CS:4980 Topics in Computer Science II Introduction to Automated Reasoning

Decision Procedures for Satisfiability in Propositional Logic

Cesare Tinelli

Spring 2024

Credits

These slides are based on slides originally developed by **Cesare Tinelli** at the University of Iowa, and by **Clark Barrett**, **Caroline Trippel**, and **Andrew (Haoze) Wu** at Stanford University. Adapted by permission.

From now on, instead of wffs, we consider only their clausal form (clause sets)

Observe:

- Each clause $l_1 \vee \cdots \vee l_n$ can be itself regarded as a set, of literals: $\{l_1, \ldots, l_n\}$
- A set of clauses is satisfiable iff there is an interpretation of its variables that satisfies at least one literal in each clause

Observe:

- Each clause $l_1 \vee \cdots \vee l_n$ can be itself regarded as a set, of literals: $\{l_1, \ldots, l_n\}$
- A set of clauses is satisfiable iff there is an interpretation of its variables that satisfies at least one literal in each clause

Observe:

- Each clause $l_1 \vee \cdots \vee l_n$ can be itself regarded as a set, of literals: $\{l_1, \ldots, l_n\}$
- A set of clauses is satisfiable iff there is an interpretation of its variables that satisfies at least one literal in each clause

Example:

- The clause set $\Delta := \{ p_1 \lor p_3, \neg p_1 \lor p_2 \lor \neg p_3 \}$ can be represented as $\{ \{ p_1, p_3 \}, \{ \neg p_1, p_2, \neg p_3 \} \}$
- $v := \{ p_1 \mapsto true, p_2 \mapsto true, p_3 \mapsto false \}$ is a satisfying assignment for Δ

Observe:

- Each clause $l_1 \vee \cdots \vee l_n$ can be itself regarded as a set, of literals: $\{l_1, \ldots, l_n\}$
- A set of clauses is satisfiable iff there is an interpretation of its variables that satisfies at least one literal in each clause

Observe:

- The empty clause set is trivially satisfiable (no constraints to satisfy)
- The empty clause is trivially unsatisfiable (no options to chose)

Observe:

- Each clause $l_1 \vee \cdots \vee l_n$ can be itself regarded as a set, of literals: $\{l_1, \ldots, l_n\}$
- A set of clauses is satisfiable iff there is an interpretation of its variables that satisfies at least one literal in each clause

Observe:

- The empty clause set is trivially satisfiable (no constraints to satisfy)
- The empty clause is trivially unsatisfiable (no options to chose)

Automated reasoners for the satisfiability problem in PL are called SAT solvers

1. Backtracking search solvers

- Traversing and backtracking on a binary tree
- Sound, complete and terminating
- 2. Stochastic search solvers
 - Solver guesses a full assignment v
 - If the set is falsified by v, starts to flip values of variables according to some (greedy) heuristic
 - Sound but neither complete nor terminating
 - Nevertheless, quite effective in certain applications

There are two main categories of modern SAT solvers, both working of clause sets:

1. Backtracking search solvers

- Traversing and backtracking on a binary tree
- Sound, complete and terminating
- 2. Stochastic search solvers
 - Solver guesses a full assignment v
 - If the set is falsified by v, starts to flip values of variables according to some (greedy) heuristic
 - Sound but neither complete nor terminating
 - Nevertheless, quite effective in certain applications

There are two main categories of modern SAT solvers, both working of clause sets:

- 1. Backtracking search solvers
 - Traversing and backtracking on a binary tree
 - Sound, complete and terminating
- 2. Stochastic search solvers
 - Solver guesses a full assignment v
 - If the set is falsified by v, starts to flip values of variables according to some (greedy) heuristic
 - Sound but neither complete nor terminating
 - Nevertheless, quite effective in certain applications

There are two main categories of modern SAT solvers, both working of clause sets:

- 1. Backtracking search solvers
 - Traversing and backtracking on a binary tree
 - Sound, complete and terminating
- 2. Stochastic search solvers
 - Solver guesses a full assignment v
 - If the set is falsified by v, starts to flip values of variables according to some (greedy) heuristic
 - Sound but neither complete nor terminating
 - Nevertheless, quite effective in certain applications

There are two main categories of modern SAT solvers, both working of clause sets:

- 1. Backtracking search solvers
 - Traversing and backtracking on a binary tree
 - Sound, complete and terminating
- 2. **Stochast** We focus on backtracking solvers in this course
 - Solver guesses a full assignment v
 - If the set is falsified by v, starts to flip values of variables according to some (greedy) heuristic
 - Sound but neither complete nor terminating
 - Nevertheless, quite effective in certain applications

The SAT problem is hard (NP-complete). How well do SAT solvers do in practice?

- Modern SAT solvers can solve many real-life CNF formulas with hundreds of thousands or even millions of variables in a reasonable amount of time
- There are also instances of problems two orders of magnitude smaller that the same tools cannot solve
- In general, it is very hard to predict which instance is going to be hard to solve, without actually attempting to solve it

The SAT problem is hard (NP-complete). How well do SAT solvers do in practice?

- Modern SAT solvers can solve many real-life CNF formulas with hundreds of thousands or even millions of variables in a reasonable amount of time
- There are also instances of problems two orders of magnitude smaller that the same tools cannot solve
- In general, it is very hard to predict which instance is going to be hard to solve, without actually attempting to solve it

The SAT problem is hard (NP-complete). How well do SAT solvers do in practice?

