CS:4980 Topics in Computer Science II Introduction to Automated Reasoning

Decision Procedures for Satisfiability in Propositional Logic

Cesare Tinelli

Spring 2024

Credits

These slides are based on slides originally developed by Cesare Tinelli at the University of Iowa, and by Clark Barrett, Caroline Trippel, and Andrew (Haoze) Wu at Stanford University. Adapted by permission.

Decision procedures for propositional logic

From now on, instead of wffs, we consider only their clausal form (clause sets)

Decision procedures for propositional logic

Observe:

- Each clause $I_{1} \vee \cdots \vee I_{n}$ can be itself regarded as a set, of literals: $\left\{I_{1}, \ldots, I_{n}\right\}$

Decision procedures for propositional logic

Observe:

- Each clause $I_{1} \vee \cdots \vee I_{n}$ can be itself regarded as a set, of literals: $\left\{I_{1}, \ldots, I_{n}\right\}$
- A set of clauses is satisfiable iff there is an interpretation of its variables that satisfies at least one literal in each clause

Decision procedures for propositional logic

Observe:

- Each clause $I_{1} \vee \cdots \vee I_{n}$ can be itself regarded as a set, of literals: $\left\{I_{1}, \ldots, I_{n}\right\}$
- A set of clauses is satisfiable iff there is an interpretation of its variables that satisfies at least one literal in each clause

Example:

- The clause set $\Delta:=\left\{p_{1} \vee p_{3}, \neg p_{1} \vee p_{2} \vee \neg p_{3}\right\}$ can be represented as $\left\{\left\{p_{1}, p_{3}\right\},\left\{\neg p_{1}, p_{2}, \neg p_{3}\right\}\right\}$
- $v:=\left\{p_{1} \mapsto\right.$ true, $p_{2} \mapsto$ true, $p_{3} \mapsto$ false $\}$ is a satisfying assignment for Δ

Decision procedures for propositional logic

Observe:

- Each clause $I_{1} \vee \cdots \vee I_{n}$ can be itself regarded as a set, of literals: $\left\{I_{1}, \ldots, I_{n}\right\}$
- A set of clauses is satisfiable iff there is an interpretation of its variables that satisfies at least one literal in each clause

Observe:

- The empty clause set is trivially satisfiable (no constraints to satisfy)

Decision procedures for propositional logic

Observe:

- Each clause $I_{1} \vee \cdots \vee I_{n}$ can be itself regarded as a set, of literals: $\left\{I_{1}, \ldots, I_{n}\right\}$
- A set of clauses is satisfiable iff there is an interpretation of its variables that satisfies at least one literal in each clause

Observe:

- The empty clause set is trivially satisfiable (no constraints to satisfy)
- The empty clause is trivially unsatisfiable
(no options to chose)

SAT Solver Overview: features

Automated reasoners for the satisfiability problem in PL are called SAT solvers

SAT Solver Overview: features

There are two main categories of modern SAT solvers, both working of clause sets:

SAT Solver Overview: features

There are two main categories of modern SAT solvers, both working of clause sets:

1. Backtracking search solvers

- Traversing and backtracking on a binary tree
- Sound, complete and terminating

SAT Solver Overview: features

There are two main categories of modern SAT solvers, both working of clause sets:

1. Backtracking search solvers

- Traversing and backtracking on a binary tree
- Sound, complete and terminating

2. Stochastic search solvers

- Solver guesses a full assignment v
- If the set is falsified by v, starts to flip values of variables according to some (greedy) heuristic
- Sound but neither complete nor terminating
- Nevertheless, quite effective in certain applications

SAT Solver Overview: features

There are two main categories of modern SAT solvers, both working of clause sets:

1. Backtracking search solvers

- Traversing and backtracking on a binary tree
- Sound, complete and terminating

2. Stochast We focus on backtracking solvers in this course

- Solver guesses a full assignment v
- If the set is falsified by v, starts to flip values of variables according to some (greedy) heuristic
- Sound but neither complete nor terminating
- Nevertheless, quite effective in certain applications

SAT Solver Overview: performance

The SAT problem is hard (NP-complete). How well do SAT solvers do in practice?

