall v_{1} \cdot \mathrm{p}\left(v_{1}\right) \vDash \exists v_{2} \cdot \mathrm{p}\left(v_{2}\right)$

Entailment, validity

Let Φ be a set of Σ-formulas. We write $\mathcal{I} \vDash \Phi$ to mean that $\mathcal{I} \vDash \alpha$ for every $\alpha \in \Phi$
If ϕ is a set of Σ-formulas and α is a Σ-formula, then ϕ entails or logically implies α, written $\phi \vDash \alpha$, if $\mathcal{I} \vDash \alpha$ for every interpretation \mathcal{I} of Σ such that $\mathcal{I} \vDash \Phi$

We write $\alpha \vDash \beta$ as an abbreviation for $\{\alpha\} \vDash \beta$
α and β are logically equivalent, written $\alpha \equiv \beta$, iff $\alpha \vDash \beta$ and $\beta \vDash \alpha$
A \sum-formula α is valid, written $\vDash \alpha$ if $\} \vDash \alpha$ iff $\mathcal{I} \vDash \alpha$ for every interpretation \mathcal{I}
Suppose that $\Sigma^{S}=\{A\}, \Sigma^{F}=\{p, q\}, \operatorname{rank}(p)=\langle A, \operatorname{Bool}\rangle, \operatorname{rank}(q)=\langle A, A, B o o l\rangle$, and all variables v_{i} have sort A. Do the following entailment actually hold?

1. $\forall v_{1} \cdot p\left(v_{1}\right) \vDash p\left(v_{2}\right)$
2. $p\left(v_{1}\right) \vDash \forall v_{1} \cdot p\left(v_{1}\right)$
3. $\forall v_{1} \cdot \mathrm{p}\left(v_{1}\right) \vDash \exists v_{2} \cdot \mathrm{p}\left(v_{2}\right)$

Entailment, validity

Let Φ be a set of Σ-formulas. We write $\mathcal{I} \vDash \Phi$ to mean that $\mathcal{I} \vDash \alpha$ for every $\alpha \in \Phi$
If ϕ is a set of Σ-formulas and α is a Σ-formula, then ϕ entails or logically implies α, written $\phi \vDash \alpha$, if $\mathcal{I} \vDash \alpha$ for every interpretation \mathcal{I} of Σ such that $\mathcal{I} \vDash \Phi$

We write $\alpha \vDash \beta$ as an abbreviation for $\{\alpha\} \vDash \beta$
α and β are logically equivalent, written $\alpha \equiv \beta$, iff $\alpha \vDash \beta$ and $\beta \vDash \alpha$
A \sum-formula α is valid, written $\vDash \alpha$ if $\} \vDash \alpha$ iff $\mathcal{I} \vDash \alpha$ for every interpretation \mathcal{I}
Suppose that $\Sigma^{S}=\{A\}, \Sigma^{F}=\{p, q\}, \operatorname{rank}(p)=\langle A, \operatorname{Bool}\rangle, \operatorname{rank}(q)=\langle A, A, B o o l\rangle$, and all variables v_{i} have sort A. Do the following entailment actually hold?

1. $\forall v_{1} \cdot p\left(v_{1}\right) \vDash p\left(v_{2}\right)$
2. $p\left(v_{1}\right) \vDash \forall v_{1} \cdot p\left(v_{1}\right)$
x
3. $\forall v_{1} \cdot p\left(v_{1}\right) \vDash \exists v_{2} \cdot p\left(v_{2}\right)$
4. $\exists v_{2} \cdot \forall v_{1} \cdot q\left(v_{1}, v_{2}\right) \vDash \forall v_{1} \cdot \exists v_{2} \cdot q\left(v_{1}, v_{2}\right)$

Entailment, validity

Let Φ be a set of Σ-formulas. We write $\mathcal{I} \vDash \Phi$ to mean that $\mathcal{I} \vDash \alpha$ for every $\alpha \in \Phi$
If ϕ is a set of Σ-formulas and α is a Σ-formula, then ϕ entails or logically implies α, written $\phi \vDash \alpha$, if $\mathcal{I} \vDash \alpha$ for every interpretation \mathcal{I} of Σ such that $\mathcal{I} \vDash \Phi$

We write $\alpha \vDash \beta$ as an abbreviation for $\{\alpha\} \vDash \beta$
α and β are logically equivalent, written $\alpha \equiv \beta$, iff $\alpha \vDash \beta$ and $\beta \vDash \alpha$
A \sum-formula α is valid, written $\vDash \alpha$ if $\} \vDash \alpha$ iff $\mathcal{I} \vDash \alpha$ for every interpretation \mathcal{I}
Suppose that $\Sigma^{S}=\{A\}, \Sigma^{F}=\{p, q\}, \operatorname{rank}(p)=\langle A, \operatorname{Bool}\rangle, \operatorname{rank}(q)=\langle A, A, B o o l\rangle$, and all variables v_{i} have sort A. Do the following entailment actually hold?

1. $\forall v_{1} \cdot p\left(v_{1}\right) \vDash p\left(v_{2}\right)$
2. $p\left(v_{1}\right) \vDash \forall v_{1} \cdot p\left(v_{1}\right)$
x
3. $\forall v_{1} \cdot p\left(v_{1}\right) \vDash \exists v_{2} \cdot p\left(v_{2}\right)$
4. $\exists v_{2} \cdot \forall v_{1} \cdot q\left(v_{1}, v_{2}\right) \vDash \forall v_{1} \cdot \exists v_{2} \cdot q\left(v_{1}, v_{2}\right)$

Entailment, validity

Let Φ be a set of Σ-formulas. We write $\mathcal{I} \vDash \Phi$ to mean that $\mathcal{I} \vDash \alpha$ for every $\alpha \in \Phi$
If ϕ is a set of Σ-formulas and α is a Σ-formula, then ϕ entails or logically implies α, written $\phi \vDash \alpha$, if $\mathcal{I} \vDash \alpha$ for every interpretation \mathcal{I} of Σ such that $\mathcal{I} \vDash \Phi$

We write $\alpha \vDash \beta$ as an abbreviation for $\{\alpha\} \vDash \beta$
α and β are logically equivalent, written $\alpha \equiv \beta$, iff $\alpha \vDash \beta$ and $\beta \vDash \alpha$
A \sum-formula α is valid, written $\vDash \alpha$ if $\} \vDash \alpha$ iff $\mathcal{I} \vDash \alpha$ for every interpretation \mathcal{I}
Suppose that $\Sigma^{S}=\{A\}, \Sigma^{F}=\{p, q\}, \operatorname{rank}(p)=\langle A, \operatorname{Bool}\rangle, \operatorname{rank}(q)=\langle A, A, B o o l\rangle$, and all variables v_{i} have sort A. Do the following entailment actually hold?