- Modern SAT solvers can solve many real-life CNF formulas with hundreds of thousands or even millions of variables in a reasonable amount of time
- There are also instances of problems two orders of magnitude smaller that the same tools cannot solve
- In general, it is very hard to predict which instance is going to be hard to solve, without actually attempting to solve it

The SAT problem is hard (NP-complete). How well do SAT solvers do in practice?

- Modern SAT solvers can solve many real-life CNF formulas with hundreds of thousands or even millions of variables in a reasonable amount of time
- There are also instances of problems two orders of magnitude smaller that the same tools cannot solve
- In general, it is very hard to predict which instance is going to be hard to solve, without actually attempting to solve it

The SAT problem is hard (NP-complete). How well do SAT solvers do in practice?

- Modern SAT solvers can solve many real-life CNF formulas with hundreds of thousands or even millions of variables in a reasonable amount of time
- There are also instances of problems two orders of magnitude smaller that the same tools cannot solve
- In general, it is very hard to predict which instance is going to be hard to solve, without actually attempting to solve it

SAT Competition Winners on the SC2020 Benchmark Suite

- Left: Size of industrial clause sets (y-axis) regularly solved by solvers in a few hours each year (x-axis). Instances come from realistic problems like planning or hardware verification
- Right: Top contenders in SAT solver competitions from 2002 to 2020; each point shows number of solved instances (y-axis) per unit of time (x-axis). Note that no. of instances solved within 20 minutes more than doubled in less than a decade

Success of SAT solvers can largely be attributed to their ability to:

- Learn from failed assignments
- Prune large parts of the search spaces quickly
- Focus first on important variables

Success of SAT solvers can largely be attributed to their ability to:

- Learn from failed assignments
- Prune large parts of the search spaces quickly
- Focus first on important variables

Success of SAT solvers can largely be attributed to their ability to:

- Learn from failed assignments
- Prune large parts of the search spaces quickly
- Focus first on important variables

The DIMACS format

A standard format for clause sets accepted by most modern SAT solvers

The DIMACS format

- Comment lines: Start with a lower-case letter c
- Problem line: p cnf <#variables > <#clauses >
- Clause lines:
 - Each variable is assigned a unique index *i* greater than 0
 - A positive literal is represented by an index
 - A negative literal is represented by the negation of its complement's index
 - A clause is represented as a list of literals separated by white space
 - Value 0 is used to mark the end of a clause

Example:

The DIMACS format

- Comment lines: Start with a lower-case letter c
- Problem line: p cnf <#variables > <#clauses >
- Clause lines:
 - Each variable is assigned a unique index *i* greater than 0
 - A positive literal is represented by an index
 - A negative literal is represented by the negation of its complement's index
 - A clause is represented as a list of literals separated by white space
 - Value 0 is used to mark the end of a clause

Example:

 $\{p_1 \lor \neg p_3, p_2 \lor p_3 \lor \neg p_1\}$

c example.cnf p cnf 3 2 1 - 3023 - 10

Basic SAT solvers

- 1960: Davis-Putnam (DP) algorithm
- 1961: Davis-Putnam-Logemann-Loveland (DPLL) algorithm
- 1996: Modern SAT solver based on Conflict-Driven Clause Learning (CDCL) derived from DP and DPLL

Basic SAT solvers

- 1960: Davis-Putnam (DP) algorithm
- 1961: Davis-Putnam-Logemann-Loveland (DPLL) algorithm
- 1996: Modern SAT solver based on *Conflict-Driven Clause Learning (CDCL)* derived from DP and DPLL

There is a refutation sound and complete proof system for clause sets \triangle that consists of just one proof rule!

$\frac{C_1, C_2 \in \Delta \quad p \in C_1 \quad \neg p \in C_2 \quad C = (C_1 \setminus \{p\}) \cup (C_2 \setminus \{\neg p\}) \quad C \notin \Delta \cup \{C\}$

Clause C is a (p-)resolvent of C1 and C2, and p is the pivot

Example: $\Delta := \{ \{ p_1, p_3 \}, \{ p_2, \neg p_3 \} \}$ has a p_3 -resolvent: $\{ p_1, p_2 \}$

There is a refutation sound and complete proof system for clause sets \triangle that consists of just one proof rule!

RESOLVE
$$\frac{C_1, C_2 \in \Delta \quad p \in C_1 \quad \neg p \in C_2 \quad C = (C_1 \setminus \{p\}) \cup (C_2 \setminus \{\neg p\}) \quad C \notin \Delta}{\Delta \cup \{C\}}$$

Clause C is a (p-)resolvent of C1 and C2, and p is the pivot

Example: $\Delta := \{ \{ p_1, p_3 \}, \{ p_2, \neg p_3 \} \}$ has a p_3 -resolvent: $\{ p_1, p_2 \}$

There is a refutation sound and complete proof system for clause sets \triangle that consists of just one proof rule!

RESOLVE
$$\frac{C_1, C_2 \in \Delta \quad p \in C_1 \quad \neg p \in C_2 \quad C = (C_1 \setminus \{p\}) \cup (C_2 \setminus \{\neg p\}) \quad C \notin \Delta}{\Delta \cup \{C\}}$$

Clause *C* is a (*p*-)resolvent of *C*₁ and *C*₂, and *p* is the pivot

Example: $\Delta \coloneqq \{ \{p_1, p_3\}, \{p_2, \neg p_3\} \}$ has a p_3 -resolvent: $\{p_1, p_2\}$

There is a refutation sound and complete proof system for clause sets \triangle that consists of just one proof rule!

