CS:4980 Topics in Computer Science II Introduction to Automated Reasoning

DPLL and CDCL

Cesare Tinelli

Spring 2024

Credits

These slides are based on slides originally developed by **Cesare Tinelli** at the University of Iowa, **Emina Torlak** at the University of Washington, and by **Clark Barrett**, **Caroline Trippel**, and **Andrew (Haoze) Wu** at Stanford University. Adapted by permission.

Plan

- DPLL
 - Abstract DPLL
- CDCL (DP Chapter 2)
 - Abstract CDCL
 - Implication graphs

Modern SAT solvers are based on an extension of the DPLL procedure

DPLL tries to build incrementally a satisfying assignment M for a clause set Δ

M is grown by

- deducing the truth value of a literal from *M* and Δ , or
- guessing a truth value

If a wrong guess for a literal leads to an inconsistency, the procedure backtracks and tries the opposite value

Modern SAT solvers are based on an extension of the DPLL procedure

DPLL tries to build incrementally a satisfying assignment M for a clause set Δ

M is grown by

- deducing the truth value of a literal from *M* and △, or
- guessing a truth value

If a wrong guess for a literal leads to an inconsistency, the procedure backtracks and tries the opposite value

Modern SAT solvers are based on an extension of the DPLL procedure

DPLL tries to build incrementally a satisfying assignment M for a clause set Δ

M is grown by

- deducing the truth value of a literal from M and Δ , or
- guessing a truth value

If a wrong guess for a literal leads to an inconsistency, the procedure backtracks and tries the opposite value

Modern SAT solvers are based on an extension of the DPLL procedure

DPLL tries to build incrementally a satisfying assignment M for a clause set Δ

M is grown by

- deducing the truth value of a literal from M and Δ , or
- guessing a truth value

If a wrong guess for a literal leads to an inconsistency, the procedure backtracks and tries the opposite value

DPLL as a Proof System

To facilitate a deeper look at DPLL, we present it as a proof system: Abstract DPLL

The proof system is a re-elaboration of those in [1,2]

[1] Nieuwenhuis et al, "Solving SAT and SAT Modulo Theories: from an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T),", Journal of the ACM, 53(6).

[2] Krstić and Goel, "Architecting Solvers for SAT Modulo Theories: Nelson-Oppen with DPLL.", FroCos 2007.

States:

UNSAT

 $\langle M, \Delta \rangle$

where

- *M* is a sequence of literals and decision points denoting a partial variable assignment
- Δ is a set of clauses denoting a CNF formula

States:

UNSAT $\langle M, \Delta \rangle$

where

- *M* is a sequence of literals and decision points denoting a partial variable assignment
- Δ is a set of clauses denoting a CNF formula

Note: When convenient, we treat *M* as a set

Provided M contains no complementary literals it determines the assignment

 $v_M(p) = \begin{cases} \text{true} & \text{if } p \in M \\ \text{false} & \text{if } \neg p \in M \\ \text{undef} & \text{otherwise} \end{cases}$

States:

UNSAT

 $\langle M, \Delta \rangle$

where

- *M* is a sequence of literals and decision points denoting a partial variable assignment
- Δ is a set of clauses denoting a CNF formula

Notation: If $M = M_0 \bullet M_1 \bullet \cdots \bullet M_n$ where each M_i contains no decision points

- *M_i* is decision level *i* of *M*
- $M^{[i]}$ denotes the subsequence $M_0 \bullet \cdots \bullet M_i$, from decision level 0 to decision level i

States:

UNSAT $\langle M, \Delta \rangle$

Initial state:

• $\langle (), \Delta_0 \rangle$, where Δ_0 is to be checked for satisfiability

States:

UNSAT $\langle M, \Delta \rangle$

Initial state:

• $\langle (), \Delta_0 \rangle$, where Δ_0 is to be checked for satisfiability

Expected final states:

- UNSAT if Δ_0 is unsatisfiable
- $\langle M, \Delta_n \rangle$ otherwise, where Δ_n is equisatisfiable with Δ_0 and satisfied by M

Some clause terminology

Given a *partial assignment*: $v := \{ p_1 \mapsto \text{true}, p_2 \mapsto \text{false}, p_4 \mapsto \text{true} \}$

- clause $\{p_1, p_3, \neg p_4\}$ is *satisfied* by *v*
- clause $\{\neg p_1, p_2\}$ is *conflicting* with v
- clause $\{\neg p_1, p_3, \neg p_4\}$ is *unit* in *v*
- clause $\{\neg p_1, p_3, p_5\}$ is *unresolved* by v
- variable p_1 is assigned in v
- variable p_3 is *unassigned* in v

$$\mathsf{PROPAGATE} \frac{\{l_1, \dots, l_n, l\} \in \Delta \qquad \overline{l}_1, \dots, \overline{l}_n \in \mathsf{M} \qquad l, \overline{l} \notin \mathsf{M}}{\mathsf{M} := \mathsf{M} l}$$

Deduce the value of unassigned literal in unit clauses

Pure
$$\frac{l \text{ literal of } \Delta = \overline{l}, \overline{l} \notin M}{M := M l}$$

Make a pure literal true

$$\mathsf{Propagate} \frac{\{l_1, \dots, l_n, l\} \in \Delta \qquad \overline{l}_1, \dots, \overline{l}_n \in \mathsf{M} \qquad l, \overline{l} \notin \mathsf{M}}{\mathsf{M} := \mathsf{M} l}$$

Deduce the value of unassigned literal in unit clauses

The clause $\{l_1, \dots, l_n, l\}$ is the *antecedent clause* of *l*, denoted by Antecedent(l)

Pure
$$\frac{l \text{ literal of } \Delta = \overline{l}, \overline{l} \notin M}{M := M l}$$

Make a pure literal true

$$\mathsf{PROPAGATE} \frac{\{l_1, \dots, l_n, l\} \in \Delta \qquad \overline{l}_1, \dots, \overline{l}_n \in \mathsf{M} \qquad l, \overline{l} \notin \mathsf{M}}{\mathsf{M} := \mathsf{M} l}$$

Deduce the value of unassigned literal in unit clauses

Pure
$$l$$
 literal of Δ \bar{l} not literal of Δ $l, \bar{l} \notin M$ $M := M l$

Make a pure literal true

Decide
$$\frac{l \in \text{Lits}(\Delta) \quad l, \overline{l} \notin M}{M := M \bullet l}$$

Guess a truth value for an unassigned literal

Notation: Lits(Δ) := { $l \mid l$ literal of Δ } \cup { $\overline{l} \mid l$ literal of Δ }

l is a decision literal of the new M

Decide
$$\frac{l \in \text{Lits}(\Delta) \quad l, \overline{l} \notin M}{M := M \bullet l}$$

Guess a truth value for an unassigned literal

Notation: Lits(Δ) := { $l \mid l$ literal of Δ } \cup { $\overline{l} \mid l$ literal of Δ }

l is a *decision literal* of the new M

BACKTRACK
$$\frac{\{l_1, \dots, l_n\} \in \Delta \qquad \overline{l}_1, \dots, \overline{l}_n \in M \qquad M = M_1 \bullet l M_2 \qquad \bullet \notin M_2}{M := M_1 \overline{l}}$$

There is a conflicting clause and a decision point to backtrack to Backtrack over last decision point and add complement of decision literal

BACKTRACK
$$\frac{\{l_1, \dots, l_n\} \in \Delta \qquad \overline{l}_1, \dots, \overline{l}_n \in M \qquad M = M_1 \bullet l M_2 \qquad \bullet \notin M_2}{M := M_1 \overline{l}}$$

There is a conflicting clause and a decision point to backtrack to Backtrack over last decision point and add complement of decision literal

Note: Premise • \notin *N* enforces chronological backtracking

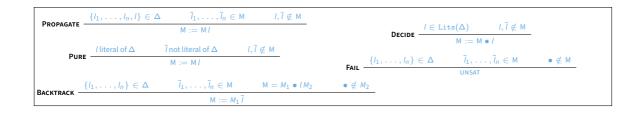
BACKTRACK
$$\frac{\{l_1, \dots, l_n\} \in \Delta \qquad \overline{l}_1, \dots, \overline{l}_n \in \mathsf{M} \qquad \mathsf{M} = M_1 \bullet l M_2 \qquad \bullet \notin M_2}{\mathsf{M} := M_1 \overline{l}}$$

There is a conflicting clause and a decision point to backtrack to Backtrack over last decision point and add complement of decision literal

FAIL
$$\{l_1, \ldots, l_n\} \in \Delta$$
 $\overline{l}_1, \ldots, \overline{l}_n \in M$ • $\notin M$ UNSAT