1. $\forall v_{1} \cdot p\left(v_{1}\right) \vDash p\left(v_{2}\right)$
2. $p\left(v_{1}\right) \vDash \forall v_{1} \cdot p\left(v_{1}\right) \quad x$
3. $\forall v_{1} \cdot \mathrm{p}\left(v_{1}\right) \vDash \exists v_{2} \cdot \mathrm{p}\left(v_{2}\right)$
4. $\exists v_{2} \cdot \forall v_{1} \cdot q\left(v_{1}, v_{2}\right) \vDash \forall v_{1} \cdot \exists v_{2} \cdot q\left(v_{1}, v_{2}\right) \checkmark$
5. $\forall v_{1} \cdot \exists v_{2} \cdot q\left(v_{1}, v_{2}\right) \vDash \exists v_{2} \cdot \forall v_{1} \cdot q\left(v_{1}, v_{2}\right)$

Entailment, validity

Let Φ be a set of Σ-formulas. We write $\mathcal{I} \vDash \Phi$ to mean that $\mathcal{I} \vDash \alpha$ for every $\alpha \in \Phi$
If ϕ is a set of Σ-formulas and α is a Σ-formula, then ϕ entails or logically implies α, written $\phi \vDash \alpha$, if $\mathcal{I} \vDash \alpha$ for every interpretation \mathcal{I} of Σ such that $\mathcal{I} \vDash \Phi$

We write $\alpha \vDash \beta$ as an abbreviation for $\{\alpha\} \vDash \beta$
α and β are logically equivalent, written $\alpha \equiv \beta$, iff $\alpha \vDash \beta$ and $\beta \vDash \alpha$
A \sum-formula α is valid, written $\vDash \alpha$ if $\} \vDash \alpha$ iff $\mathcal{I} \vDash \alpha$ for every interpretation \mathcal{I}
Suppose that $\Sigma^{S}=\{A\}, \Sigma^{F}=\{p, q\}, \operatorname{rank}(p)=\langle A, \operatorname{Bool}\rangle, \operatorname{rank}(q)=\langle A, A, B o o l\rangle$, and all variables v_{i} have sort A. Do the following entailment actually hold?

1. $\forall v_{1} \cdot p\left(v_{1}\right) \vDash p\left(v_{2}\right)$
2. $p\left(v_{1}\right) \vDash \forall v_{1} \cdot p\left(v_{1}\right)$
3. $\forall v_{1} \cdot p\left(v_{1}\right) \vDash \exists v_{2} \cdot p\left(v_{2}\right)$
4. $\exists v_{2} \cdot \forall v_{1} \cdot q\left(v_{1}, v_{2}\right) \vDash \forall v_{1} \cdot \exists v_{2} \cdot q\left(v_{1}, v_{2}\right) \Omega$
5. $\forall v_{1} \cdot \exists v_{2} \cdot q\left(v_{1}, v_{2}\right) \vDash \exists v_{2} \cdot \forall v_{1} \cdot q\left(v_{1}, v_{2}\right) \boldsymbol{x}$

Entailment, validity

Let Φ be a set of Σ-formulas. We write $\mathcal{I} \vDash \Phi$ to mean that $\mathcal{I} \vDash \alpha$ for every $\alpha \in \Phi$
If ϕ is a set of Σ-formulas and α is a Σ-formula, then ϕ entails or logically implies α, written $\phi \vDash \alpha$, if $\mathcal{I} \vDash \alpha$ for every interpretation \mathcal{I} of Σ such that $\mathcal{I} \vDash \Phi$

We write $\alpha \vDash \beta$ as an abbreviation for $\{\alpha\} \vDash \beta$
α and β are logically equivalent, written $\alpha \equiv \beta$, iff $\alpha \vDash \beta$ and $\beta \vDash \alpha$
A \sum-formula α is valid, written $\vDash \alpha$ if $\} \vDash \alpha$ iff $\mathcal{I} \vDash \alpha$ for every interpretation \mathcal{I}
Suppose that $\Sigma^{S}=\{A\}, \Sigma^{F}=\{p, q\}, \operatorname{rank}(p)=\langle A, \operatorname{Bool}\rangle, \operatorname{rank}(q)=\langle A, A, B o o l\rangle$, and all variables v_{i} have sort A. Do the following entailment actually hold?

1. $\forall v_{1} \cdot \mathrm{p}\left(v_{1}\right) \vDash \mathrm{p}\left(v_{2}\right)$
2. $p\left(v_{1}\right) \vDash \forall v_{1} \cdot p\left(v_{1}\right)$
3. $\forall v_{1} \cdot p\left(v_{1}\right) \vDash \exists v_{2} \cdot p\left(v_{2}\right)$
4. $\exists v_{2} \cdot \forall v_{1} \cdot q\left(v_{1}, v_{2}\right) \vDash \forall v_{1} \cdot \exists v_{2} \cdot q\left(v_{1}, v_{2}\right)$
5. $\forall v_{1} \cdot \exists v_{2} \cdot q\left(v_{1}, v_{2}\right) \vDash \exists v_{2} \cdot \forall v_{1} \cdot q\left(v_{1}, v_{2}\right) \boldsymbol{x}$
6. $\vDash \exists v_{1} \cdot\left(p\left(v_{1}\right) \Rightarrow \forall v_{2} \cdot p\left(v_{2}\right)\right)$

Entailment, validity

Let Φ be a set of Σ-formulas. We write $\mathcal{I} \vDash \Phi$ to mean that $\mathcal{I} \vDash \alpha$ for every $\alpha \in \Phi$
If ϕ is a set of Σ-formulas and α is a Σ-formula, then ϕ entails or logically implies α, written $\phi \vDash \alpha$, if $\mathcal{I} \vDash \alpha$ for every interpretation \mathcal{I} of Σ such that $\mathcal{I} \vDash \Phi$

We write $\alpha \vDash \beta$ as an abbreviation for $\{\alpha\} \vDash \beta$
α and β are logically equivalent, written $\alpha \equiv \beta$, iff $\alpha \vDash \beta$ and $\beta \vDash \alpha$
A \sum-formula α is valid, written $\vDash \alpha$ if $\} \vDash \alpha$ iff $\mathcal{I} \vDash \alpha$ for every interpretation \mathcal{I}
Suppose that $\Sigma^{S}=\{A\}, \Sigma^{F}=\{p, q\}, \operatorname{rank}(p)=\langle A, \operatorname{Bool}\rangle, \operatorname{rank}(q)=\langle A, A, B o o l\rangle$, and all variables v_{i} have sort A. Do the following entailment actually hold?

1. $\forall v_{1} \cdot p\left(v_{1}\right) \vDash p\left(v_{2}\right)$
2. $p\left(v_{1}\right) \vDash \forall v_{1} \cdot p\left(v_{1}\right)$
3. $\forall v_{1} \cdot p\left(v_{1}\right) \vDash \exists v_{2} \cdot p\left(v_{2}\right)$
4. $\exists v_{2} \cdot \forall v_{1} \cdot q\left(v_{1}, v_{2}\right) \vDash \forall v_{1} \cdot \exists v_{2} \cdot q\left(v_{1}, v_{2}\right) \checkmark$
5. $\forall v_{1} \cdot \exists v_{2} \cdot q\left(v_{1}, v_{2}\right) \vDash \exists v_{2} . \forall v_{1} \cdot q\left(v_{1}, v_{2}\right) \boldsymbol{X}$
6. $\vDash \exists v_{1} \cdot\left(p\left(v_{1}\right) \Rightarrow \forall v_{2} \cdot p\left(v_{2}\right)\right)$

Exercise

Let α be a Σ-formula and let Γ be a sorting context that includes α 's free variables
The truth of α is determined by interpretations I of Σ and Γ consisting of:

1. an interpretation $\sigma^{\mathcal{I}}$ of each $\sigma \in \Sigma^{S}$ as a nonempty set, the domain of σ
2. an interpretation $f^{\mathcal{I}}$ of each $f \in \Sigma^{F}$ of $\operatorname{rank}\left\langle\sigma_{1}, \ldots, \sigma_{n}, \sigma_{n+1}\right\rangle$ as an n-ary total function from $\sigma_{1}^{I} \times \cdots \times \sigma_{n}^{\mathcal{I}}$ to $\sigma_{n+1}^{\mathcal{I}}$
3. an interpretation x^{I} of each $x: \sigma \in \Gamma$ as an element of σ^{I}