SAT Solver Overview: performance

The SAT problem is hard (NP-complete). How well do SAT solvers do in practice?

- Modern SAT solvers can solve many real-life CNF formulas with hundreds of thousands or even millions of variables in a reasonable amount of time

SAT Solver Overview: performance

The SAT problem is hard (NP-complete). How well do SAT solvers do in practice?

- Modern SAT solvers can solve many real-life CNF formulas with hundreds of thousands or even millions of variables in a reasonable amount of time
- There are also instances of problems two orders of magnitude smaller that the same tools cannot solve

SAT Solver Overview: performance

The SAT problem is hard (NP-complete). How well do SAT solvers do in practice?

- Modern SAT solvers can solve many real-life CNF formulas with hundreds of thousands or even millions of variables in a reasonable amount of time
- There are also instances of problems two orders of magnitude smaller that the same tools cannot solve
- In general, it is very hard to predict which instance is going to be hard to solve, without actually attempting to solve it

SAT Solver Overview: performance

The SAT problem is hard (NP-complete). How well do SAT solvers do in practice?

- Modern SAT solvers can solve many real-life CNF formulas with hundreds of thousands or even millions of variables in a reasonable amount of time
- There are also instances of problems two orders of magnitude smaller that the same tools cannot solve
- In general, it is very hard to predict which instance is going to be hard to solve, without actually attempting to solve it

SAT portfolio solvers: use machine-learning techniques to extract features of CNF formulas in order to select the most suitable SAT solver for the job

SAT Solver Overview: performance

SAT Competition Winners on the SC2020 Benchmark Suite

Left: Size of industrial clause sets (y-axis) regularly solved by solvers in a few hours each year (x-axis). Instances come from realistic problems like planning or hardware verification

Right: Top contenders in SAT solver competitions from 2002 to 2020; each point shows number of solved instances (y-axis) per unit of time (x-axis). Note that no. of instances solved within 20 minutes more than doubled in less than a decade

SAT Solver Overview: performance

Success of SAT solvers can largely be attributed to their ability to:

- Learn from failed assignments

SAT Solver Overview: performance

Success of SAT solvers can largely be attributed to their ability to:

- Learn from failed assignments
- Prune large parts of the search spaces quickly

SAT Solver Overview: performance

Success of SAT solvers can largely be attributed to their ability to:

- Learn from failed assignments
- Prune large parts of the search spaces quickly
- Focus first on important variables

The DIMACS format

A standard format for clause sets accepted by most modern SAT solvers

The DIMACS format

- Comment lines: Start with a lower-case letter C
- Problem line: p cnf <\#variables ><\#clauses >
- Clause lines:
- Each variable is assigned a unique index i greater than 0
- A positive literal is represented by an index
- A negative literal is represented by the negation of its complement's index
- A clause is represented as a list of literals separated by white space
- Value 0 is used to mark the end of a clause

Example:

$\left\{p_{1} \vee \neg p_{3}, p_{2} \vee p_{3} \vee \neg p_{1}\right\}$

The DIMACS format

- Comment lines: Start with a lower-case letter C
- Problem line: p cnf <\#variables ><\#clauses >
- Clause lines:
- Each variable is assigned a unique index i greater than 0
- A positive literal is represented by an index
- A negative literal is represented by the negation of its complement's index
- A clause is represented as a list of literals separated by white space
- Value 0 is used to mark the end of a clause

Example:
$\left\{p_{1} \vee \neg p_{3}, p_{2} \vee p_{3} \vee \neg p_{1}\right\}$
c example.cnf
p cnf 32
$1-30$
$23-10$

Basic SAT solvers

- 1960: Davis-Putnam (DP) algorithm
- 1961: Davis-Putnam-Logemann-Loveland (DPLL) algorithm

Basic SAT solvers

- 1960: Davis-Putnam (DP) algorithm
- 1961: Davis-Putnam-Logemann-Loveland (DPLL) algorithm
- 1996: Modern SAT solver based on Conflict-Driven Clause Learning (CDCL) derived from DP and DPLL

A proof system for clause sets: resolution

There is a refutation sound and complete proof system for clause sets Δ that consists of just one proof rule!