There is a conflicting clause and no decision points to backtrack to Conclude that clause set is unsatisfiable

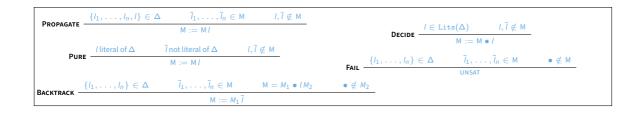
Abstract DPLL proof rules



This proof system captures the main steps of the DPLL procedure

Note: There are no rules to update \triangle , the set of clauses Such rules are present in CDCL, as we will see

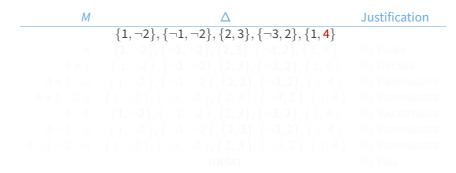
Abstract DPLL proof rules



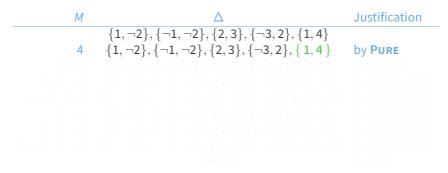
This proof system captures the main steps of the DPLL procedure

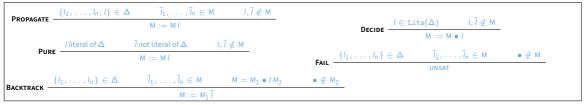
Note: There are no rules to update \triangle , the set of clauses Such rules are present in CDCL, as we will see

 $\Delta_0 := \{ \{1, \neg 2\}, \{\neg 1, \neg 2\}, \{2, 3\}, \{\neg 3, 2\}, \{1, 4\} \}$ Note: we abbreviate p_n as n

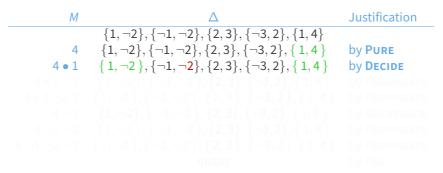


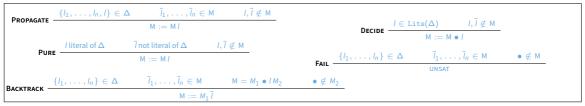
 $\Delta_0 := \{ \{1, \neg 2\}, \{\neg 1, \neg 2\}, \{2, 3\}, \{\neg 3, 2\}, \{1, 4\} \}$ Note: we abbreviate p_n as n



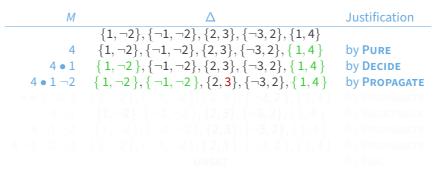


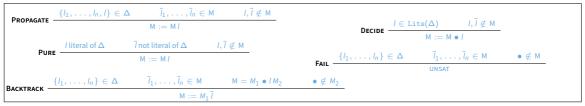
 $\Delta_0 := \{ \{1, \neg 2\}, \{\neg 1, \neg 2\}, \{2, 3\}, \{\neg 3, 2\}, \{1, 4\} \}$ Note: we abbreviate p_n as n



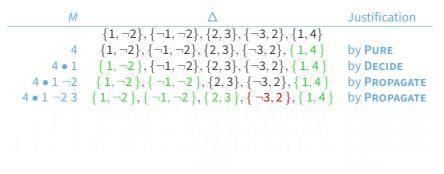


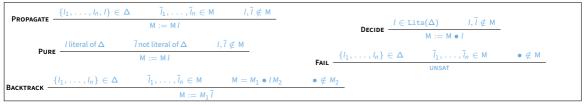
 $\Delta_0 := \{ \{1, \neg 2\}, \{\neg 1, \neg 2\}, \{2, 3\}, \{\neg 3, 2\}, \{1, 4\} \}$ Note: we abbreviate p_n as n



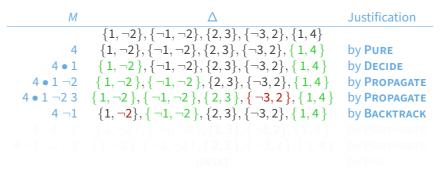


 $\Delta_0 := \{ \{1, \neg 2\}, \{\neg 1, \neg 2\}, \{2, 3\}, \{\neg 3, 2\}, \{1, 4\} \}$ Note: we abbreviate p_n as n

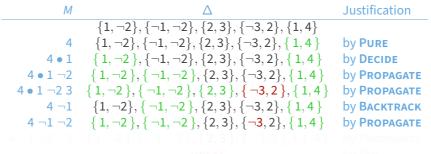




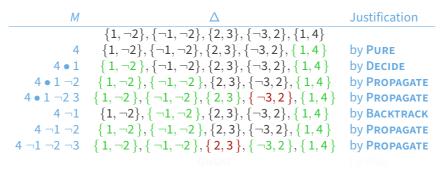
 $\Delta_0 := \{ \{1, \neg 2\}, \{\neg 1, \neg 2\}, \{2, 3\}, \{\neg 3, 2\}, \{1, 4\} \}$ Note: we abbreviate p_n as n

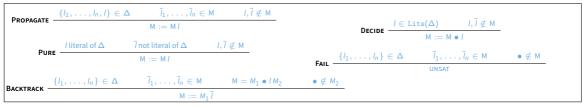


 $\Delta_0 := \{\{1, -2\}, \{-1, -2\}, \{2, 3\}, \{-3, 2\}, \{1, 4\}\}$ Note: we abbreviate p_n as n

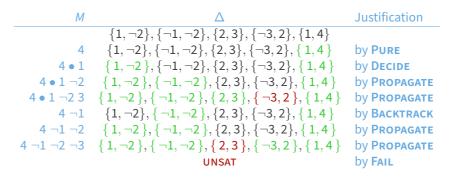


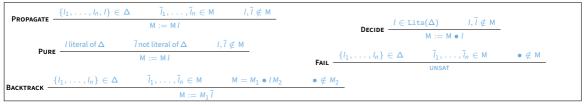
 $\Delta_0 := \{ \{1, \neg 2\}, \{\neg 1, \neg 2\}, \{2, 3\}, \{\neg 3, 2\}, \{1, 4\} \}$ Note: we abbreviate p_n as n





 $\Delta_0 := \{ \{1, \neg 2\}, \{\neg 1, \neg 2\}, \{2, 3\}, \{\neg 3, 2\}, \{1, 4\} \}$ Note: we abbreviate p_n as n



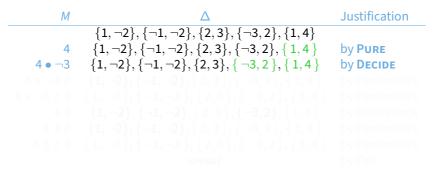


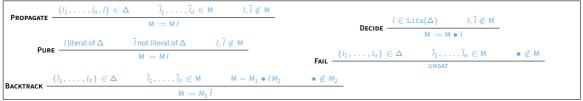
The DPLL proof system

$$\begin{aligned} & \operatorname{Propagate} \frac{\{l_1, \dots, l_n, l\} \in \Delta \quad \overline{l_1}, \dots, \overline{l_n} \in \mathsf{M} \quad l, \overline{l} \notin \mathsf{M} \\ & \mathsf{M} := \mathsf{M} \, l \end{aligned} \\ & \operatorname{Pure} \frac{l \operatorname{literal of} \Delta \quad \overline{l} \operatorname{not literal of} \Delta \quad l, \overline{l} \notin \mathsf{M} \\ & \mathsf{M} := \mathsf{M} \, l \end{aligned} \\ & \operatorname{Decide} \frac{l \operatorname{or} \overline{l} \operatorname{occurs in} \Delta \quad l, \overline{l} \notin \mathsf{M} \\ & \mathsf{M} := \mathsf{M} \bullet l \end{aligned} \\ & \operatorname{Backtrack} \frac{\{l_1, \dots, l_n\} \in \Delta \quad \overline{l_1}, \dots, \overline{l_n} \in \mathsf{M} \quad \mathsf{M} = M_1 \bullet l M_2 \quad \bullet \notin M_2 \\ & \mathsf{M} := M_1 \overline{l} \end{aligned}$$

DPLL derivation exercise

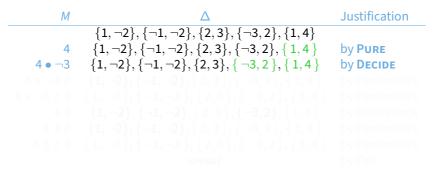
 $\Delta_0:=\{\,\{1,\neg 2\},\{\neg 1,\neg 2\},\{2,3\},\{\neg 3,2\},\{1,4\}\,\}$