RESOLVE
$$\frac{C_1, C_2 \in \Delta \quad p \in C_1 \quad \neg p \in C_2 \quad C = (C_1 \setminus \{p\}) \cup (C_2 \setminus \{\neg p\}) \quad C \notin \Delta}{\Delta \cup \{C\}}$$

Clause *C* is a (*p*-)resolvent of *C*₁ and *C*₂, and *p* is the pivot

Example: $\Delta := \{ \{p_1, p_3\}, \{p_2, \neg p_3\} \}$ has a p_3 -resolvent: $\{p_1, p_2\}$

There is a refutation sound and complete proof system for clause sets \triangle that consists of just one proof rule!

RESOLVE
$$\frac{C_1, C_2 \in \Delta \quad p \in C_1 \quad \neg p \in C_2 \quad C = (C_1 \setminus \{p\}) \cup (C_2 \setminus \{\neg p\}) \quad C \notin \Delta}{\Delta \cup \{C\}}$$

Clause C is a (p-)resolvent of C_1 and C_2 , and p is the pivot

Example: $\Delta := \{ \{p_1, p_3\}, \{p_2, \neg p_3\} \}$ has a p_3 -resolvent: $\{p_1, p_2\}$

There is a refutation sound and complete proof system for clause sets \triangle that consists of just one proof rule!

RESOLVE
$$\frac{C_1, C_2 \in \Delta \quad p \in C_1 \quad \neg p \in C_2 \quad C = (C_1 \setminus \{p\}) \cup (C_2 \setminus \{\neg p\}) \quad C \notin \Delta}{\Delta \cup \{C\}}$$

Clause C is a (p-)resolvent of C_1 and C_2 , and p is the pivot

Example: $\Delta := \{ \{p_1, p_3\}, \{p_2, \neg p_3\} \}$ has a p_3 -resolvent: $\{p_1, p_2\}$

Proofs by resolution

Example: Prove that the following clause set is unsatisfiable

 $\{ \{p_1, p_2\}, \{p_1, \neg p_2\}, \{\neg p_1, p_3\}, \{\neg p_1, \neg p_3\} \}$ $\{ \{p_1, p_2\}, \{p_1, \neg p_2\}, \{\neg p_1, p_3\}, \{\neg p_1, \neg p_3\}, \{p_1\} \}$ $\{ \{p_1, p_2\}, \{p_1, \neg p_2\}, \{\neg p_1, p_3\}, \{\neg p_1, \neg p_3\}, \{p_1\}, \{p_3\} \}$ $\{ \{p_1, p_2\}, \{p_1, \neg p_2\}, \{\neg p_1, p_3\}, \{\neg p_1, \neg p_3\}, \{p_1\}, \{p_3\}, \{\neg p_3\} \}$ $\{ \{p_1, p_2\}, \{p_1, \neg p_2\}, \{\neg p_1, p_3\}, \{\neg p_1, \neg p_3\}, \{p_1\}, \{p_3\}, \{\neg p_3\}, \{\} \}$

• The last clause set is unsatisfiable since it contains the empty clause $\{$

Since every clause set entails the next, it must be that the first one is unsatisfiable

Proofs by resolution

Example: Prove that the following clause set is unsatisfiable

 $\{ \{p_1, p_2\}, \{p_1, \neg p_2\}, \{\neg p_1, p_3\}, \{\neg p_1, \neg p_3\} \}$ $\{ \{p_1, p_2\}, \{p_1, \neg p_2\}, \{\neg p_1, p_3\}, \{\neg p_1, \neg p_3\}, \{p_1\} \}$ $\{ \{p_1, p_2\}, \{p_1, \neg p_2\}, \{\neg p_1, p_3\}, \{\neg p_1, \neg p_3\}, \{p_1\}, \{p_3\} \}$ $\{ \{p_1, p_2\}, \{p_1, \neg p_2\}, \{\neg p_1, p_3\}, \{\neg p_1, \neg p_3\}, \{p_1\}, \{p_3\}, \{\neg p_3\} \}$ $\{ \{p_1, p_2\}, \{p_1, \neg p_2\}, \{\neg p_1, p_3\}, \{\neg p_1, \neg p_3\}, \{p_1\}, \{p_3\}, \{\neg p_3\}, \{\} \}$

• The last clause set is unsatisfiable since it contains the empty clause $\{$

Since every clause set entails the next, it must be that the first one is unsatisfiable

Proofs by resolution

Example: Prove that the following clause set is unsatisfiable

 $\{ \{p_1, p_2\}, \{p_1, \neg p_2\}, \{\neg p_1, p_3\}, \{\neg p_1, \neg p_3\} \}$ $\{ \{p_1, p_2\}, \{p_1, \neg p_2\}, \{\neg p_1, p_3\}, \{\neg p_1, \neg p_3\}, \{p_1\} \}$ $\{ \{p_1, p_2\}, \{p_1, \neg p_2\}, \{\neg p_1, p_3\}, \{\neg p_1, \neg p_3\}, \{p_1\}, \{p_3\} \}$ $\{ \{p_1, p_2\}, \{p_1, \neg p_2\}, \{\neg p_1, p_3\}, \{\neg p_1, \neg p_3\}, \{p_1\}, \{p_3\}, \{\neg p_3\} \}$ $\{ \{p_1, p_2\}, \{p_1, \neg p_2\}, \{\neg p_1, p_3\}, \{\neg p_1, \neg p_3\}, \{p_1\}, \{p_3\}, \{\neg p_3\}, \{\} \}$