Consider the signature where

$$
\Sigma^{S}=\{\sigma\}, \Sigma^{F}=\left\{Q, \dot{\doteq}_{\sigma}\right\}, \Gamma=\{x: \sigma, y: \sigma\}, \operatorname{rank}(Q)=\langle\sigma, \sigma, \text { Bool }\rangle
$$

For each of the following Σ-formulas, describe an interpretation that satisfies it

1. $\forall x: \sigma . \forall y: \sigma \cdot x \doteq y$
2. $\forall x: \sigma \cdot \forall y: \sigma \cdot Q(x, y)$
3. $\forall x: \sigma . \exists y: \sigma . Q(x, y)$

From English to FOL: Examples 1

1. There is a natural number that is smaller than any other natural number

From English to FOL: Examples 1

1. There is a natural number that is smaller than any other natural number $\exists x:$ Nat. $\forall y: N a t$. $(x \doteq y \vee x<y)$

From English to FOL: Examples 1

1. There is a natural number that is smaller than any other natural number $\exists x:$ Nat. $\forall y: N a t$. $(x \doteq y \vee x<y)$
2. For every natural number there is a greater one

From English to FOL: Examples 1

1. There is a natural number that is smaller than any other natural number $\exists x:$ Nat. $\forall y: N a t$. $(x \doteq y \vee x<y)$
2. For every natural number there is a greater one $\forall x$:Nat. $\exists y: N a t . ~(x<y)$

From English to FOL: Examples 1

1. There is a natural number that is smaller than any other natural number $\exists x:$ Nat. $\forall y$:Nat. $(x \doteq y \vee x<y)$
2. For every natural number there is a greater one $\forall x: N a t . ~ \exists y: N a t . ~(x<y)$
3. Two natural numbers are equal only if their respective successors are equal

From English to FOL: Examples 1

1. There is a natural number that is smaller than any other natural number $\exists x:$ Nat. $\forall y: N a t$. $(x \doteq y \vee x<y)$
2. For every natural number there is a greater one $\forall x$:Nat. $\exists y$:Nat. $(x<y)$
3. Two natural numbers are equal only if their respective successors are equal $\forall x:$ Nat. $\forall y$:Nat. $(x \doteq y \Rightarrow S(x) \doteq S(y))$

From English to FOL: Examples 1

1. There is a natural number that is smaller than any other natural number $\exists x:$ Nat. $\forall y: N a t$. $(x \doteq y \vee x<y)$
2. For every natural number there is a greater one $\forall x$:Nat. $\exists y$:Nat. $(x<y)$
3. Two natural numbers are equal only if their respective successors are equal $\forall x: N a t . \forall y: N a t . ~(x \doteq y \Rightarrow S(x) \doteq S(y))$
4. Two natural numbers are equal if their respective successors are equal

From English to FOL: Examples 1

1. There is a natural number that is smaller than any other natural number $\exists x:$ Nat. $\forall y$:Nat. $(x \doteq y \vee x<y)$
2. For every natural number there is a greater one $\forall x$:Nat. $\exists y$:Nat. $(x<y)$
3. Two natural numbers are equal only if their respective successors are equal $\forall x: N a t . \forall y: N a t . ~(x \doteq y \Rightarrow S(x) \doteq S(y))$
4. Two natural numbers are equal if their respective successors are equal $\forall x:$ Nat. $\forall y$:Nat. $(S(x) \doteq S(y) \Rightarrow x \doteq y)$

From English to FOL: Examples 1

1. There is a natural number that is smaller than any other natural number $\exists x:$ Nat. $\forall y$:Nat. $(x \doteq y \vee x<y)$
2. For every natural number there is a greater one $\forall x$:Nat. $\exists y$:Nat. $(x<y)$
3. Two natural numbers are equal only if their respective successors are equal $\forall x: N a t . \forall y: N a t . ~(x \doteq y \Rightarrow S(x) \doteq S(y))$
4. Two natural numbers are equal if their respective successors are equal $\forall x: N a t . \forall y: N a t . ~(S(x) \doteq S(y) \Rightarrow x \doteq y)$
5. No two distinct natural numbers have the same successor

From English to FOL: Examples 1

1. There is a natural number that is smaller than any other natural number $\exists x:$ Nat. $\forall y: N a t$. $(x \doteq y \vee x<y)$
2. For every natural number there is a greater one $\forall x$:Nat. $\exists y$:Nat. $(x<y)$
3. Two natural numbers are equal only if their respective successors are equal $\forall x: N a t . \forall y: N a t .(x \doteq y \Rightarrow S(x) \doteq S(y))$
4. Two natural numbers are equal if their respective successors are equal $\forall x: N a t . \forall y: N a t . ~(S(x) \doteq S(y) \Rightarrow x \doteq y)$
5. No two distinct natural numbers have the same successor
$\forall x:$ Nat. $\forall y$:Nat. $(\neg(x \doteq y) \Rightarrow \neg(S(x) \doteq S(y)))$

From English to FOL: Examples 1

1. There is a natural number that is smaller than any other natural number $\exists x:$ Nat. $\forall y: N a t$. $(x \doteq y \vee x<y)$
2. For every natural number there is a greater one $\forall x$:Nat. $\exists y$:Nat. $(x<y)$
3. Two natural numbers are equal only if their respective successors are equal $\forall x: N a t . \forall y: N a t .(x \doteq y \Rightarrow S(x) \doteq S(y))$
4. Two natural numbers are equal if their respective successors are equal $\forall x: N a t . \forall y: N a t . ~(S(x) \doteq S(y) \Rightarrow x \doteq y)$
5. No two distinct natural numbers have the same successor
$\forall x:$ Nat. $\forall y$:Nat. $(\neg(x \doteq y) \Rightarrow \neg(S(x) \doteq S(y)))$
6. There are at least two natural numbers smaller than 3

From English to FOL: Examples 1

1. There is a natural number that is smaller than any other natural number $\exists x:$ Nat. $\forall y: N a t$. $(x \doteq y \vee x<y)$
2. For every natural number there is a greater one $\forall x$:Nat. $\exists y$:Nat. $(x<y)$
3. Two natural numbers are equal only if their respective successors are equal $\forall x: N a t . \forall y: N a t .(x \doteq y \Rightarrow S(x) \doteq S(y))$
4. Two natural numbers are equal if their respective successors are equal $\forall x: N a t . \forall y: N a t . ~(S(x) \doteq S(y) \Rightarrow x \doteq y)$
5. No two distinct natural numbers have the same successor
$\forall x:$ Nat. $\forall y$:Nat. $(\neg(x \doteq y) \Rightarrow \neg(S(x) \doteq S(y)))$
6. There are at least two natural numbers smaller than 3
$\exists x:$ Nat. $\exists y: N a t . ~(\neg(x \doteq y) \wedge(x<S(S(S(0)))) \wedge(y<S(S(S(0)))))$