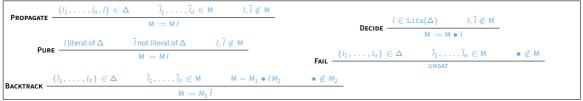


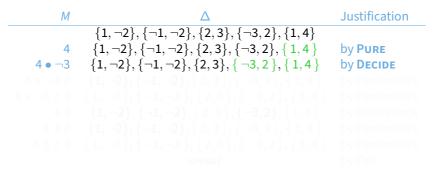


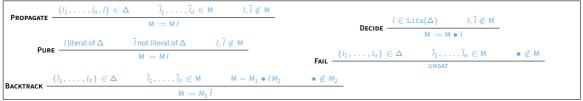
DPLL derivation exercise

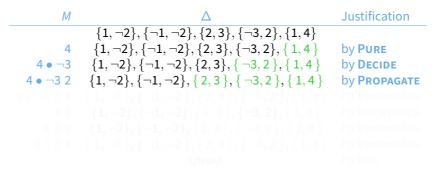
 $\Delta_0:=\{\,\{1,\neg 2\},\{\neg 1,\neg 2\},\{2,3\},\{\neg 3,2\},\{1,4\}\,\}$





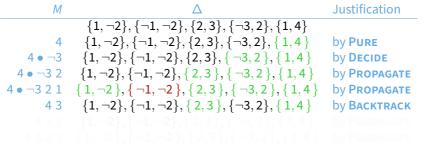








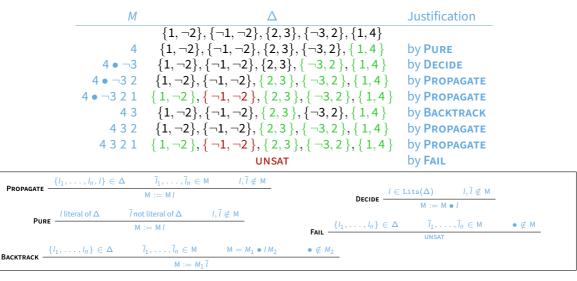
 $\Delta_0:=\{\,\{1,\neg 2\},\{\neg 1,\neg 2\},\{2,3\},\{\neg 3,2\},\{1,4\}\,\}$



UNSAT

by FAIL





Transforming DPLL to Resolution

The search procedure of DPLL can be reduced a posteriori to a resolution proof (a sequence of applications of resolution rules)

- No learning: throws away all work performed to conclude that the current assignment is bad Revisits bad partial assignments leading to conflicts due to the same root cause
- Chronological backtracking: backtracks only one level, even if it can be concluded that the current partial assignment became doomed at a lower level
- Naïve decisions: picks an arbitrary variable to branch on Fails to consider the state of the search to make heuristically better decisions

- No learning: throws away all work performed to conclude that the current assignment is bad
 Revisits bad partial assignments leading to conflicts due to the same root cause
- Chronological backtracking: backtracks only one level, even if it can be concluded that the current partial assignment became doomed at a lower level
- Naïve decisions: picks an arbitrary variable to branch on Fails to consider the state of the search to make heuristically better decisions

- No learning: throws away all work performed to conclude that the current assignment is bad Revisits bad partial assignments leading to conflicts due to the same root cause
- Chronological backtracking: backtracks only one level, even if it can be concluded that the current partial assignment became doomed at a lower level
- Naïve decisions: picks an arbitrary variable to branch on Fails to consider the state of the search to make heuristically better decisions

- No learning: throws away all work performed to conclude that the current assignment is bad Revisits bad partial assignments leading to conflicts due to the same root cause
- Chronological backtracking: backtracks only one level, even if it can be concluded that the current partial assignment became doomed at a lower level
- Naïve decisions: picks an arbitrary variable to branch on Fails to consider the state of the search to make heuristically better decisions

- No learning: throws away all work performed to conclude that the current assignment is bad Revisits bad partial assignments leading to conflicts due to the same root cause
- Chronological backtracking: backtracks only one level, even if it can be concluded that the current partial assignment became doomed at a lower level
- Naïve decisions: picks an arbitrary variable to branch on Fails to consider the state of the search to make heuristically better decisions

Learning: Δ is augmented with a conflict clause that summarizes the root cause of the conflict

Non-chronological backtracking: can backtrack several levels, based on the cause of the conflict (*conflict-driven backjumping*)

Learning: Δ is augmented with a conflict clause that summarizes the root cause of the conflict

Non-chronological backtracking: can backtrack several levels, based on the cause of the conflict (*conflict-driven backjumping*)

Learning: Δ is augmented with a conflict clause that summarizes the root cause of the conflict

Non-chronological backtracking: can backtrack several levels, based on the cause of the conflict (*conflict-driven backjumping*)

Learning: Δ is augmented with a conflict clause that summarizes the root cause of the conflict

Non-chronological backtracking: can backtrack several levels, based on the cause of the conflict (*conflict-driven backjumping*)

To model conflict-driven backjumping and learning, we add a third component *C* to states whose value is either no or a clause *C* (the *conflict clause*)

UNSAT $\langle M, \Delta, C \rangle$

Initial state:

((), Δ₀, no), where Δ₀ is to be checked for satisfiability

- UNSAT if Δ_0 is unsatisfiable
- (M, Δ_n, no) otherwise, where Δ_n is equisatisfiable with Δ_0 and satisfied by M

To model conflict-driven backjumping and learning, we add a third component *C* to states whose value is either no or a clause *C* (the *conflict clause*)

States:

UNSAT

 $\langle M, \Delta, C \rangle$

Initial state:

• $((), \Delta_0, no)$, where Δ_0 is to be checked for satisfiability

- UNSAT if Δ_0 is unsatisfiable
- $\langle M, \Delta_n, no \rangle$ otherwise, where Δ_n is equisatisfiable with Δ_0 and satisfied by M

To model conflict-driven backjumping and learning, we add a third component C to states whose value is either no or a clause C (the *conflict clause*)

States:

UNSAT $\langle M, \Delta, C \rangle$

Initial state:

• $\langle (), \Delta_0, no \rangle$, where Δ_0 is to be checked for satisfiability

- UNSAT if Δ_0 is unsatisfiable
- $\langle M, \Delta_n, \mathbf{no} \rangle$ otherwise, where Δ_n is equisatisfiable with Δ_0 and satisfied by M

To model conflict-driven backjumping and learning, we add a third component C to states whose value is either no or a clause C (the *conflict clause*)

States:

UNSAT $\langle M, \Delta, C \rangle$

Initial state:

• $\langle (), \Delta_0, no \rangle$, where Δ_0 is to be checked for satisfiability

- UNSAT if Δ_0 is unsatisfiable
- $\langle M, \Delta_n, no \rangle$ otherwise, where Δ_n is equisatisfiable with Δ_0 and satisfied by M

Replace **BACKTRACK** with three rules:

Replace **BACKTRACK** with three rules:

Conflict
$$\frac{\mathsf{C} = \mathsf{no} \qquad \{l_1, \dots, l_n\} \in \Delta \qquad \overline{l}_1, \dots, \overline{l}_n \in \mathsf{M}}{\mathsf{C} := \{l_1, \dots, l_n\}}$$

There is no conflict clause but a clause of Δ is falsified bt *M*

So we set *C* to be that clause

Replace **BACKTRACK** with three rules:

EXPLAIN
$$\frac{\mathsf{C} = \{l\} \cup D \quad \{l_1, \dots, l_n, \overline{l}\} \in \Delta \quad \overline{l}_1, \dots, \overline{l}_n, \overline{l} \in \mathsf{M} \quad \overline{l}_1, \dots, \overline{l}_n \prec_\mathsf{M} \overline{l}}{\mathsf{C} := \{l_1, \dots, l_n\} \cup D}$$

 $l \prec_M l'$ iff *l* occurs before *l'* in *M*

Replace **BACKTRACK** with three rules:

EXPLAIN
$$\frac{\mathsf{C} = \{l\} \cup D \quad \{l_1, \dots, l_n, \overline{l}\} \in \Delta \quad \overline{l}_1, \dots, \overline{l}_n, \overline{l} \in \mathsf{M} \quad \overline{l}_1, \dots, \overline{l}_n \prec_\mathsf{M} \overline{l}}{\mathsf{C} := \{l_1, \dots, l_n\} \cup D}$$

 Δ contains a clause $C' = \{l_1, \ldots, l_n, \overline{l}\}$ such that

- 1. *l* is in the conflict clause and is falsified by *M*
- 2. l_1, \dots, l_n are all falsified by *M* before *l*