• The last clause set is unsatisfiable since it contains the empty clause $\{$

Since every clause set entails the next, it must be that the first one is unsatisfiable
Example: Prove that the following clause set is unsatisfiable

 $\{ \{p_1, p_2\}, \{p_1, \neg p_2\}, \{\neg p_1, p_3\}, \{\neg p_1, \neg p_3\} \}$ $\{ \{p_1, p_2\}, \{p_1, \neg p_2\}, \{\neg p_1, p_3\}, \{\neg p_1, \neg p_3\}, \{p_1\} \}$ $\{ \{p_1, p_2\}, \{p_1, \neg p_2\}, \{\neg p_1, p_3\}, \{\neg p_1, \neg p_3\}, \{p_1\}, \{p_3\} \}$ $\{ \{p_1, p_2\}, \{p_1, \neg p_2\}, \{\neg p_1, p_3\}, \{\neg p_1, \neg p_3\}, \{p_1\}, \{p_3\}, \{\neg p_3\} \}$ $\{ \{p_1, p_2\}, \{p_1, \neg p_2\}, \{\neg p_1, p_3\}, \{\neg p_1, \neg p_3\}, \{p_1\}, \{p_3\}, \{\neg p_3\}, \{\} \}$

The last clause set is unsatisfiable since it contains the empty clause {

Example: Prove that the following clause set is unsatisfiable

 $\{ \{p_1, p_2\}, \{p_1, \neg p_2\}, \{\neg p_1, p_3\}, \{\neg p_1, \neg p_3\} \}$ $\{ \{p_1, p_2\}, \{p_1, \neg p_2\}, \{\neg p_1, p_3\}, \{\neg p_1, \neg p_3\}, \{p_1\} \}$ $\{ \{p_1, p_2\}, \{p_1, \neg p_2\}, \{\neg p_1, p_3\}, \{\neg p_1, \neg p_3\}, \{p_1\}, \{p_3\} \}$ $\{ \{p_1, p_2\}, \{p_1, \neg p_2\}, \{\neg p_1, p_3\}, \{\neg p_1, \neg p_3\}, \{p_1\}, \{p_3\}, \{\neg p_3\} \}$ $\{ \{p_1, p_2\}, \{p_1, \neg p_2\}, \{\neg p_1, p_3\}, \{\neg p_1, \neg p_3\}, \{p_1\}, \{p_3\}, \{\neg p_3\}, \{\} \}$

The last clause set is unsatisfiable since it contains the empty clause {

Example: Prove that the following clause set is unsatisfiable

 $\{ \{p_1, p_2\}, \{p_1, \neg p_2\}, \{\neg p_1, p_3\}, \{\neg p_1, \neg p_3\} \}$ $\{ \{p_1, p_2\}, \{p_1, \neg p_2\}, \{\neg p_1, p_3\}, \{\neg p_1, \neg p_3\}, \{p_1\} \}$ $\{ \{p_1, p_2\}, \{p_1, \neg p_2\}, \{\neg p_1, p_3\}, \{\neg p_1, \neg p_3\}, \{p_1\}, \{p_3\} \}$ $\{ \{p_1, p_2\}, \{p_1, \neg p_2\}, \{\neg p_1, p_3\}, \{\neg p_1, \neg p_3\}, \{p_1\}, \{p_3\}, \{\neg p_3\} \}$ $\{ \{p_1, p_2\}, \{p_1, \neg p_2\}, \{\neg p_1, p_3\}, \{\neg p_1, \neg p_3\}, \{p_1\}, \{p_3\}, \{\neg p_3\}, \{\} \}$

The last clause set is unsatisfiable since it contains the empty clause {

Example: Prove that the following clause set is unsatisfiable

 $\{ \{p_1, p_2\}, \{p_1, \neg p_2\}, \{\neg p_1, p_3\}, \{\neg p_1, \neg p_3\} \}$ $\{ \{p_1, p_2\}, \{p_1, \neg p_2\}, \{\neg p_1, p_3\}, \{\neg p_1, \neg p_3\}, \{p_1\} \}$ $\{ \{p_1, p_2\}, \{p_1, \neg p_2\}, \{\neg p_1, p_3\}, \{\neg p_1, \neg p_3\}, \{p_1\}, \{p_3\} \}$ $\{ \{p_1, p_2\}, \{p_1, \neg p_2\}, \{\neg p_1, p_3\}, \{\neg p_1, \neg p_3\}, \{p_1\}, \{p_3\}, \{\neg p_3\} \}$ $\{ \{p_1, p_2\}, \{p_1, \neg p_2\}, \{\neg p_1, p_3\}, \{\neg p_1, \neg p_3\}, \{p_1\}, \{p_3\}, \{\neg p_3\}, \{\} \}$

• The last clause set is unsatisfiable since it contains the empty clause $\{$

Example: Prove that the following clause set is unsatisfiable

 $\{ \{p_1, p_2\}, \{p_1, \neg p_2\}, \{\neg p_1, p_3\}, \{\neg p_1, \neg p_3\} \}$ $\{ \{p_1, p_2\}, \{p_1, \neg p_2\}, \{\neg p_1, p_3\}, \{\neg p_1, \neg p_3\}, \{p_1\} \}$ $\{ \{p_1, p_2\}, \{p_1, \neg p_2\}, \{\neg p_1, p_3\}, \{\neg p_1, \neg p_3\}, \{p_1\}, \{p_3\} \}$ $\{ \{p_1, p_2\}, \{p_1, \neg p_2\}, \{\neg p_1, p_3\}, \{\neg p_1, \neg p_3\}, \{p_1\}, \{p_3\}, \{\neg p_3\} \}$ $\{ \{p_1, p_2\}, \{p_1, \neg p_2\}, \{\neg p_1, p_3\}, \{\neg p_1, \neg p_3\}, \{p_1\}, \{p_3\}, \{\neg p_3\}, \{\} \}$