From English to FOL: Examples 1

1. There is a natural number that is smaller than any other natural number $\exists x:$ Nat. $\forall y: N a t$. $(x \doteq y \vee x<y)$
2. For every natural number there is a greater one $\forall x$:Nat. $\exists y$:Nat. $(x<y)$
3. Two natural numbers are equal only if their respective successors are equal $\forall x: N a t . \forall y: N a t .(x \doteq y \Rightarrow S(x) \doteq S(y))$
4. Two natural numbers are equal if their respective successors are equal $\forall x: N a t . \forall y: N a t . ~(S(x) \doteq S(y) \Rightarrow x \doteq y)$
5. No two distinct natural numbers have the same successor
$\forall x:$ Nat. $\forall y$:Nat. $(\neg(x \doteq y) \Rightarrow \neg(S(x) \doteq S(y)))$
6. There are at least two natural numbers smaller than 3

$$
\exists x: \text { Nat. } \exists y: N a t . ~(\neg(x \doteq y) \wedge(x<\mathrm{S}(\mathrm{~S}(\mathrm{~S}(0)))) \wedge(y<\mathrm{S}(\mathrm{~S}(\mathrm{~S}(0)))))
$$

7. There is no largest natural number

From English to FOL: Examples 1

1. There is a natural number that is smaller than any other natural number $\exists x:$ Nat. $\forall y: N a t$. $(x \doteq y \vee x<y)$
2. For every natural number there is a greater one $\forall x$:Nat. $\exists y$:Nat. $(x<y)$
3. Two natural numbers are equal only if their respective successors are equal $\forall x: N a t . \forall y: N a t .(x \doteq y \Rightarrow S(x) \doteq S(y))$
4. Two natural numbers are equal if their respective successors are equal $\forall x: N a t . \forall y: N a t . ~(S(x) \doteq S(y) \Rightarrow x \doteq y)$
5. No two distinct natural numbers have the same successor
$\forall x:$ Nat. $\forall y$:Nat. $(\neg(x \doteq y) \Rightarrow \neg(S(x) \doteq S(y)))$
6. There are at least two natural numbers smaller than 3

$$
\exists x: \text { Nat. } \exists y: N a t . ~(\neg(x \doteq y) \wedge(x<S(S(S(0)))) \wedge(y<S(S(S(0)))))
$$

7. There is no largest natural number $\neg \exists x:$ Nat. $\forall y:$ Nat. $y \doteq x \vee y<x$

From English to FOL: Examples 2

1. Everyone has a father and a mother

From English to FOL: Examples 2

1. Everyone has a father and a mother $\forall x$:Pers. $\exists y$:Pers. $\exists z: P e r s . ~(y \doteq \mathrm{pa}(x) \wedge z \doteq \mathrm{ma}(x))$

From English to FOL: Examples 2

1. Everyone has a father and a mother $\forall x$:Pers. $\exists y$:Pers. $\exists z: P e r s . ~(y \doteq \operatorname{pa}(x) \wedge z \doteq \operatorname{ma}(x))$
2. The married relation is symmetric

From English to FOL: Examples 2

1. Everyone has a father and a mother $\forall x$:Pers. $\exists y$:Pers. $\exists z: P e r s . ~(y \doteq \mathrm{pa}(x) \wedge z \doteq \mathrm{ma}(x))$
2. The married relation is symmetric $\forall x$:Pers. $\forall y$:Pers. $(\operatorname{mar}(x, y) \Rightarrow \operatorname{mar}(y, x))$

From English to FOL: Examples 2

1. Everyone has a father and a mother $\forall x$:Pers. $\exists y$:Pers. $\exists z: P e r s . ~(y \doteq \mathrm{pa}(x) \wedge z \doteq \mathrm{ma}(x))$
2. The married relation is symmetric $\forall x$:Pers. $\forall y$:Pers. $(\operatorname{mar}(x, y) \Rightarrow \operatorname{mar}(y, x))$
3. No one can be married to themselves

From English to FOL: Examples 2

1. Everyone has a father and a mother $\forall x$:Pers. $\exists y$:Pers. $\exists z: P e r s . ~(y \doteq \mathrm{pa}(x) \wedge z \doteq \mathrm{ma}(x))$
2. The married relation is symmetric $\forall x$:Pers. $\forall y$:Pers. $(\operatorname{mar}(x, y) \Rightarrow \operatorname{mar}(y, x))$
3. No one can be married to themselves $\forall x$: Pers. $\neg \operatorname{mar}(x, x)$

From English to FOL: Examples 2

1. Everyone has a father and a mother $\forall x$:Pers. $\exists y$:Pers. $\exists z: P e r s . ~(y \doteq \mathrm{pa}(x) \wedge z \doteq \mathrm{ma}(x))$
2. The married relation is symmetric $\forall x$:Pers. $\forall y$:Pers. $(\operatorname{mar}(x, y) \Rightarrow \operatorname{mar}(y, x))$
3. No one can be married to themselves $\forall x$: Pers. $\neg \operatorname{mar}(x, x)$
4. Not all people are married

From English to FOL: Examples 2

1. Everyone has a father and a mother $\forall x$:Pers. $\exists y$:Pers. $\exists z: P e r s . ~(y \doteq \mathrm{pa}(x) \wedge z \doteq \mathrm{ma}(x))$
2. The married relation is symmetric $\forall x$:Pers. $\forall y$:Pers. $(\operatorname{mar}(x, y) \Rightarrow \operatorname{mar}(y, x))$
3. No one can be married to themselves $\forall x$: Pers. $\neg \operatorname{mar}(x, x)$
4. Not all people are married $\neg \forall x: \operatorname{Pers.~\exists y:Pers.~mar~}(x, y)$

From English to FOL: Examples 2

1. Everyone has a father and a mother $\forall x$:Pers. $\exists y$:Pers. $\exists z: P e r s . ~(y \doteq \mathrm{pa}(x) \wedge z \doteq \mathrm{ma}(x))$
2. The married relation is symmetric $\forall x$:Pers. $\forall y$:Pers. $(\operatorname{mar}(x, y) \Rightarrow \operatorname{mar}(y, x))$
3. No one can be married to themselves $\forall x$: $\operatorname{Pers} . \neg \operatorname{mar}(x, x)$
4. Not all people are married $\neg \forall x$:Pers. $\exists y$:Pers. mar (x, y)
5. Some people have a father and a mother who are not married to each other

From English to FOL: Examples 2

1. Everyone has a father and a mother $\forall x$:Pers. $\exists y$:Pers. $\exists z: P e r s . ~(y \doteq \mathrm{pa}(x) \wedge z \doteq \mathrm{ma}(x))$
2. The married relation is symmetric $\forall x$:Pers. $\forall y$:Pers. $(\operatorname{mar}(x, y) \Rightarrow \operatorname{mar}(y, x))$
3. No one can be married to themselves $\forall x: \operatorname{Pers} . \neg \operatorname{mar}(x, x)$
4. Not all people are married $\neg \forall x: \operatorname{Pers.~\exists y:Pers.~mar~}(x, y)$
5. Some people have a father and a mother who are not married to each other $\exists x: \operatorname{Pers} . \neg \operatorname{mar}(\operatorname{ma}(x), \mathrm{pa}(x))$

From English to FOL: Examples 2

1. Everyone has a father and a mother $\forall x$:Pers. $\exists y$:Pers. $\exists z: P e r s . ~(y \doteq \mathrm{pa}(x) \wedge z \doteq \mathrm{ma}(x))$
2. The married relation is symmetric $\forall x$:Pers. $\forall y$:Pers. $(\operatorname{mar}(x, y) \Rightarrow \operatorname{mar}(y, x))$
3. No one can be married to themselves $\forall x: \operatorname{Pers} . \neg \operatorname{mar}(x, x)$
4. Not all people are married $\neg \forall x: \operatorname{Pers.~\exists y:Pers.~mar~}(x, y)$
5. Some people have a father and a mother who are not married to each other
$\exists x: \operatorname{Pers} . \neg \operatorname{mar}(\operatorname{ma}(x), \mathrm{pa}(x))$
6. You cannot marry more than one person