We derive a new conflict clause by resolution of C and C'

Replace **BACKTRACK** with three rules:

$$\begin{array}{c} \textbf{Backjump} \quad \frac{\mathsf{C} = \{l_1, \dots, l_n, l\} \quad \texttt{lev}(\bar{l}_1), \dots, \texttt{lev}(\bar{l}_n) \leq i < \texttt{lev}(\bar{l}) \\ \\ \mathsf{M} := \mathsf{M}^{[l]}l \quad \mathsf{C} := \texttt{no} \end{array}$$

Replace BACKTRACK with three rules:

$$\begin{array}{c} \textbf{BACKJUMP} \begin{array}{c} \displaystyle \frac{\mathsf{C} = \{l_1, \ldots, l_n, l\} \quad \operatorname{lev}(\bar{l}_1), \ldots, \operatorname{lev}(\bar{l}_n) \leq i < \operatorname{lev}(\bar{l}) \\ \\ \displaystyle \mathsf{M} := \mathsf{M}^{[i]}l \quad \mathsf{C} := \operatorname{no} \end{array}$$

To compute the level to backjump to:

- 1. find the literal $\overline{l} \in C$ that was assigned last
- 2. choose a level *i* smaller than $lev(\overline{l})$ but not smaller than the levels of the other literals in *C*

Backtrack to level *i* and add *l* to it

Replace BACKTRACK with three rules:

$$\begin{array}{c} \textbf{BACKJUMP} \begin{array}{c} \displaystyle \frac{\mathsf{C} = \{l_1, \ldots, l_n, l\} \quad \operatorname{lev}(\bar{l}_1), \ldots, \operatorname{lev}(\bar{l}_n) \leq i < \operatorname{lev}(\bar{l}) \\ \\ \displaystyle \mathsf{M} := \mathsf{M}^{[i]}l \quad \mathsf{C} := \operatorname{no} \end{array}$$

To compute the level to backjump to:

- 1. find the literal $\overline{l} \in C$ that was assigned last
- 2. choose a level *i* smaller than $lev(\overline{l})$ but not smaller than the levels of the other literals in *C*

Backtrack to level *i* and add *l* to it

Note: lev(l) = n iff *l* occurs in decision level *n* of M

Replace **BACKTRACK** with three rules:

$$\begin{array}{c} \mathsf{Backjump} \\ \hline \begin{array}{c} \mathsf{C} = \{l_1, \dots, l_n, l\} & \texttt{lev}(\bar{l}_1), \dots, \texttt{lev}(\bar{l}_n) \leq i < \texttt{lev}(\bar{l}) \\ \hline \mathsf{M} := \mathsf{M}^{[l]}l & \mathsf{C} := \texttt{no} \end{array}$$

Note: The rules maintain the invariant: $\Delta \models C$ and $M \models \neg C$ when $C \neq no$

Modify FAIL to

 $\mathsf{Fail} \xrightarrow{\mathsf{C} \neq \mathtt{no} \quad \bullet \notin \mathsf{M}}_{\mathsf{UNSAT}}$

C contains a conflict clause but there are no decision points to backjump over Conclude that Δ is unsatisfiable

Modify FAIL to

Fail
$$\frac{C \neq no \quad \bullet \notin M}{UNSAT}$$

C contains a conflict clause but there are no decision points to backjump over

Conclude that Δ is unsatisfiable

CDCL derivation example

М	Δ	С	rule
	Δ	no	

$$\textbf{Propagate} \ \frac{\{l_1, \dots, l_n, l\} \in \Delta \qquad \overline{l}_1, \dots, \overline{l}_n \in \mathsf{M} \qquad l, \overline{l} \notin \mathsf{M} \\ \mathsf{M} := \mathsf{M} \ l$$

$$\begin{split} &\Delta:=\{\,C_1:\{1\},C_2:\{\neg 1,2\},C_3:\{\neg 3,4\},C_4:\{\neg 5,\neg 6\},C_5:\{\neg 1,\neg 5,7\},C_6:\\ &\{\neg 2,\neg 5,6,\neg 7\}\,\} \end{split}$$

М	Δ	С	rule
	Δ	no	
1	Δ	no	PROPAGATE

M := Ml	Propagate	$\{l_1,\ldots,l_n,l\}\in\Delta$	$\overline{l}_1,\ldots,\overline{l}_n\in M$	$l,\overline{l} otin M$
	PROPAGATE			

М	Δ	С	rule
	Δ	no	
1	Δ	no	PROPAGATE
12	Δ	no	PROPAGATE

$$\textbf{Decide} \quad \frac{l \in \mathtt{Lits}(\Delta) \quad l, \overline{l} \notin \mathtt{M}}{\mathtt{M} := \mathtt{M} \bullet l}$$

М	Δ	С	rule
	Δ	no	
1	Δ	no	Propagate
12	Δ	no	Propagate
12•3	Δ	no	DECIDE

Deencate	$\{l_1,\ldots,l_n,l\}\in\Delta$	$\overline{l}_1,\ldots,\overline{l}_n\in M$	$l,\overline{l} otin M$
PROPAGATE		M:=Ml	

М	Δ	С	rule
	Δ	no	
1	Δ	no	Propagate
12	Δ	no	Propagate
12•3	Δ	no	DECIDE
12•34	Δ	no	Propagate

М	Δ	С	rule
	Δ	no	
1	Δ	no	PROPAGATE
12	Δ	no	PROPAGATE
12•3	Δ	no	DECIDE
12•34	Δ	no	PROPAGATE
12•34•5	Δ	no	DECIDE

Dooncate	$\{l_1,\ldots,l_n,l\}\in\Delta$	$\overline{l}_1,\ldots,\overline{l}_n\in M$	$l,\overline{l}\notinM$
PROPAGATE		M:=Ml	

$$\begin{split} \Delta &:= \set{C_1:\{1\}, C_2:\{\neg 1, 2\}, C_3:\{\neg 3, 4\}, C_4:\{\neg 5, \neg 6\}, C_5:\{\neg 1, \neg 5, 7\}, C_6:\\ \left\{\neg 2, \neg 5, 6, \neg 7\right\}} \end{split}$$

М	Δ	С	rule
	Δ	no	
1	Δ	no	PROPAGATE
12	Δ	no	PROPAGATE
12•3	Δ	no	DECIDE
12•34	Δ	no	PROPAGATE
12•34•5	Δ	no	DECIDE
12•34•56	Δ	no	PROPAGATE

Deeperate	$\{l_1,\ldots,l_n,l\}\in\Delta$	$\overline{l}_1,\ldots,\overline{l}_n\in M$	$l,\overline{l} otin M$
PROPAGATE		M:=Ml	

$$\begin{split} \Delta &:= \{\,C_1:\{1\},C_2:\{\neg 1,2\},C_3:\{\neg 3,4\},C_4:\{\neg 5,\neg 6\},C_5:\{\neg 1,\neg 5,7\},C_6:\\ \{\neg 2,\neg 5,6,\neg 7\}\,\} \end{split}$$

М	Δ	С	rule
	Δ	no	
1	Δ	no	PROPAGATE
12	Δ	no	PROPAGATE
12•3	Δ	no	DECIDE
12•34	Δ	no	PROPAGATE
12•34•5	Δ	no	DECIDE
12•34•56	Δ	no	PROPAGATE
12•34•5 ¬67	Δ	no	PROPAGATE

$$\begin{array}{c|c} \mathsf{Conflict} & \frac{\mathsf{C} = \mathsf{no} & \{l_1, \dots, l_n\} \in \Delta & \overline{l}_1, \dots, \overline{l}_n \in \mathsf{M} \\ \hline \mathsf{C} := \{l_1, \dots, l_n\} \end{array}$$

$$\begin{split} \Delta &:= \{\,C_1:\{1\},C_2:\{\neg 1,2\},C_3:\{\neg 3,4\},C_4:\{\neg 5,\neg 6\},C_5:\{\neg 1,\neg 5,7\},C_6:\\ \{\neg 2,\neg 5,6,\neg 7\}\,\} \end{split}$$

М	Δ	С	rule
	Δ	no	
1	Δ	no	PROPAGATE
12	Δ	no	PROPAGATE
12•3	Δ	no	DECIDE
12•34	Δ	no	PROPAGATE
12•34•5	Δ	no	DECIDE
12•34•56	Δ	no	PROPAGATE
12•34•5 ¬67	Δ	no	PROPAGATE
12•34•5 ¬67	Δ	$\{\neg 2, \neg 5, 6, \neg 7\}$	Сомflict