A proof system for clause sets: resolution

There is a refutation sound and complete proof system for clause sets Δ that consists of just one proof rule!

$$
\text { Resolve } \frac{C_{1}, C_{2} \in \Delta p \in C_{1} \quad \neg p \in C_{2} \quad}{} \quad C=\left(C_{1} \backslash\{p\}\right) \cup\left(C_{2} \backslash\{\neg p\}\right) \quad C \notin \Delta \frac{\Delta \cup\{ }{\Delta \cup\}}
$$

A proof system for clause sets: resolution

There is a refutation sound and complete proof system for clause sets Δ that consists of just one proof rule!

$$
\text { Resolve } \frac{C_{1}, C_{2} \in \Delta \quad p \in C_{1} \quad \neg p \in C_{2} \quad C=\left(C_{1} \backslash\{p\}\right) \cup\left(C_{2} \backslash\{\neg p\}\right) \quad C \notin \Delta}{\Delta \cup\{C\}}
$$

Clause C is a (p-)resolvent of C_{1} and C_{2}, and p is the pivot

A proof system for clause sets: resolution

There is a refutation sound and complete proof system for clause sets Δ that consists of just one proof rule!

$$
\text { Resolve } \frac{C_{1}, C_{2} \in \Delta \quad p \in C_{1} \quad \neg p \in C_{2} \quad C=\left(C_{1} \backslash\{p\}\right) \cup\left(C_{2} \backslash\{\neg p\}\right) \quad C \notin \Delta}{\Delta \cup\{C\}}
$$

Clause C is a (p-)resolvent of C_{1} and C_{2}, and p is the pivot

Example: $\Delta:=\left\{\left\{p_{1}, p_{3}\right\},\left\{p_{2}, \neg p_{3}\right\}\right\}$ has a p_{3}-resolvent: $\left\{p_{1}, p_{2}\right\}$

A proof system for clause sets: resolution

There is a refutation sound and complete proof system for clause sets Δ that consists of just one proof rule!

$$
\text { Resolve } \frac{C_{1}, C_{2} \in \Delta \quad p \in C_{1} \quad \neg p \in C_{2} \quad C=\left(C_{1} \backslash\{p\}\right) \cup\left(C_{2} \backslash\{\neg p\}\right) \quad C \notin \Delta}{\Delta \cup\{C\}}
$$

Clause C is a (p-)resolvent of C_{1} and C_{2}, and p is the pivot

Example: $\Delta:=\left\{\left\{p_{1}, p_{3}\right\},\left\{p_{2}, \neg p_{3}\right\}\right\}$ has a p_{3}-resolvent: $\left\{p_{1}, p_{2}\right\}$

Note: if C is a resolvent of $C_{1}, C_{2} \in \Delta$ then $\left\{C_{1}, C_{2}\right\} \vDash C$

A proof system for clause sets: resolution

There is a refutation sound and complete proof system for clause sets Δ that consists of just one proof rule!

$$
\text { Resolve } \frac{C_{1}, C_{2} \in \Delta \quad p \in C_{1} \quad \neg p \in C_{2} \quad}{} \quad C=\left(C_{1} \backslash\{p\}\right) \cup\left(C_{2} \backslash\{\neg p\}\right) \quad C \notin \Delta \frac{\Delta \cup\}}{\Delta \cup\{C\}}
$$

Clause C is a (p-)resolvent of C_{1} and C_{2}, and p is the pivot

Example: $\Delta:=\left\{\left\{p_{1}, p_{3}\right\},\left\{p_{2}, \neg p_{3}\right\}\right\}$ has a p_{3}-resolvent: $\left\{p_{1}, p_{2}\right\}$

Note: if C is a resolvent of $C_{1}, C_{2} \in \Delta$ then $\left\{C_{1}, C_{2}\right\} \vDash C$ and so $\Delta \vDash \Delta \cup\{C\}$