From English to FOL: Examples 2

1. Everyone has a father and a mother $\forall x$:Pers. $\exists y$:Pers. $\exists z: P e r s . ~(y \doteq \mathrm{pa}(x) \wedge z \doteq \mathrm{ma}(x))$
2. The married relation is symmetric $\forall x$:Pers. $\forall y$:Pers. $(\operatorname{mar}(x, y) \Rightarrow \operatorname{mar}(y, x))$
3. No one can be married to themselves $\forall x: \operatorname{Pers} . ~ \neg \operatorname{mar}(x, x)$
4. Not all people are married $\neg \forall x: \operatorname{Pers.~\exists y:Pers.~mar~}(x, y)$
5. Some people have a father and a mother who are not married to each other
$\exists x: \operatorname{Pers} . \neg \operatorname{mar}(\operatorname{ma}(x), \mathrm{pa}(x))$
6. You cannot marry more than one person
$\forall x$:Pers. $\forall y$:Pers. $\forall z$:Pers. $(\operatorname{mar}(x, y) \wedge \operatorname{mar}(x, z) \Rightarrow y \doteq z)$

From English to FOL: Examples 2

1. Everyone has a father and a mother $\forall x$:Pers. $\exists y$:Pers. $\exists z: P e r s . ~(y \doteq \mathrm{pa}(x) \wedge z \doteq \mathrm{ma}(x))$
2. The married relation is symmetric $\forall x$:Pers. $\forall y$:Pers. $(\operatorname{mar}(x, y) \Rightarrow \operatorname{mar}(y, x))$
3. No one can be married to themselves $\forall x: \operatorname{Pers} . \neg \operatorname{mar}(x, x)$
4. Not all people are married $\neg \forall x$:Pers. $\exists y: \operatorname{Pers.mar}(x, y)$
5. Some people have a father and a mother who are not married to each other
$\exists x: \operatorname{Pers} . \neg \operatorname{mar}(\operatorname{ma}(x), \mathrm{pa}(x))$
6. You cannot marry more than one person
$\forall x$:Pers. $\forall y$:Pers. $\forall z$:Pers. $(\operatorname{mar}(x, y) \wedge \operatorname{mar}(x, z) \Rightarrow y \doteq z)$
7. Some people are not mothers

From English to FOL: Examples 2

1. Everyone has a father and a mother $\forall x$:Pers. $\exists y$:Pers. $\exists z: P e r s . ~(y \doteq \mathrm{pa}(x) \wedge z \doteq \mathrm{ma}(x))$
2. The married relation is symmetric $\forall x$:Pers. $\forall y$:Pers. $(\operatorname{mar}(x, y) \Rightarrow \operatorname{mar}(y, x))$
3. No one can be married to themselves $\forall x$: Pers. $\neg \operatorname{mar}(x, x)$
4. Not all people are married $\neg \forall x$:Pers. $\exists y: \operatorname{Pers.mar}(x, y)$
5. Some people have a father and a mother who are not married to each other
$\exists x: \operatorname{Pers} . \neg \operatorname{mar}(\operatorname{ma}(x), \mathrm{pa}(x))$
6. You cannot marry more than one person
$\forall x$:Pers. $\forall y$:Pers. $\forall z$:Pers. $(\operatorname{mar}(x, y) \wedge \operatorname{mar}(x, z) \Rightarrow y \doteq z)$
7. Some people are not mothers $\exists x$:Pers. $\forall y$:Pers. $\neg(x \doteq \mathrm{ma}(y))$

From English to FOL: Examples 2

1. Everyone has a father and a mother $\forall x$:Pers. $\exists y$:Pers. $\exists z: \operatorname{Pers} .(y \doteq \mathrm{pa}(x) \wedge z \doteq \mathrm{ma}(x))$
2. The married relation is symmetric $\forall x$:Pers. $\forall y$:Pers. $(\operatorname{mar}(x, y) \Rightarrow \operatorname{mar}(y, x))$
3. No one can be married to themselves $\forall x: \operatorname{Pers} . \neg \operatorname{mar}(x, x)$
4. Not all people are married $\neg \forall x$:Pers. $\exists y: \operatorname{Pers.mar}(x, y)$
5. Some people have a father and a mother who are not married to each other
$\exists x: \operatorname{Pers} . \neg \operatorname{mar}(\operatorname{ma}(x), \mathrm{pa}(x))$
6. You cannot marry more than one person
$\forall x$:Pers. $\forall y$:Pers. $\forall z$:Pers. $(\operatorname{mar}(x, y) \wedge \operatorname{mar}(x, z) \Rightarrow y \doteq z)$
7. Some people are not mothers $\exists x$:Pers. $\forall y$:Pers. $\neg(x \doteq \mathrm{ma}(y))$
8. Nobody can be both a father and a mother

From English to FOL: Examples 2

1. Everyone has a father and a mother $\forall x$:Pers. $\exists y$:Pers. $\exists z: \operatorname{Pers} .(y \doteq \operatorname{pa}(x) \wedge z \doteq \operatorname{ma}(x))$
2. The married relation is symmetric $\forall x$:Pers. $\forall y$:Pers. $(\operatorname{mar}(x, y) \Rightarrow \operatorname{mar}(y, x))$
3. No one can be married to themselves $\forall x: \operatorname{Pers} . \neg \operatorname{mar}(x, x)$
4. Not all people are married $\neg \forall x$:Pers. $\exists y: \operatorname{Pers.mar}(x, y)$
5. Some people have a father and a mother who are not married to each other
$\exists x: \operatorname{Pers} . \neg \operatorname{mar}(\operatorname{ma}(x), \mathrm{pa}(x))$
6. You cannot marry more than one person
$\forall x$:Pers. $\forall y$:Pers. $\forall z$:Pers. $(\operatorname{mar}(x, y) \wedge \operatorname{mar}(x, z) \Rightarrow y \doteq z)$
7. Some people are not mothers $\exists x$:Pers. $\forall y$:Pers. $\neg(x \doteq \mathrm{ma}(y))$
8. Nobody can be both a father and a mother
$\forall x$:Pers. $\neg \exists y$:Pers. $\neg \exists z$:Pers. $(x \doteq \mathrm{pa}(y) \wedge z \doteq \mathrm{ma}(z))$

From English to FOL: Examples 2

1. Everyone has a father and a mother $\forall x$:Pers. $\exists y$:Pers. $\exists z: P e r s . ~(y \doteq \mathrm{pa}(x) \wedge z \doteq \mathrm{ma}(x))$
2. The married relation is symmetric $\forall x$:Pers. $\forall y$:Pers. $(\operatorname{mar}(x, y) \Rightarrow \operatorname{mar}(y, x))$
3. No one can be married to themselves $\forall x: \operatorname{Pers} . \neg \operatorname{mar}(x, x)$
4. Not all people are married $\neg \forall x$:Pers. $\exists y$:Pers. mar (x, y)
5. Some people have a father and a mother who are not married to each other
$\exists x: \operatorname{Pers.} \neg \operatorname{mar}(\operatorname{ma}(x), \mathrm{pa}(x))$
6. You cannot marry more than one person
$\forall x$:Pers. $\forall y$:Pers. $\forall z$:Pers. $(\operatorname{mar}(x, y) \wedge \operatorname{mar}(x, z) \Rightarrow y \doteq z)$
7. Some people are not mothers $\exists x$:Pers. $\forall y$:Pers. $\neg(x \doteq \mathrm{ma}(y))$
8. Nobody can be both a father and a mother
$\forall x$:Pers. $\neg \exists y$:Pers. $\neg \exists z$:Pers. $(x \doteq \mathrm{pa}(y) \wedge z \doteq \mathrm{ma}(z))$
9. You can't be your own father or father's father