PLAIN
$$\frac{\mathsf{C} = \{l\} \cup D \quad \{l_1, \dots, l_n, \overline{l}\} \in \Delta \quad \overline{l}_1, \dots, \overline{l}_n, \overline{l} \in \mathsf{M} \quad \overline{l}_1, \dots, \overline{l}_n \prec_\mathsf{M} \overline{l}}{\mathsf{C} := \{l_1, \dots, l_n\} \cup D}$$

$$\label{eq:delta:constraint} \begin{split} \Delta &:= \set{C_1:\{1\}, C_2:\{\neg 1, 2\}, C_3:\{\neg 3, 4\}, C_4:\{\neg 5, \neg 6\}, C_5:\{\neg 1, \neg 5, 7\}, C_6:\\ \left\{\neg 2, \neg 5, 6, \neg 7\right\}} \end{split}$$

М	Δ	С	rule
	Δ	no	
1	Δ	no	Propagate
12	Δ	no	PROPAGATE
12•3	Δ	no	DECIDE
12•34	Δ	no	PROPAGATE
12•34•5	Δ	no	DECIDE
12•34•56	Δ	no	Propagate
12•34•567	Δ	no	Propagate
12•34•567	Δ	$\{\neg 2, \neg 5, 6, \neg 7\}$	Сомflict
12•34•5 ¬67	Δ	$\{\neg 1, \neg 2, \neg 5, 6\}$	EXPLAIN W. C ₅
$C = \{ \neg 7 \} \cup \{ \neg 2, \neg 5, 6 \} \{ \neg 1, \neg 5, 7 \} \in$	Δ^{Δ}	$1, 5 \prec_M 7 \xrightarrow{\mathbb{N}_{O}} C =$	$\{\neg 1, \neg 5\} \cup \{\neg 2, \neg 5, 6\} = \{\neg 1, \neg 2, \neg 5, 6\}$

C =

PLAIN
$$\frac{\mathsf{C} = \{l\} \cup D \quad \{l_1, \dots, l_n, \overline{l}\} \in \Delta \quad \overline{l}_1, \dots, \overline{l}_n, \overline{l} \in \mathsf{M} \quad \overline{l}_1, \dots, \overline{l}_n \prec_\mathsf{M} \overline{l}}{\mathsf{C} := \{l_1, \dots, l_n\} \cup D}$$

$$\label{eq:delta:constraint} \begin{split} \Delta &:= \set{C_1:\{1\}, C_2:\{\neg 1, 2\}, C_3:\{\neg 3, 4\}, C_4:\{\neg 5, \neg 6\}, C_5:\{\neg 1, \neg 5, 7\}, C_6:\\ \left\{\neg 2, \neg 5, 6, \neg 7\right\}} \end{split}$$

М	Δ	С	rule
	Δ	no	
1	Δ	no	Propagate
1 2	Δ	no	Propagate
12•3	Δ	no	DECIDE
12•34	Δ	no	Propagate
12•34•5	Δ	no	DECIDE
12•34•56	Δ	no	Propagate
12•34•5 ¬67	Δ	no	Propagate
12•34•5 ¬67	Δ	$\{\neg 2, \neg 5, 6, \neg 7\}$	Сомflict
12•34•5 ¬67	Δ	$\{\neg 1, \neg 2, \neg 5, 6\}$	EXPLAIN W. C_5
12•34•5 ¬67	Δ	$\{\neg 1, \neg 2, \neg 5\}$	EXPLAIN W. C ₄
$\{6\} \cup \{\neg 1, \neg 2, \neg 5\} \{\neg 5, \neg 6\}$	$\in \Delta$	$5 \prec_M \neg 6^{\square \bigcirc} \Longrightarrow C =$	$\{\neg 1, \neg 2, \neg 5\} \cup \{\neg 5\} = \{\neg 1, \neg 2, \neg 5\}$

$$\mathsf{Backjump} \frac{\mathsf{C} = \{l_1, \dots, l_n, l\} \quad \operatorname{lev}(\overline{l}_1), \dots, \operatorname{lev}(\overline{l}_n) \leq i < \operatorname{lev}(\overline{l})}{\mathsf{M} := \mathsf{M}^{[l]}l \quad \mathsf{C} := \operatorname{no}}$$

$$\begin{split} \Delta &:= \{ \ C_1: \{1\}, C_2: \{\neg 1, 2\}, C_3: \{\neg 3, 4\}, C_4: \{\neg 5, \neg 6\}, C_5: \{\neg 1, \neg 5, 7\}, C_6: \\ \{\neg 2, \neg 5, 6, \neg 7\} \ \} \end{split}$$

M Δ	C C	rule			
Δ	no				
1 🛆	no	PROPAGATE			
12 A	no	PROPAGATE			
12•3 A	no	DECIDE			
12•34 A	no	PROPAGATE			
12•34•5 ∆	no	DECIDE			
$12 \bullet 34 \bullet 5 \neg 6$	no	PROPAGATE			
$12 \bullet 34 \bullet 5 \neg 67$	no	PROPAGATE			
$12 \bullet 34 \bullet 5 \neg 67$	$\{\neg 2, \neg 5, 6, \neg 7\}$	Сомflicт			
$12 \bullet 34 \bullet 5 \neg 67$		Explain w. C ₅			
$12 \bullet 34 \bullet 5 \neg 67$	$\{\neg 1, \neg 2, \neg 5\}$	EXPLAIN W. C ₄			
1 2 ¬5 🛆	no	Васкјимр			
		DECIDE			
lev(1) = lev(2) =	$0 \texttt{lev}(5) = 2 \Longrightarrow $	backtrack to M ^[0] SAT			
(could have backtracked to $M^{[1]}$ as well)					

$$\label{eq:delta:constraint} \begin{split} \Delta &:= \set{C_1:\{1\}, C_2:\{\neg 1, 2\}, C_3:\{\neg 3, 4\}, C_4:\{\neg 5, \neg 6\}, C_5:\{\neg 1, \neg 5, 7\}, C_6:\\ \left\{\neg 2, \neg 5, 6, \neg 7\right\} \end{split}$$

М	Δ	С	rule
	Δ	no	
1	Δ	no	PROPAGATE
12	Δ	no	PROPAGATE
12•3	Δ	no	DECIDE
12•34	Δ	no	PROPAGATE
12•34•5	Δ	no	DECIDE
12•34•56	Δ	no	PROPAGATE
12•34•5 ¬67	Δ	no	PROPAGATE
12•34•5 ¬67	Δ	$\{\neg 2, \neg 5, 6, \neg 7\}$	Сомflict
12•34•5 ¬67	Δ	$\{\neg 1, \neg 2, \neg 5, 6\}$	Explain w. C ₅
12•34•5 ¬67	Δ	$\{\neg 1, \neg 2, \neg 5\}$	EXPLAIN W. C ₄
12 -5	Δ	no	Васкјимр
1 2 ¬5 • 3	Δ	no	DECIDE

Deencarr	$\{l_1,\ldots,l_n,l\}\in\Delta$	$\overline{l}_1,\ldots,\overline{l}_n\in M$	$l,\overline{l}\notinM$
PROPAGATE		M := Ml	

$$\begin{split} \Delta &:= \{\,C_1:\{1\},C_2:\{\neg 1,2\},C_3:\{\neg 3,4\},C_4:\{\neg 5,\neg 6\},C_5:\{\neg 1,\neg 5,7\},C_6:\\ \{\neg 2,\neg 5,6,\neg 7\}\,\} \end{split}$$

М	Δ	С	rule
	Δ	no	
1	Δ	no	Propagate
12	Δ	no	Propagate
12•3	Δ	no	DECIDE
12•34	Δ	no	Propagate
12•34•5	Δ	no	DECIDE
12•34•56	Δ	no	Propagate
12•34•5 ¬67	Δ	no	Propagate
12•34•5 ¬67	Δ	$\{\neg 2, \neg 5, 6, \neg 7\}$	Conflict
12•34•5 ¬67	Δ	$\{\neg 1, \neg 2, \neg 5, 6\}$	Explain w. C ₅
12•34•5 ¬67	Δ	$\{\neg 1, \neg 2, \neg 5\}$	EXPLAIN w. C ₄
1 2 ¬5	Δ	no	Васкјимр
1 2 ¬5 • 3	Δ	no	DECIDE
12 75 • 34	Δ	no	PROPAGATE SAT!