• The last clause set is unsatisfiable since it contains the empty clause $\{$

Example: Prove that the following clause set is unsatisfiable

 $\{ \{p_1, p_2\}, \{p_1, \neg p_2\}, \{\neg p_1, p_3\}, \{\neg p_1, \neg p_3\} \}$ $\{ \{p_1, p_2\}, \{p_1, \neg p_2\}, \{\neg p_1, p_3\}, \{\neg p_1, \neg p_3\}, \{p_1\} \}$ $\{ \{p_1, p_2\}, \{p_1, \neg p_2\}, \{\neg p_1, p_3\}, \{\neg p_1, \neg p_3\}, \{p_1\}, \{p_3\} \}$ $\{ \{p_1, p_2\}, \{p_1, \neg p_2\}, \{\neg p_1, p_3\}, \{\neg p_1, \neg p_3\}, \{p_1\}, \{p_3\}, \{\neg p_3\} \}$ $\{ \{p_1, p_2\}, \{p_1, \neg p_2\}, \{\neg p_1, p_3\}, \{\neg p_1, \neg p_3\}, \{p_1\}, \{p_3\}, \{\neg p_3\}, \{\} \}$

The last clause set is unsatisfiable since it contains the empty clause {

Example: Prove that the following clause set is unsatisfiable

$$\{ \{p_1, p_2\}, \{p_1, \neg p_2\}, \{\neg p_1, p_3\}, \{\neg p_1, \neg p_3\} \}$$

$$\{ \{p_1, p_2\}, \{p_1, \neg p_2\}, \{\neg p_1, p_3\}, \{\neg p_1, \neg p_3\}, \{p_1\} \}$$

$$\{ \{p_1, p_2\}, \{p_1, \neg p_2\}, \{\neg p_1, p_3\}, \{\neg p_1, \neg p_3\}, \{p_1\}, \{p_3\} \}$$

$$\{ \{p_1, p_2\}, \{p_1, \neg p_2\}, \{\neg p_1, p_3\}, \{\neg p_1, \neg p_3\}, \{p_1\}, \{p_3\}, \{\neg p_3\} \}$$

$$\{ \{p_1, p_2\}, \{p_1, \neg p_2\}, \{\neg p_1, p_3\}, \{\neg p_1, \neg p_3\}, \{p_1\}, \{p_3\}, \{\neg p_3\}, \{\} \}$$

- The last clause set is unsatisfiable since it contains the empty clause { }
- Since every clause set entails the next, it must be that the first one is unsatisfiable

Example: Prove that the following clause set is unsatisfiable

$$\{ \{p_1, p_2\}, \{p_1, \neg p_2\}, \{\neg p_1, p_3\}, \{\neg p_1, \neg p_3\} \}$$

$$\{ \{p_1, p_2\}, \{p_1, \neg p_2\}, \{\neg p_1, p_3\}, \{\neg p_1, \neg p_3\}, \{p_1\} \}$$

$$\{ \{p_1, p_2\}, \{p_1, \neg p_2\}, \{\neg p_1, p_3\}, \{\neg p_1, \neg p_3\}, \{p_1\}, \{p_3\} \}$$

$$\{ \{p_1, p_2\}, \{p_1, \neg p_2\}, \{\neg p_1, p_3\}, \{\neg p_1, \neg p_3\}, \{p_1\}, \{p_3\}, \{\neg p_3\} \}$$

$$\{ \{p_1, p_2\}, \{p_1, \neg p_2\}, \{\neg p_1, p_3\}, \{\neg p_1, \neg p_3\}, \{p_1\}, \{p_3\}, \{\neg p_3\}, \{\} \}$$

- The last clause set is unsatisfiable since it contains the empty clause { }
- Since every clause set entails the next, it must be that the first one is unsatisfiable

A resolution-based satisfiability proof system

• In addition to the SAT and UNSAT states, we consider states of the form

 $\langle \Delta, \Phi \rangle$

with \triangle and Φ clause sets

• Initial states have the form

 $\langle \Delta_0, \{\} \rangle$

where Δ_0 is the clause set to be checked for satisfiability

A resolution-based satisfiability proof system

We modify the resolution rule **RESOLVE** as highlighted below and add three more rules

RESOLVE
$$C_1, C_2 \in \Delta$$
 $p \in C_1$ $\neg p \in C_2$ $C = (C_1 \setminus \{p\}) \cup (C_2 \setminus \{\neg p\})$ $C \notin \Delta \cup \Phi$ $\Delta := \Delta \cup \{C\}$ $CLASH$ $C \in \Delta$ $p, \neg p \in C$ $\Delta := \Delta \setminus \{C\}$ $\Phi := \Phi \cup \{C\}$ UNSAT $\frac{\{\} \in \Delta}{\text{UNSAT}}$ SATSAT

This proof system is sound, complete and terminating

A resolution-based satisfiability proof system

We modify the resolution rule **RESOLVE** as highlighted below and add three more rules