From English to FOL: Examples 2

1. Everyone has a father and a mother $\forall x$:Pers. $\exists y$:Pers. $\exists z: P e r s . ~(y \doteq \mathrm{pa}(x) \wedge z \doteq \mathrm{ma}(x))$
2. The married relation is symmetric $\forall x$:Pers. $\forall y$:Pers. $(\operatorname{mar}(x, y) \Rightarrow \operatorname{mar}(y, x))$
3. No one can be married to themselves $\forall x$:Pers. $\neg \operatorname{mar}(x, x)$
4. Not all people are married $\neg \forall x: \operatorname{Pers.} \exists y: \operatorname{Pers} . \operatorname{mar}(x, y)$
5. Some people have a father and a mother who are not married to each other
$\exists x: \operatorname{Pers.} \neg \operatorname{mar}(\operatorname{ma}(x), \mathrm{pa}(x))$
6. You cannot marry more than one person
$\forall x$:Pers. $\forall y$:Pers. $\forall z$:Pers. $(\operatorname{mar}(x, y) \wedge \operatorname{mar}(x, z) \Rightarrow y \doteq z)$
7. Some people are not mothers $\exists x$:Pers. $\forall y$:Pers. $\neg(x \doteq \mathrm{ma}(y))$
8. Nobody can be both a father and a mother
$\forall x$:Pers. $\neg \exists y$:Pers. $\neg \exists z$:Pers. $(x \doteq \mathrm{pa}(y) \wedge z \doteq \mathrm{ma}(z))$
9. You can't be your own father or father's father $\forall x: \operatorname{Pers.} \neg(x \doteq \mathrm{pa}(x) \vee x \doteq \mathrm{pa}(\mathrm{pa}(x)))$

From English to FOL: Examples 2

1. Everyone has a father and a mother $\forall x$:Pers. $\exists y$:Pers. $\exists z: P e r s . ~(y \doteq \mathrm{pa}(x) \wedge z \doteq \mathrm{ma}(x))$
2. The married relation is symmetric $\forall x$:Pers. $\forall y$:Pers. $(\operatorname{mar}(x, y) \Rightarrow \operatorname{mar}(y, x))$
3. No one can be married to themselves $\forall x: \operatorname{Pers} . \neg \operatorname{mar}(x, x)$
4. Not all people are married $\neg \forall x: \operatorname{Pers.} \exists y$:Pers. $\operatorname{mar}(x, y)$
5. Some people have a father and a mother who are not married to each other
$\exists x: \operatorname{Pers.} \neg \operatorname{mar}(\operatorname{ma}(x), \mathrm{pa}(x))$
6. You cannot marry more than one person
$\forall x$:Pers. $\forall y$:Pers. $\forall z$:Pers. $(\operatorname{mar}(x, y) \wedge \operatorname{mar}(x, z) \Rightarrow y \doteq z)$
7. Some people are not mothers $\exists x$:Pers. $\forall y$:Pers. $\neg(x \doteq \mathrm{ma}(y))$
8. Nobody can be both a father and a mother
$\forall x$:Pers. $\neg \exists y$:Pers. $\neg \exists z$:Pers. $(x \doteq \mathrm{pa}(y) \wedge z \doteq \mathrm{ma}(z))$
9. You can't be your own father or father's father $\forall x: \operatorname{Pers.} \neg(x \doteq \mathrm{pa}(x) \vee x \doteq \mathrm{pa}(\mathrm{pa}(x)))$
10. Some people are childless

From English to FOL: Examples 2

1. Everyone has a father and a mother $\forall x$:Pers. $\exists y$:Pers. $\exists z: P e r s . ~(y \doteq \mathrm{pa}(x) \wedge z \doteq \mathrm{ma}(x))$
2. The married relation is symmetric $\forall x$:Pers. $\forall y$:Pers. $(\operatorname{mar}(x, y) \Rightarrow \operatorname{mar}(y, x))$
3. No one can be married to themselves $\forall x$:Pers. $\neg \operatorname{mar}(x, x)$
4. Not all people are married $\neg \forall x: \operatorname{Pers.} \exists y$:Pers. $\operatorname{mar}(x, y)$
5. Some people have a father and a mother who are not married to each other
$\exists x: \operatorname{Pers.} \neg \operatorname{mar}(\operatorname{ma}(x), \mathrm{pa}(x))$
6. You cannot marry more than one person
$\forall x$:Pers. $\forall y$:Pers. $\forall z$:Pers. $(\operatorname{mar}(x, y) \wedge \operatorname{mar}(x, z) \Rightarrow y \doteq z)$
7. Some people are not mothers $\exists x$:Pers. $\forall y$:Pers. $\neg(x \doteq \mathrm{ma}(y))$
8. Nobody can be both a father and a mother
$\forall x$:Pers. $\neg \exists y$:Pers. $\neg \exists z$:Pers. $(x \doteq \mathrm{pa}(y) \wedge z \doteq \mathrm{ma}(z))$
9. You can't be your own father or father's father $\forall x: \operatorname{Pers.} \neg(x \doteq \mathrm{pa}(x) \vee x \doteq \mathrm{pa}(\mathrm{pa}(x)))$
10. Some people are childless $\exists x$:Pers. $\forall y$:Pers. $(\neg(x \doteq \operatorname{pa}(y)) \wedge \wedge(x \doteq \mathrm{ma}(y)))$

Invariance of term values

Consider a signature Σ, a Σ-context Γ, and two Σ-interpretations \mathcal{I} and \mathcal{J} that agree on the sorts and symbols of Σ.

Invariance of term values

Consider a signature Σ, a Σ-context Γ, and two Σ-interpretations \mathcal{I} and \mathcal{J} that agree on the sorts and symbols of Σ.

Lemma 1
If \mathcal{I} and \mathcal{J} also agree on the variables of a Σ-term t with variables in Γ, then $t^{\overline{\mathcal{I}}}=t^{\overline{\mathcal{J}}}$.

Invariance of term values

Consider a signature Σ, a Σ-context Γ, and two Σ-interpretations \mathcal{I} and \mathcal{J} that agree on the sorts and symbols of Σ.

Lemma 1

If \mathcal{I} and \mathcal{J} also agree on the variables of a Σ-term t with variables in Γ, then $t^{\overline{\mathcal{I}}}=t^{\overline{\mathcal{J}}}$.
Proof.
By structural induction on t.

Invariance of term values

Consider a signature Σ, a Σ-context Γ, and two Σ-interpretations \mathcal{I} and \mathcal{J} that agree on the sorts and symbols of Σ.

Lemma 1

If \mathcal{I} and \mathcal{J} also agree on the variables of a \sum-term t with variables in Γ, then $t^{\overline{\mathcal{I}}}=t^{\overline{\mathcal{J}}}$.
Proof.
By structural induction on t.

- If t is a variable or a constant, then $t^{\bar{I}}=t^{\mathcal{I}}, t^{\overline{\mathcal{J}}}=t^{\mathcal{J}}$. Since $t^{\mathcal{I}}=t^{\mathcal{J}}$ by assumption, we have that $t^{\overline{\mathcal{I}}}=t^{\mathcal{I}}=t^{\mathcal{J}}=t^{\overline{\mathcal{J}}}$.