Conflict Analysis

CDCL systems learn new clause during search with the goal of

blocking partial assignments leading to the current conflict

A common strategy is to learn an *asserting clause*, a conflict clause that will become unit after backtracking

One way to illustrate different conflict analysis strategies is through implication graphs

Conflict Analysis

CDCL systems learn new clause during search with the goal of

blocking partial assignments leading to the current conflict

A common strategy is to learn an *asserting clause*, a conflict clause that will become unit after backtracking

One way to illustrate different conflict analysis strategies is through implication graphs

Conflict Analysis

CDCL systems learn new clause during search with the goal of

blocking partial assignments leading to the current conflict

A common strategy is to learn an *asserting clause*, a conflict clause that will become unit after backtracking

One way to illustrate different conflict analysis strategies is through implication graphs

An *implication graph* is a labeled directed acyclic graph G(V, E), where:

- V collects the literals in the current partial assignment M
 - each *l* \in *V* is labeled with its decision level in *M*
- $\mathsf{E} = \{(l,l') \mid l,l' \in \mathsf{V}, \, \overline{l} \in \mathrm{Antecedent}(l')\}$
 - each edge (l, l') is labeled with C = Antecedent(l')

An *implication graph* is a labeled directed acyclic graph G(V, E), where:

- V collects the literals in the current partial assignment M
 - each $l \in V$ is labeled with its decision level in M
- $E = \{(l, l') \mid l, l' \in V, \bar{l} \in Antecedent(l')\}$ each edge (l, l') is labeled with C = Antecedent(l')

An *implication graph* is a labeled directed acyclic graph G(V, E), where:

V collects the literals in the current partial assignment M

- each $l \in V$ is labeled with its decision level in M
- $E = \{(l, l') \mid l, l' \in V, \ \overline{l} \in \text{Antecedent}(l')\}$
 - each edge (l, l') is labeled with C = Antecedent(l')

An *implication graph* is a labeled directed acyclic graph G(V, E), where:

V collects the literals in the current partial assignment M

- each $l \in V$ is labeled with its decision level in M
- $E = \{(l, l') \mid l, l' \in V, \ \overline{l} \in \text{Antecedent}(l')\}$
 - each edge (l, l') is labeled with C = Antecedent(l')

G is a *conflict graph* if it also contains

- a single conflict node \perp
- \perp 's incoming edges are $\{ (l, \perp) \mid \overline{l} \in C \}$ for some falsified clause C
- those edges are labeled with C

М	Δ	С	rule
	Δ	no	

 $\Delta := \{ C_1 : \{1\}, C_2 : \{\neg 1, 2\}, C_3 : \{\neg 3, 4\}, C_4 : \{\neg 5, \neg 6\}, C_5 : \{\neg 1, \neg 5, 7\}, C_6 : \{\neg 2, \neg 5, 6, \neg 7\} \}$

М	Δ	С	rule
	Δ	no	
1	Δ	no	PROPAGATE

1@0

М	Δ	С	rule
	Δ	no	
1	Δ	no	PROPAGATE
12	Δ	no	PROPAGATE

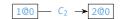
М	Δ	С	rule
	Δ	no	
1	Δ	no	PROPAGATE
12	Δ	no	PROPAGATE
12•3	Δ	no	DECIDE

3@1

М	Δ	С	rule
	Δ	no	
1	Δ	no	PROPAGATE
12	Δ	no	PROPAGATE
12•3	Δ	no	DECIDE
12•34	Δ	no	PROPAGATE

 $\Delta := \{ C_1 : \{1\}, C_2 : \{\neg 1, 2\}, C_3 : \{\neg 3, 4\}, C_4 : \{\neg 5, \neg 6\}, C_5 : \{\neg 1, \neg 5, 7\}, C_6 : \{\neg 2, \neg 5, 6, \neg 7\} \}$

М	Δ	С	rule
	Δ	no	
1	Δ	no	PROPAGATE
12	Δ	no	PROPAGATE
12•3		no	DECIDE
12•34	Δ	no	PROPAGATE
12•34•5	Δ	no	DECIDE

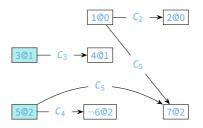


5@2

М	Δ	С	rule
	Δ	no	
1	Δ	no	PROPAGATE
12	Δ	no	PROPAGATE
12•3	Δ	no	DECIDE
12•34	Δ	no	PROPAGATE
12•34•5	Δ	no	DECIDE
12•34•56	Δ	no	PROPAGATE

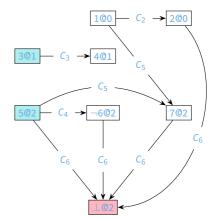


М	Δ	С	rule
	Δ	no	
1	Δ	no	PROPAGATE
12	Δ	no	PROPAGATE
12•3	Δ	no	DECIDE
12•34	Δ	no	PROPAGATE
12•34•5	Δ	no	DECIDE
12•34•56	Δ	no	PROPAGATE
12•34•5 ¬67	Δ	no	PROPAGATE



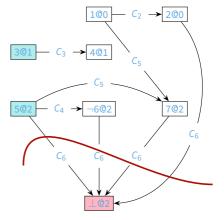
$$\label{eq:delta:constraint} \begin{split} \Delta &:= \set{C_1:\{1\}, C_2:\{\neg 1, 2\}, C_3:\{\neg 3, 4\}, C_4:\{\neg 5, \neg 6\}, C_5:\{\neg 1, \neg 5, 7\}, C_6:\\ \left\{\neg 2, \neg 5, 6, \neg 7\right\}} \end{split}$$

М	Δ	С	rule
	Δ	no	
1	Δ	no	PROPAGATE
12	Δ	no	PROPAGATE
12•3	Δ	no	DECIDE
12•34	Δ	no	PROPAGATE
12•34•5	Δ	no	DECIDE
12•34•56	Δ	no	PROPAGATE
12•34•5 ¬67	Δ	no	PROPAGATE
1 2 • 3 4 • 5 ¬6 7	Δ	$\{\neg 2, \neg 5, 6, \neg 7\}$	Conflict
		$\{-1, -2, -5, 6\}$	



$$\label{eq:delta:constraint} \begin{split} \Delta &:= \set{C_1:\{1\}, C_2:\{\neg 1, 2\}, C_3:\{\neg 3, 4\}, C_4:\{\neg 5, \neg 6\}, C_5:\{\neg 1, \neg 5, 7\}, C_6:\\ \left\{\neg 2, \neg 5, 6, \neg 7\right\}} \end{split}$$

М	Δ	С	rule
	Δ	no	
1	Δ	no	PROPAGATE
12	Δ	no	PROPAGATE
12•3	Δ	no	DECIDE
12•34	Δ	no	PROPAGATE
12•34•5	Δ	no	DECIDE
12•34•56	Δ	no	PROPAGATE
12•34•567	Δ	no	PROPAGATE
12•34•5 ¬67	Δ	$\{\neg 2, \neg 5, 6, \neg 7\}$	Conflict

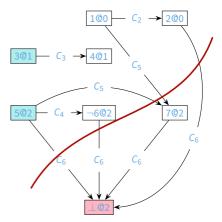


Any *separating cut* that breaks all paths from root nodes to the conflict node, with roots on the *reasons side* and conflict node on the *conflict side*, determines a conflict clause

 $\Delta := \{ C_1 : \{1\}, C_2 : \{\neg 1, 2\}, C_3 : \{\neg 3, 4\}, C_4 : \{\neg 5, \neg 6\}, C_5 : \{\neg 1, \neg 5, 7\}, C_6 : \{\neg 2, \neg 5, 6, \neg 7\} \}$

М	Δ	С	rule
	Δ	no	
1	Δ	no	PROPAGATE
12	Δ	no	PROPAGATE
12•3	Δ	no	DECIDE
12•34	Δ	no	PROPAGATE
12•34•5	Δ	no	DECIDE
12•34•56	Δ	no	PROPAGATE
12•34•567	Δ	no	PROPAGATE
12•34•567	Δ	$\{\neg 2, \neg 5, 6, \neg 7\}$	Сомflict
12•34•5 ¬67	Δ	$\{\neg 1, \neg 2, \neg 5, 6\}$	EXPLAIN W. C_5

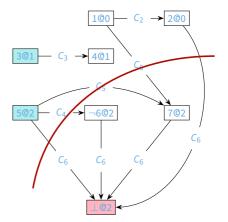
EXPLAIN can be viewed as picking a literal / in the conflict clause *C*, and replacing *C* with the *l*-resolvent of *C* and Antecedent(\overline{l}) In this case, $l = \neg 7$ and Antecedent(\overline{l}) = C_5



 $\Delta:=\{\,C_1:\{1\},C_2:\{\neg 1,2\},C_3:\{\neg 3,4\},C_4:\{\neg 5,\neg 6\},C_5:\{\neg 1,\neg 5,7\},C_6:\{\neg 2,\neg 5,6,\neg 7\}\,\}$