RESOLVE
$$C_1, C_2 \in \Delta$$
 $p \in C_1$ $\neg p \in C_2$ $C = (C_1 \setminus \{p\}) \cup (C_2 \setminus \{\neg p\})$ $C \notin \Delta \cup \Phi$ $\Delta := \Delta \cup \{C\}$ CLASH $C \in \Delta$ $p, \neg p \in C$ $\Delta := \Delta \setminus \{C\}$ $\Phi := \Phi \cup \{C\}$ UNSAT $\{\} \in \Delta$ UNSATSATNo other rules apply
SAT

This proof system is sound, complete and terminating

A resolution-based decision procedure

Given a clause set Δ , apply **CLASH** or **RESOLVE** until either

- 1. an empty clause is derived (return UNSAT)
- 2. neither applies (return SAT)

This procedure is terminating and decides the SAT problem

A resolution-based decision procedure

Given a clause set Δ , apply **CLASH** or **RESOLVE** until either

- 1. an empty clause is derived (return UNSAT)
- 2. neither applies (return SAT)

This procedure is terminating and decides the SAT problem

Notation If *l* is a literal and *p* is its variable,
$$\overline{l} = \begin{cases} \neg p & \text{if } l = p \\ p & \text{if } l = \neg p \end{cases}$$

The *unit resolution rule* is a special case of resolution where one of the resolving clauses is a *unit clause*, i.e., a clause with only one literal

Unit Resolve
$$\begin{array}{c|c} C_1, C_2 \in \Delta & C_1 = \{I\} & C_2 = \{I\} \cup D \\ & \Delta \cup \{D\} \end{array}$$

Notation If *l* is a literal and *p* is its variable,
$$\overline{l} = \begin{cases} \neg p & \text{if } l = p \\ p & \text{if } l = \neg p \end{cases}$$

The *unit resolution rule* is a special case of resolution where one of the resolving clauses is a *unit clause*, i.e., a clause with only one literal

UNIT RESOLVE
$$\frac{C_1, C_2 \in \Delta \quad C_1 = \{l\} \quad C_2 = \{\overline{l}\} \cup D}{\Delta \cup \{D\}}$$

Notation If *l* is a literal and *p* is its variable,
$$\overline{l} = \begin{cases} \neg p & \text{if } l = p \\ p & \text{if } l = \neg p \end{cases}$$

The *unit resolution rule* is a special case of resolution where one of the resolving clauses is a *unit clause*, i.e., a clause with only one literal

UNIT RESOLVE
$$\begin{array}{c} C_1, C_2 \in \Delta \quad C_1 = \{l\} \quad C_2 = \{\overline{l}\} \cup D \\ \hline \Delta \cup \{D\} \end{array}$$

A proof system with unit resolution alone is not refutation-complete (consider an unsat \triangle with no unit clauses)

Notation If *l* is a literal and *p* is its variable,
$$\overline{l} = \begin{cases} \neg p & \text{if } l = p \\ p & \text{if } l = \neg p \end{cases}$$

The *unit resolution rule* is a special case of resolution where one of the resolving clauses is a *unit clause*, i.e., a clause with only one literal

UNIT RESOLVE
$$\begin{array}{c} C_1, C_2 \in \Delta \quad C_1 = \{l\} \quad C_2 = \{\overline{l}\} \cup D \\ \hline \Delta \cup \{D\} \end{array}$$

Modern SAT solvers use unit resolution plus backtracking search for deciding SAT

A decision procedure for the SAT problem

First procedure to implement something more sophisticated than truth tables

A decision procedure for the SAT problem

First procedure to implement something more sophisticated than truth tables

A decision procedure for the SAT problem

First procedure to implement something more sophisticated than truth tables

- Unit propagation
- Pure literal elimination
- Tautology elimination
- Exhaustive resolution

A decision procedure for the SAT problem

First procedure to implement something more sophisticated than truth tables

- Unit propagation
- Pure literal elimination
- Tautology elimination
- Exhaustive resolution

A decision procedure for the SAT problem

First procedure to implement something more sophisticated than truth tables

- Unit propagation
- Pure literal elimination
- Tautology elimination
- Exhaustive resolution

A decision procedure for the SAT problem

First procedure to implement something more sophisticated than truth tables

- Unit propagation
- Pure literal elimination
- Tautology elimination
- Exhaustive resolution

A decision procedure for the SAT problem

First procedure to implement something more sophisticated than truth tables

- Unit propagation
- Pure literal elimination
- Tautology elimination
- Exhaustive resolution

A decision procedure for the SAT problem

First procedure to implement something more sophisticated than truth tables

DP leverages 4 satisfiability-preserving transformations:

- Unit propagation
- Pure literal elimination
- Tautology elimination
- Exhaustive resolution

The first two transformations reduce the total number of literals in the clause set

A decision procedure for the SAT problem

First procedure to implement something more sophisticated than truth tables

DP leverages 4 satisfiability-preserving transformations:

- Unit propagation
- Pure literal elimination
- Tautology elimination
- Exhaustive resolution

The first two transformations reduce the total number of literals in the clause set The third transformation reduces the number of clauses

A decision procedure for the SAT problem

First procedure to implement something more sophisticated than truth tables

DP leverages 4 satisfiability-preserving transformations:

- Unit propagation
- Pure literal elimination
- Tautology elimination
- Exhaustive resolution

Repeatedly applying these tranformations, eventually leads to an empty clause (indicating unsatisfiability) or an empty clause set (indicating satisfiability)

Also called the *1-literal rule*

Premise: The clause set \triangle contains a unit clause $C = \{I\}$ **Conclusion**:

- Remove all occurrences of l from clauses in Δ
- Remove all clauses containing *l* (including *C*)

Also called the *1-literal rule*

Premise: The clause set \triangle contains a unit clause $C = \{l\}$

Conclusion:

- Remove all occurrences of \overline{l} from clauses in Δ
- Remove all clauses containing (including C)

Also called the *1-literal rule*

Premise: The clause set \triangle contains a unit clause $C = \{l\}$

Conclusion:

- Remove all occurrences of \overline{l} from clauses in Δ
- Remove all clauses containing *l* (including *C*)

Also called the *1-literal rule*

Premise: The clause set \triangle contains a unit clause $C = \{l\}$

Conclusion:

- Remove all occurrences of \overline{l} from clauses in Δ
- Remove all clauses containing *l* (including *C*)

Justification: The only way to satisfy C is to make l true; thus, (i) \overline{l} cannot be used to satisfy any clause, and (ii) any clause containing l is satisfied and can be ignored

Also called the *1-literal rule*

Premise: The clause set \triangle contains a unit clause $C = \{l\}$

Conclusion:

- Remove all occurrences of \overline{l} from clauses in Δ
- Remove all clauses containing *l* (including *C*)

Example:

 $\Delta_0 \coloneqq \{ \{ p_1 \}, \{ p_1, p_4 \}, \{ p_2, p_3, \neg p_1 \} \}$

Also called the *1-literal rule*

Premise: The clause set \triangle contains a unit clause $C = \{l\}$

Conclusion:

- Remove all occurrences of \overline{l} from clauses in Δ
- Remove all clauses containing *l* (including *C*)

Example:

 $\Delta_0 \coloneqq \{ \{ p_1 \}, \{ p_1, p_4 \}, \{ p_2, p_3, \neg p_1 \} \}$ $\Delta_1 \coloneqq \{ \{ p_4 \}, \{ p_2, p_3 \} \}$

(unit propagation on p_1)

Also called the *1-literal rule*

Premise: The clause set \triangle contains a unit clause $C = \{l\}$

Conclusion:

- Remove all occurrences of \overline{l} from clauses in Δ
- Remove all clauses containing *l* (including *C*)

Example:

 $\Delta_0 := \{ \{ p_1 \}, \{ p_1, p_4 \}, \{ p_2, p_3, \neg p_1 \} \}$ $\Delta_1 := \{ \{ p_4 \}, \{ p_2, p_3 \} \}$ $\Delta_2 := \{ \{ p_2, p_3 \} \}$

(unit propagation on p_1) (unit propagation on p_4)

DP procedure: pure literal elimination

Also called the *affirmation-negation rule*

Premise: A literal *l* occurs in △ but *l* does not **Conclusion:** Delete all clauses containing *l*

DP procedure: pure literal elimination

Also called the affirmation-negation rule

Premise: A literal l occurs in Δ but \overline{l} does not

Conclusion: Delete all clauses containing l
Also called the affirmation-negation rule

Premise: A literal l occurs in Δ but \overline{l} does not

Conclusion: Delete all clauses containing *l*

Also called the affirmation-negation rule

Premise: A literal l occurs in Δ but \overline{l} does not

Conclusion: Delete all clauses containing *l*

Justification: For every assignment that satisfies \triangle there is one that satisfies both \triangle and *l*; thus, all clauses containing *l* can be deleted since they can always be satisfied

Also called the affirmation-negation rule

Premise: A literal l occurs in Δ but \overline{l} does not

Conclusion: Delete all clauses containing *l*

Example:

 $\Delta_0 \coloneqq \{ \{ p_1, p_2, \neg p_3 \}, \{ \neg p_1, p_4 \}, \{ \neg p_3, \neg p_2 \}, \{ \neg p_3, \neg p_4 \} \}$

Also called the affirmation-negation rule

Premise: A literal l occurs in Δ but \overline{l} does not

Conclusion: Delete all clauses containing *l*

Example:

 $\Delta_0 := \{ \{ p_1, p_2, \neg p_3 \}, \{ \neg p_1, p_4 \}, \{ \neg p_3, \neg p_2 \}, \{ \neg p_3, \neg p_4 \} \}$ $\Delta_1 := \{ \{ \neg p_1, p_4 \} \}$

Also called the *clashing clause rule*

Premise: a clause $C \in \Delta$ contains both p and $\neg p$

Conclusion: remove *C* from Δ

Also called the *clashing clause rule*

Premise: a clause $C \in \Delta$ contains both *p* and $\neg p$

Conclusion: remove C from Δ

Also called the *clashing clause rule*

Premise: a clause $C \in \Delta$ contains both *p* and $\neg p$

Conclusion: remove *C* from \triangle

Also called the *clashing clause rule*

```
Premise: a clause C \in \Delta contains both p and \neg p
```

Conclusion: remove *C* from \triangle

Also called the *rule for eliminating atomic formulas*

Premise: A variable *p* occurs in a clause of Δ and $\neg p$ occurs in another clause **Conclusion**:

Also called the *rule for eliminating atomic formulas*

Premise: A variable p occurs in a clause of Δ and $\neg p$ occurs in another clause

Conclusion:

Also called the *rule for eliminating atomic formulas*

Premise: A variable p occurs in a clause of Δ and $\neg p$ occurs in another clause

Conclusion:

 Let *P* be the set of clauses in △ where *p* occurs positively and let *N* be the set of clauses in △ where *p* occurs negatively

 Replace the clauses in P and N with those obtained by resolution on p using all pairs of clauses from P × N