Invariance of term values

Consider a signature Σ, a Σ-context Γ, and two Σ-interpretations \mathcal{I} and \mathcal{J} that agree on the sorts and symbols of Σ.

Lemma 1

If \mathcal{I} and \mathcal{J} also agree on the variables of a Σ-term t with variables in Γ, then $t^{\bar{I}}=t^{\overline{\mathcal{J}}}$.
Proof.
By structural induction on t.

- If t is a variable or a constant, then $t^{\bar{I}}=t^{\mathcal{I}}, t^{\overline{\mathcal{J}}}=t^{\mathcal{J}}$. Since $t^{\mathcal{I}}=t^{\mathcal{J}}$ by assumption, we have that $t^{\overline{\mathcal{I}}}=t^{\mathcal{I}}=t^{\mathcal{J}}=t^{\overline{\mathcal{J}}}$.
- If $t=\left(f t_{1} \cdots t_{n}\right)$ with $n>1$, then $f^{\mathcal{I}}=f \mathcal{J}$ by assumption and $t_{j}^{\overline{\mathcal{I}}}=t_{j}^{\overline{\mathcal{J}}}$ for $i=1, \ldots, n$ by induction hypothesis.
It follows that $t^{\overline{\mathcal{I}}}=f^{\mathcal{I}}\left(t_{1}^{\overline{\mathcal{I}}}, \ldots, t_{n}^{\overline{\mathcal{I}}}\right)=f^{\mathcal{J}}\left(t_{1}^{\overline{\mathcal{J}}}, \ldots, t_{n}^{\overline{\mathcal{J}}}\right)=t^{\overline{\mathcal{J}}}$

Invariance of truth values

Consider a signature Σ, a Σ-context Γ, and two Σ-interpretations I and \mathcal{J} that agree on the sorts and symbols of Σ.

Theorem 2
 then $\alpha^{\bar{I}}=\alpha^{\bar{J}}$.

Invariance of truth values

Consider a signature Σ, a Σ-context Γ, and two Σ-interpretations \mathcal{I} and \mathcal{J} that agree on the sorts and symbols of Σ.

Theorem 2
If \mathcal{I} and \mathcal{J} also agree on the free variables of $a \sum$-formula α with free variables in Γ, then $\alpha^{\bar{I}}=\alpha^{\bar{J}}$.

Proof.
By induction on α.

Invariance of truth values

Consider a signature Σ, a Σ-context Γ, and two Σ-interpretations \mathcal{I} and \mathcal{J} that agree on the sorts and symbols of Σ.

Theorem 2
If \mathcal{I} and \mathcal{J} also agree on the free variables of $a \sum$-formula α with free variables in Γ, then $\alpha^{\bar{I}}=\alpha^{\overline{\mathcal{J}}}$.

Proof.
By induction on α.

- If α is an atomic formula, the results holds by the previous lemma since α is then a term, and all of its variables occur free in it.

Invariance of truth values

Consider a signature Σ, a Σ-context Γ, and two Σ-interpretations I and \mathcal{J} that agree on the sorts and symbols of Σ.

Theorem 2
If \mathcal{I} and \mathcal{J} also agree on the free variables of $a \sum$-formula α with free variables in Γ, then $\alpha^{\overline{\mathcal{I}}}=\alpha^{\overline{\mathcal{J}}}$.

Proof.
By induction on α.

- If α is an atomic formula, the results holds by the previous lemma since α is then a term, and all of its variables occur free in it.
- If α is $\neg \beta$ or $\alpha_{1} \bowtie \alpha_{2}$ with $\bowtie \in\{\wedge, \vee, \Rightarrow, \Leftrightarrow\}$, the result follows from the inductive hypothesis.

Invariance of truth values

Consider a signature Σ, a Σ-context Γ, and two Σ-interpretations I and \mathcal{J} that agree on the sorts and symbols of Σ.

Theorem 2
If \mathcal{I} and \mathcal{J} also agree on the free variables of $a \sum$-formula α with free variables in Γ, then $\alpha^{\bar{I}}=\alpha^{\overline{\mathcal{J}}}$.

Proof.
By induction on α.

- If $\alpha=Q$ s: $\sigma . \beta$ with $Q \in\{\forall, \exists\}$. Then $\mathcal{F} \mathcal{V}(\beta)=\mathcal{F} \mathcal{V}(\alpha) \cup\{x\}$. For any d in $\sigma^{\mathcal{I}}, \mathcal{I}[x \mapsto d]$ and $\mathcal{J}[x \mapsto d]$ agree on x by construction and on $\mathcal{F} \mathcal{V}(\alpha)$ by assumption. The result follows from the inductive hypothesis and the semantics of \forall and \exists.

Invariance of truth values

Consider a signature Σ, a Σ-context Γ, and two Σ-interpretations I and \mathcal{J} that agree on the sorts and symbols of Σ.

Theorem 2
If \mathcal{I} and \mathcal{J} also agree on the free variables of $a \sum$-formula α with free variables in Γ, then $\alpha^{\bar{I}}=\alpha^{\overline{\mathcal{J}}}$.

Note: The theorem implies that the interpretation of formula α is independent from the values assigned to variables that do not occur free in α.

Invariance of truth values

Consider a signature Σ, a Σ-context Γ, and two Σ-interpretations I and \mathcal{J} that agree on the sorts and symbols of Σ.

```
Theorem 2
If I and }\mathcal{J}\mathrm{ also agree on the free variables of a }\sum\mathrm{ -formula }\alpha\mathrm{ with free variables in Г,
then 的㶾=\mp@subsup{\alpha}{}{\overline{J}}\mathrm{ .}
```

Note: The theorem implies that the interpretation of formula α is independent from the values assigned to variables that do not occur free in α.

Corollary 3

The truth value of sentences is independent from how variables are interpreted.

The Deduction Theorem of FOL

Consider a signature Σ
Theorem 4
For all \sum-formulas α and β, we have that $\alpha \vDash \beta$ iff $\vDash \alpha \Rightarrow \beta$

The Deduction Theorem of FOL

Consider a signature Σ
Theorem 4
For all Σ-formulas α and β, we have that $\alpha \vDash \beta$ iff $\vDash \alpha \Rightarrow \beta$

Proof.

$\Rightarrow)$ We argue that every \sum interpretation \mathcal{I} satisfies $\gamma:=\alpha \Rightarrow \beta$. If \mathcal{I} falsifies α, then it trivially satisfies γ. If, instead, I satisfies α, then, since $\alpha \vDash \beta$, it must satisfy β as well. Hence, it satisfies γ.

The Deduction Theorem of FOL

Consider a signature Σ

Theorem 4

For all \sum-formulas α and β, we have that $\alpha \vDash \beta$ iff $\vDash \alpha \Rightarrow \beta$

Proof.

$\Rightarrow)$ We argue that every Σ interpretation \mathcal{I} satisfies $\gamma:=\alpha \Rightarrow \beta$. If \mathcal{I} falsifies α, then it trivially satisfies γ. If, instead, I satisfies α, then, since $\alpha \vDash \beta$, it must satisfy β as well. Hence, it satisfies γ.
$\Leftarrow)$ We argue that every \sum-interpretation I that satisfies α satisfies β as well. Any such interpretation must indeed satisfy β; otherwise, it would falsify $\alpha \Rightarrow \beta$, against the assumption that $\vDash \alpha \Rightarrow \beta$.