М	Δ	С	rule
	Δ	no	
1	Δ	no	PROPAGATE
12	Δ	no	PROPAGATE
12•3	Δ	no	DECIDE
12•34	Δ	no	PROPAGATE
12•34•5	Δ	no	DECIDE
12•34•56	Δ	no	PROPAGATE
12•34•5 ¬67	Δ	no	PROPAGATE
12•34•5 ¬67	Δ	$\{\neg 2, \neg 5, 6, \neg 7\}$	Сомflicт
12•34•5 ¬67	Δ	$\{\neg 1, \neg 2, \neg 5, 6\}$	EXPLAIN W. C_5
12•34•5 ¬67	Δ	$\{\neg 1, \neg 2, \neg 5\}^{\circ}$	EXPLAIN W. C ₄

EXPLAIN can be viewed as picking a literal *l* in the conflict clause *C*, and replacing *C* with the *l*-resolvent of *C* and Antecedent(\overline{l}) In this case, l = 6 and Antecedent(\overline{l}) = C_4



Васкјимр	= { <i>l</i>	$M_1,\ldots,l_n,l\}$ 10 M:=M	$\operatorname{ev}(\overline{l}_1), \dots, \operatorname{lev}(\overline{l}_n)$ $[l] l C := \operatorname{no}$	$) \leq i < \operatorname{lev}(\overline{l})$ $C_3 \rightarrow 401$
12	Δ	no	Propagate	
12•3	Δ	no	DECIDE	
12•34	Δ	no	PROPAGATE	$502 - C_4 \rightarrow -602$ 702
12•34•5	Δ	no	DECIDE	
12•34•56	Δ	no	PROPAGATE	
12•34•567	Δ	no	PROPAGATE	
12•34•567	Δ	$\{\neg 2, \neg 5, 6, \neg 7\}$	Сомflict	$C_6 C_6 C_6$
12•34•567	Δ	$\{\neg 1, \neg 2, \neg 5, 6\}$	EXPLAIN W. C ₅	
12•34•567	Δ	$\{\neg 1, \neg 2, \neg 5\}$	EXPLAIN W. C_4	
12 -5	Δ	no	Васкјимр	

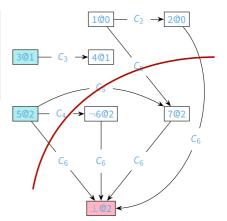
 $\Delta:=\{\,C_1:\{1\},C_2:\{\neg 1,2\},C_3:\{\neg 3,4\},C_4:\{\neg 5,\neg 6\},C_5:\{\neg 1,\neg 5,7\},C_6:\{\neg 2,\neg 5,6,\neg 7\}\,\}$

A Unique Implication Point (UIP) is any node other than \perp that is on all paths from the current decision node to \perp

A *first UIP* is a UIP that is closest to the conflict node

In this case, 502 is the only UIP and thus also the first UIP

Δ	no	PROPAGATE
Δ	no	DECIDE
Δ	no	Propagate
Δ	no	PROPAGATE
Δ	$\{\neg 2, \neg 5, 6, \neg 7\}$	Сомflict
Δ	$\{\neg 1, \neg 2, \neg 5, 6\}$	EXPLAIN W. C ₅
Δ	$\{\neg 1, \neg 2, \neg 5\}$	EXPLAIN W. C ₄
Δ	no	ΒΑCKJUMP
	$\begin{array}{c} \Delta \\ \Delta \\ \Delta \\ \Delta \end{array}$	$ \begin{array}{c c} \Delta & no \\ \Delta & no \\ \Delta & no \\ \Delta & \{\neg 2, \neg 5, 6, \neg 7\} \\ \Delta & \{\neg 1, \neg 2, \neg 5, 6\} \\ \Delta & \{\neg 1, \neg 2, \neg 5\} \end{array} $



Also add

Also add

LEARN
$$\frac{D \text{ is a clause } \Delta \models D \quad D \notin \Delta}{\Delta := \Delta \cup \{D\}}$$

Can be applied to any clause entailed by Δ

In particular, to any conflict clause C when present (because then $\Delta \models C$)

Also add

LEARN
$$\frac{D \text{ is a clause } \Delta \models D \quad D \notin \Delta}{\Delta := \Delta \cup \{D\}}$$

Can be applied to any clause entailed by Δ

In particular, to any conflict clause C when present (because then $\Delta \models C$)

The learned clause *D* is called a *lemma*

Also add

Forget
$$\frac{\mathsf{C} = \mathsf{no} \qquad \Delta = \Delta' \cup \{\mathsf{C}\} \qquad \Delta' \models \mathsf{C}}{\Delta := \Delta'}$$

Learning can quickly add millions of clauses to Δ

So it is useful to be able to delete redundant clauses that might not be useful anymore

Also add

RESTART
$$M := M^{[0]} \quad C := no$$

If we are stuck in a hopeless area of the search space it may be better to just restart

Also add

RESTART $M := M^{[0]}$ C := no

If we are stuck in a hopeless area of the search space it may be better to just restart

Note: Restart is not from scratch since propagations at level 0 are maintained, together with all the learned lemmas not eliminated by **FORGET**

Learning the First UIP

Empirical studies show it is a good strategy to

- learn a conflict clause *C* that contains a first UIP for the current decision level
- backjump to the second lowest decision level among C's literals

Empirical studies show it is a good strategy to

- learn a conflict clause *C* that contains a first UIP for the current decision level
- backjump to the second lowest decision level among *C*'s literals

Empirical studies show it is a good strategy to

- learn a conflict clause *C* that contains a first UIP for the current decision level
- backjump to the second lowest decision level among *C*'s literals

To compute such C,

keep applying **EXPLAIN** to the most recently assigned literal in C, until there is only one literal $l \in C$ that is assigned at the current decision level

Empirical studies show it is a good strategy to

- learn a conflict clause *C* that contains a first UIP for the current decision level
- backjump to the second lowest decision level among *C*'s literals

To compute such C,

keep applying **EXPLAIN** to the most recently assigned literal in C, until there is only one literal $l \in C$ that is assigned at the current decision level

That *l* is a first UIP and the resulting *C* is an asserting clause

Empirical studies show it is a good strategy to

- learn a conflict clause *C* that contains a first UIP for the current decision level
- backjump to the second lowest decision level among C's literals

LEARN and BACKJUMP could in fact be combined into

Empirical studies show it is a good strategy to

- learn a conflict clause *C* that contains a first UIP for the current decision level
- backjump to the second lowest decision level among *C*'s literals

LEARN and **BACKJUMP** could in fact be combined into

$$\textbf{L\&B} \begin{array}{c} \textbf{C} = \{l_1, \dots, l_n, l\} & \texttt{lev}(\overline{l}_1), \dots, \texttt{lev}(\overline{l}_n) \leq i < \texttt{lev}(\overline{l}) \\ \hline \textbf{M} := \textbf{M}^{[l]} & \Delta := \Delta \cup \{C\} & C := \texttt{no} \end{array}$$

Note: We do not need to append *l* to $M^{[l]}$ as **PROPAGATE** will be able to do that

Empirical studies show it is a good strategy to

- learn a conflict clause *C* that contains a first UIP for the current decision level
- backjump to the second lowest decision level among C's literals

LEARN and BACKJUMP could in fact be combined into

$$\mathsf{L\&B} \frac{\mathsf{C} = \{l_1, \dots, l_n, l\} \qquad \mathsf{lev}(\overline{l}_1), \dots, \mathsf{lev}(\overline{l}_n) \leq i < \mathsf{lev}(\overline{l})}{\mathsf{M} := \mathsf{M}^{[l]}} \qquad \Delta := \Delta \cup \{C\} \qquad C := \mathsf{no}$$

Note: The first UIP for a decision level is not necessarily the decision literal *d* for that level. However, applying L&B guarantees that $\Delta \cup M \models \overline{d}$

Empirical studies show it is a good strategy to

- learn a conflict clause *C* that contains a first UIP for the current decision level
- backjump to the second lowest decision level among *C*'s literals

Possible explanations for the empirical results:

- The strategy has a low computational cost, compared with strategies that choose UIPs further away from the conflict
- It still backtracks to the lowest decision level possible

Non-chronological vs. chronological backtracking

Backjumping is not necessarily better than chronological backtracking

See "Chronological Backtracking" by Nadel and Ryvchin, SAT 2018.