Also called the *rule for eliminating atomic formulas*

Premise: A variable *p* occurs in a clause of Δ and $\neg p$ occurs in another clause

Conclusion:

- Let *P* be the set of clauses in △ where *p* occurs positively and let *N* be the set of clauses in △ where *p* occurs negatively
- Replace the clauses in *P* and *N* with those obtained by resolution on *p* using all pairs of clauses from *P* × *N*

Also called the *rule for eliminating atomic formulas*

Premise: A variable *p* occurs in a clause of \triangle and $\neg p$ occurs in another clause

Conclusion:

- Let *P* be the set of clauses in △ where *p* occurs positively and let *N* be the set of clauses in △ where *p* occurs negatively
- Replace the clauses in *P* and *N* with those obtained by resolution on *p* using all pairs of clauses from *P* × *N*

Example:

 $\Delta_0 \coloneqq \{ \{ p_1, p_2 \}, \{ \neg p_1, p_3 \}, \{ \neg p_1, \neg p_3, p_4 \}, \{ p_2, \neg p_4 \} \}$

Also called the *rule for eliminating atomic formulas*

Premise: A variable *p* occurs in a clause of \triangle and $\neg p$ occurs in another clause

Conclusion:

- Let *P* be the set of clauses in △ where *p* occurs positively and let *N* be the set of clauses in △ where *p* occurs negatively
- Replace the clauses in *P* and *N* with those obtained by resolution on *p* using all pairs of clauses from *P* × *N*

Example:

 $\Delta_0 := \{ \{ p_1, p_2 \}, \{ \neg p_1, p_3 \}, \{ \neg p_1, \neg p_3, p_4 \}, \{ p_2, \neg p_4 \} \}$ $\Delta_1 := \{ \{ p_2, p_3 \}, \{ p_2, \neg p_3, p_4 \}, \{ p_2, \neg p_4 \} \}$

(resolution on p_1)

$\Delta \coloneqq \{ \{ p_1, p_2 \}, \{ p_1, \neg p_2 \}, \{ \neg p_1, p_3 \}, \{ \neg p_1, \neg p_3 \} \}$

 $\{\rho_1, \rho_2\} \{\rho_1, \neg \rho_2\} \{\neg \rho_1, \rho_3\} \{\neg \rho_1, \neg \rho_3\}$

 $\Delta \coloneqq \{ \{ p_1, p_2 \}, \{ p_1, \neg p_2 \}, \{ \neg p_1, p_3 \}, \{ \neg p_1, \neg p_3 \} \}$

 $\Delta \coloneqq \{ \{ p_1, p_2 \}, \{ p_1, \neg p_2 \}, \{ \neg p_1, p_3 \}, \{ \neg p_1, \neg p_3 \} \}$

 $\Delta \coloneqq \{ \{ p_1, p_2 \}, \{ p_1, \neg p_2 \}, \{ \neg p_1, p_3 \}, \{ \neg p_1, \neg p_3 \} \}$

The resolution transformation does not increase the number of variables However, it may increase the size of the clause set

Question: If a variable appears positively in 3 clauses and negatively in 3 clauses, how many clauses after applying resolution? 9

In the worst case, the resolution transformation can cause a quadratic expansion each time it is applied

The resolution transformation does not increase the number of variables However, it may increase the size of the clause set

Question: If a variable appears positively in 3 clauses and negatively in 3 clauses, how many clauses after applying resolution?

In the worst case, the resolution transformation can cause a quadratic expansion each time it is applied

The resolution transformation does not increase the number of variables However, it may increase the size of the clause set

Question: If a variable appears positively in 3 clauses and negatively in 3 clauses, how many clauses after applying resolution? 9

In the worst case, the resolution transformation can cause a quadratic expansion each time it is applied

The resolution transformation does not increase the number of variables However, it may increase the size of the clause set

Question: If a variable appears positively in 3 clauses and negatively in 3 clauses, how many clauses after applying resolution? 9

In the worst case, the resolution transformation can cause a quadratic expansion each time it is applied

The resolution transformation does not increase the number of variables However, it may increase the size of the clause set

Question: If a variable appears positively in 3 clauses and negatively in 3 clauses, how many clauses after applying resolution? 9

In the worst case, the resolution transformation can cause a quadratic expansion each time it is applied

The DPLL procedure improves on DP by replacing resolution with *splitting*:

- Let Δ be the input clause set
- Arbitrarily choose a literal / occurring in Δ
- Recursively check the satisfiability of ∆ ∪ { { *l* } }
 - If result is SAT, return SAT
 - Otherwise, recursively check the satisfiability of $\Delta \cup \{ \{\neg l \} \}$ and return that result

We will discuss DPLL in more detail next time

The DPLL procedure improves on DP by replacing resolution with *splitting*:

- Let Δ be the input clause set
- Arbitrarily choose a literal l occurring in Δ
- Recursively check the satisfiability of △ ∪ { { *l* } }
 - If result is SAT, return SAT
 - Otherwise, recursively check the satisfiability of △ ∪ { { ¬/ } } and return that result

We will discuss DPLL in more detail next time
From DP to DPLL

The DPLL procedure improves on DP by replacing resolution with *splitting*:

- Let Δ be the input clause set
- Arbitrarily choose a literal l occurring in Δ
- Recursively check the satisfiability of △ ∪ { { *l* } }
 - If result is SAT, return SAT
 - Otherwise, recursively check the satisfiability of △ ∪ { { ¬/ } } and return that result

We will discuss DPLL in more detail next time