The Deduction Theorem of FOL

Consider a signature Σ

Theorem 4

For all \sum-formulas α and β, we have that $\alpha \vDash \beta$ iff $\vDash \alpha \Rightarrow \beta$

Proof.

$\Rightarrow)$ We argue that every Σ interpretation \mathcal{I} satisfies $\gamma:=\alpha \Rightarrow \beta$. If \mathcal{I} falsifies α, then it trivially satisfies γ. If, instead, I satisfies α, then, since $\alpha \vDash \beta$, it must satisfy β as well. Hence, it satisfies γ.
$\Leftarrow)$ We argue that every \sum-interpretation \mathcal{I} that satisfies α satisfies β as well. Any such interpretation must indeed satisfy β; otherwise, it would falsify $\alpha \Rightarrow \beta$, against the assumption that $\vDash \alpha \Rightarrow \beta$.

Corollary 5
For all Σ-formulas α and β, we have that $\alpha \equiv \beta$ iff $\vDash \alpha \Leftrightarrow \beta$

The Free Variables Theorem 1

Consider a signature Σ and a Σ-context Γ
Let ϕ be a set of Σ-formulas, let α be Σ-formula with free variables from Γ, and let $x \in \mathcal{F} \mathcal{V}(\alpha)$ where $x: \sigma \in \Gamma$.

The Free Variables Theorem 1

Consider a signature Σ and a Σ-context Γ
Let ϕ be a set of Σ-formulas, let α be Σ-formula with free variables from Γ, and let $x \in \mathcal{F} \mathcal{V}(\alpha)$ where $x: \sigma \in \Gamma$.

```
Theorem 6
Suppose x occurs free in no formulas of \(\Phi\). Then, \(\Phi \vDash \alpha\) iff \(\Phi \vDash \forall x: \sigma . \alpha\)
```


The Free Variables Theorem 1

Consider a signature Σ and a Σ-context Γ
Let ϕ be a set of Σ-formulas, let α be Σ-formula with free variables from Γ, and let $x \in \mathcal{F} \mathcal{V}(\alpha)$ where $x: \sigma \in \Gamma$.

Theorem 6

Suppose x occurs free in no formulas of Φ. Then, $\Phi \vDash \alpha$ iff $\phi \vDash \forall x: \sigma . \alpha$
Proof.
$\Rightarrow)$ Let I be any interpretation that satisfies Φ. Since x does not occur free in any formula of Φ we can conclude that $\mathcal{I}[x \mapsto a] \vDash \Phi$ for all $a \in \sigma^{\mathcal{I}}$. Since $\Phi \vDash \alpha$, we have that $\mathcal{I}[x \mapsto a] \vDash \alpha$ for all $a \in \sigma^{\mathcal{I}}$. But then $\mathcal{I} \vDash \forall x: \sigma . \alpha$ by definition of \forall. Hence, every interpretation that satisfies Φ also satisfies $\forall x: \sigma . \alpha$, that is, $\Phi \vDash \forall x: \sigma . \alpha$.

The Free Variables Theorem 1

Consider a signature Σ and a Σ-context Γ
Let ϕ be a set of Σ-formulas, let α be Σ-formula with free variables from Γ, and let $x \in \mathcal{F} \mathcal{V}(\alpha)$ where $x: \sigma \in \Gamma$.

Theorem 6

Suppose x occurs free in no formulas of Φ. Then, $\Phi \vDash \alpha$ iff $\Phi \vDash \forall x: \sigma . \alpha$
Proof.
$\Rightarrow)$ Let I be any interpretation that satisfies Φ. Since x does not occur free in any formula of Φ we can conclude that $I[x \mapsto a] \vDash \Phi$ for all $a \in \sigma^{\mathcal{I}}$. Since $\Phi \vDash \alpha$, we have that $\mathcal{I}[x \mapsto a] \vDash \alpha$ for all $a \in \sigma^{\mathcal{I}}$. But then $\mathcal{I} \vDash \forall x: \sigma . \alpha$ by definition of \forall. Hence, every interpretation that satisfies Φ also satisfies $\forall x: \sigma . \alpha$, that is, $\Phi \vDash \forall x: \sigma . \alpha$.
$\Leftrightarrow)$ Let \mathcal{I} be any interpretation that satisfies ϕ. By assumption $\mathcal{I} \vDash \forall x: \sigma . \alpha$. This implies that $\mathcal{I} \vDash \alpha$ regardless of what $x^{\mathcal{I}}$ is. Hence $\Phi \vDash \alpha$.

The Free Variables Theorem 2

Consider a signature Σ and a Σ-context Γ
Let β be Σ-formula, let α be a Σ-formula with free variables from Γ, and let $x \in \mathcal{F} \mathcal{V}(\alpha)$ where $x: \sigma \in \Gamma$.

The Free Variables Theorem 2

Consider a signature Σ and a Σ-context Γ
Let β be Σ-formula, let α be a Σ-formula with free variables from Γ, and let $x \in \mathcal{F} \mathcal{V}(\alpha)$ where $x: \sigma \in \Gamma$.

Theorem 7
Suppose x does not occur free in β. Then, $\alpha \vDash \beta$ iff $\exists x: \sigma . \alpha \vDash \beta$

The Free Variables Theorem 2

Consider a signature Σ and a Σ-context Γ
Let β be Σ-formula, let α be a Σ-formula with free variables from Γ, and let $x \in \mathcal{F} \mathcal{V}(\alpha)$ where $x: \sigma \in \Gamma$.

Theorem 7

Suppose x does not occur free in β. Then, $\alpha \vDash \beta$ iff $\exists x: \sigma . \alpha \vDash \beta$

Proof.

$\Rightarrow)$ Let \mathcal{I} be any interpretation that satisfies $\exists x: \sigma . \alpha$. This means that $\mathcal{I}[x \mapsto a] \vDash \alpha$ for some $a \in \sigma^{\mathcal{I}}$. By assumption, $\mathcal{I}[x \mapsto a]$ satisfies β as well. Since x does not occur free in β, changing the value assigned to \times does not matter. It follows that $I \vDash \beta$. Since I was arbitrary, this shows that $\exists x: \sigma . \alpha \vDash \beta$.

The Free Variables Theorem 2

Consider a signature Σ and a Σ-context Γ
Let β be Σ-formula, let α be a Σ-formula with free variables from Γ, and let $x \in \mathcal{F} \mathcal{V}(\alpha)$ where $x: \sigma \in \Gamma$.

```
Theorem 7
Suppose x does not occur free in \beta. Then, \alpha\vDash\beta iff \existsx:\sigma.\alpha\vDash\beta
```


Proof.

$\Rightarrow)$ Let \mathcal{I} be any interpretation that satisfies $\exists x: \sigma . \alpha$. This means that $\mathcal{I}[x \mapsto a] \vDash \alpha$ for some $a \in \sigma^{\mathcal{I}}$. By assumption, $\mathcal{I}[x \mapsto a]$ satisfies β as well. Since x does not occur free in β, changing the value assigned to \times does not matter. It follows that $I \vDash \beta$. Since I was arbitrary, this shows that $\exists x: \sigma . \alpha \vDash \beta$.
$\Leftarrow)$ Let I be any interpretation that satisfies α. Then, trivially, $\mathcal{I} \vDash \exists x: \sigma . \alpha$. By assumption, $\mathcal{I} \vDash \beta$. Since \mathcal{I} was arbitrary, we can conclude that $\alpha \vDash \beta$.