Modeling Modern SAT Solvers

At the core, current CDCL SAT solvers are implementations of the proof system with rules

- PROPAGATE, PURE, DECIDE,
- CONFLICT, EXPLAIN, BACKJUMP, FAIL
- LEARN, FORGET, RESTART

Basic CDCL := { Propagate, Pure, Decide, Conflict, Explain, BackJump, Fail } CDCL := Basic CDCL + { Learn, Forget, Restart }

Modeling Modern SAT Solvers

At the core, current CDCL SAT solvers are implementations of the proof system with rules

- PROPAGATE, PURE, DECIDE,
- CONFLICT, EXPLAIN, BACKJUMP, FAIL
- LEARN, FORGET, RESTART

Basic CDCL := { PROPAGATE, PURE, DECIDE, CONFLICT, EXPLAIN, BACKJUMP, FAIL }

Modeling Modern SAT Solvers

At the core, current CDCL SAT solvers are implementations of the proof system with rules

- PROPAGATE, PURE, DECIDE,
- CONFLICT, EXPLAIN, BACKJUMP, FAIL
- LEARN, FORGET, RESTART
- Basic CDCL := { PROPAGATE, PURE, DECIDE, CONFLICT, EXPLAIN, BACKJUMP, FAIL } CDCL := Basic CDCL + { LEARN, FORGET, RESTART }

Irreducible state: state for which no Basic CDCL rules apply *Execution*: a (single-branch) derivation tree starting with $M = \emptyset$ and C = no*Exhausted execution*: execution ending in an irreducible state

Theorem 1 (Refutation Soundness)

For every exhausted execution starting with $\Delta=\Delta_0$ and ending with UNSAT, the clause set Δ_0 is unsatisfiable

Theorem 2 (Solution Soundness)

For every exhausted execution starting with $\Delta=\Delta_0$ and ending with C=no, the clause set Δ_0 is satisfied by M

Irreducible state: state for which no Basic CDCL rules apply *Execution*: a (single-branch) derivation tree starting with $M = \emptyset$ and C = no*Exhausted execution*: execution ending in an irreducible state

Theorem 1 (Strong Termination)

Every execution in Basic CDCL is finite

Note: This is not so immediate, because of EXPLAIN and BACKJUMP

Theorem 2 (Refutation Soundness)

For every exhausted execution starting with $\Delta=\Delta_0$ and ending with UNSAT, the clause set Δ_0 is unsatisfiable

Theorem 3 (Solution Soundness)

For every exhausted execution starting with $\Delta = \Delta_0$ and ending with $C = n_0$, the clause set Δ_0 is satisfied by M

28/33

Irreducible state: state for which no Basic CDCL rules apply *Execution*: a (single-branch) derivation tree starting with $M = \emptyset$ and C = no*Exhausted execution*: execution ending in an irreducible state

Theorem 1 (Strong Termination) Every execution in Basic CDCL is finite

Lemma 2 Every exhausted execution ends with either C = no or UNSAT

Theorem 3 (Refutation Soundness)

For every exhausted execution starting with $\Delta=\Delta_0$ and ending with UNSAT, the clause set Δ_0 is unsatisfiable

Theorem 4 (Solution Soundness)

Irreducible state: state for which no Basic CDCL rules apply *Execution*: a (single-branch) derivation tree starting with $M = \emptyset$ and C = no*Exhausted execution*: execution ending in an irreducible state

Theorem 1 (Strong Termination) Every execution in Basic CDCL is finite

Lemma 2 Every exhausted execution ends with either C = no or UNSAT

Lemma 3

All clause sets along an execution are equivalent (i.e., satisfied by the same interpretations)

Theorem 4 (Refutation Soundness)

Irreducible state: state for which no Basic CDCL rules apply *Execution*: a (single-branch) derivation tree starting with $M = \emptyset$ and C = no*Exhausted execution*: execution ending in an irreducible state

Theorem 1 (Strong Termination)

Every execution in Basic CDCL is finite

Theorem 2 (Refutation Soundness)

For every exhausted execution starting with $\Delta = \Delta_0$ and ending with UNSAT, the clause set Δ_0 is unsatisfiable

Theorem 3 (Solution Soundness)

For every exhausted execution starting with $\Delta=\Delta_0$ and ending with C=no, the clause set Δ_0 is satisfied by M

Irreducible state: state for which no Basic CDCL rules apply *Execution*: a (single-branch) derivation tree starting with $M = \emptyset$ and C = no*Exhausted execution*: execution ending in an irreducible state

Theorem 1 (Strong Termination)

Every execution in Basic CDCL is finite

Theorem 2 (Refutation Soundness)

For every exhausted execution starting with $\Delta = \Delta_0$ and ending with UNSAT, the clause set Δ_0 is unsatisfiable

Theorem 3 (Solution Soundness)

For every exhausted execution starting with $\Delta = \Delta_0$ and ending with C = no, the clause set Δ_0 is satisfied by M

The CDCL System – Strategies

To ensure termination for the full system,

- 1. apply at least one Basic CDCL rule between each two LEARN applications
- 2. apply **RESTART** less and less often

The CDCL System – Strategies

A common basic strategy applies the rules with the following priorities, using a bound *n* initially set to 0, until an irreducible state is reached:

- 1. If n > 0 conflicts have been found so far, increase *n* and apply **RESTART**
- 2. If *M* falsifies a clause and has no decision points, apply FAIL and stop
- 3. If *M* falsifies a clause, apply **Conflict**
 - 3.1 Apply EXPLAIN repeatedly
 - 3.2 Apply LEARN to the current conflict clause
 - 3.3 Apply BACKJUMP
- 4. Apply **PROPAGATE** to completion
- 5. Apply **Decide**

Steps 3.1-3.3 achieve a form of conflict analysis and involve some heuristic choices:

- 1. When to stop applying **EXPLAIN** to a conflict?
- 2. Which level to **BACKJUMP** to?

The CDCL System – Strategies

A common basic strategy applies the rules with the following priorities, using a bound *n* initially set to 0, until an irreducible state is reached:

- 1. If n > 0 conflicts have been found so far, increase *n* and apply **RESTART**
- 2. If *M* falsifies a clause and has no decision points, apply FAIL and stop
- 3. If *M* falsifies a clause, apply **Conflict**
 - 3.1 Apply **EXPLAIN** repeatedly
 - 3.2 Apply LEARN to the current conflict clause
 - 3.3 Apply BACKJUMP
- 4. Apply **PROPAGATE** to completion
- 5. Apply **Decide**

Steps 3.1-3.3 achieve a form of *conflict analysis* and involve some heuristic choices:

- 1. When to stop applying **EXPLAIN** to a conflict?
- 2. Which level to **BACKJUMP** to?

The CDCL proof system

$$\mathsf{PROPAGATE} \frac{\{l_1, \dots, l_n, l\} \in \Delta \qquad \overline{l}_1, \dots, \overline{l}_n \in \mathsf{M} \qquad l, \overline{l} \notin \mathsf{M}}{\mathsf{M} := \mathsf{M} \ l}$$

PURE
$$l$$
 literal of Δ \bar{l} not literal of Δ $l, \bar{l} \notin M$ $M := M l$

DECIDE
$$\frac{l \text{ or } \overline{l} \text{ occurs in } \Delta \qquad l, \overline{l} \notin M}{M := M \bullet l}$$

The CDCL proof system (continued)

Conflict
$$\frac{\mathsf{C} = \mathsf{no} \qquad \{l_1, \dots, l_n\} \in \Delta \qquad \overline{l}_1, \dots, \overline{l}_n \in \mathsf{M}}{\mathsf{C} := \{l_1, \dots, l_n\}}$$

EXPLAIN
$$\frac{\mathsf{C} = \{l\} \cup D \quad \{l_1, \dots, l_n, \overline{l}\} \in \Delta \quad \overline{l}_1, \dots, \overline{l}_n, \overline{l} \in \mathsf{M} \quad \overline{l}_1, \dots, \overline{l}_n \prec_\mathsf{M} \overline{l}}{\mathsf{C} := \{l_1, \dots, l_n\} \cup D}$$

$$\begin{array}{l} \textbf{BACKJUMP} \begin{array}{c} \mathsf{C} = \{l_1, \ldots, l_n, l\} & \texttt{lev}(\bar{l}_1), \ldots, \texttt{lev}(\bar{l}_n) \leq i < \texttt{lev}(\bar{l}) \\ & \mathsf{M} := \mathsf{M}^{[l]}l & \mathsf{C} := \texttt{no} \end{array}$$

Fail
$$\frac{C \neq no \quad \bullet \notin M}{UNSAT}$$

The CDCL proof system (continued)

LEARN
$$\frac{D \text{ is a clause } \Delta \models D \qquad D \notin \Delta}{\Delta := \Delta \cup \{D\}}$$

FORGET
$$\frac{C = no \qquad \Delta = \Delta' \cup \{C\} \qquad \Delta' \models C}{\Delta := \Delta'}$$

RESTART
$$M := M^{[0]} \quad C := no$$