Proofs by resolution

Example: Prove that the following clause set is unsatisfiable
$\frac{\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\}\right\}}{\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\},\left\{p_{1}\right\}\right\}}$
$\frac{\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\},\left\{p_{1}\right\},\left\{p_{3}\right\}\right\}}{\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\},\left\{p_{1}\right\},\left\{p_{3}\right\},\left\{\neg p_{3}\right\}\right\}}$
$\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\},\left\{p_{1}\right\},\left\{p_{3}\right\},\left\{\neg p_{3}\right\},\{ \}\right\}$

Proofs by resolution

Example: Prove that the following clause set is unsatisfiable
$\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\}\right\}$
$\frac{\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\},\left\{p_{1}\right\}\right\}}{\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\},\left\{p_{1}\right\},\left\{p_{3}\right\}\right\}}$
$\frac{\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\},\left\{p_{1}\right\},\left\{p_{3}\right\},\left\{\neg p_{3}\right\}\right\}}{\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\},\left\{p_{1}\right\},\left\{p_{3}\right\},\left\{\neg p_{3}\right\},\{ \}\right\}}$

Proofs by resolution

Example: Prove that the following clause set is unsatisfiable
$\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\}\right\}$
$\frac{\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\},\left\{p_{1}\right\}\right\}}{\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\},\left\{p_{1}\right\},\left\{p_{3}\right\}\right\}}$
$\frac{\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\},\left\{p_{1}\right\},\left\{p_{3}\right\},\left\{\neg p_{3}\right\}\right\}}{\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\},\left\{p_{1}\right\},\left\{p_{3}\right\},\left\{\neg p_{3}\right\},\{ \}\right\}}$

Proofs by resolution

Example: Prove that the following clause set is unsatisfiable
$\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\}\right\}$
$\frac{\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\},\left\{p_{1}\right\}\right\}}{\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\},\left\{p_{1}\right\},\left\{p_{3}\right\}\right\}}$
$\frac{\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\},\left\{p_{1}\right\},\left\{p_{3}\right\},\left\{\neg p_{3}\right\}\right\}}{\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\},\left\{p_{1}\right\},\left\{p_{3}\right\},\left\{\neg p_{3}\right\},\{ \}\right\}}$

Proofs by resolution

Example: Prove that the following clause set is unsatisfiable
$\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\}\right\}$
$\frac{\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\},\left\{p_{1}\right\}\right\}}{\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\},\left\{p_{1}\right\},\left\{p_{3}\right\}\right\}}$
$\frac{\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\},\left\{p_{1}\right\},\left\{p_{3}\right\},\left\{\neg p_{3}\right\}\right\}}{\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\},\left\{p_{1}\right\},\left\{p_{3}\right\},\left\{\neg p_{3}\right\},\{ \}\right\}}$

Proofs by resolution

Example: Prove that the following clause set is unsatisfiable
$\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\}\right\}$
$\frac{\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\},\left\{p_{1}\right\}\right\}}{\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\},\left\{p_{1}\right\},\left\{p_{3}\right\}\right\}}$
$\frac{\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\},\left\{p_{1}\right\},\left\{p_{3}\right\},\left\{\neg p_{3}\right\}\right\}}{\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\},\left\{p_{1}\right\},\left\{p_{3}\right\},\left\{\neg p_{3}\right\},\{ \}\right\}}$

Proofs by resolution

Example: Prove that the following clause set is unsatisfiable
$\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\}\right\}$
$\frac{\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\},\left\{p_{1}\right\}\right\}}{\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\},\left\{p_{1}\right\},\left\{p_{3}\right\}\right\}}$
$\frac{\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\},\left\{p_{1}\right\},\left\{p_{3}\right\},\left\{\neg p_{3}\right\}\right\}}{\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\},\left\{p_{1}\right\},\left\{p_{3}\right\},\left\{\neg p_{3}\right\},\{ \}\right\}}$

Proofs by resolution

Example: Prove that the following clause set is unsatisfiable
$\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\}\right\}$
$\frac{\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\},\left\{p_{1}\right\}\right\}}{\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\},\left\{p_{1}\right\},\left\{p_{3}\right\}\right\}}$
$\frac{\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\},\left\{p_{1}\right\},\left\{p_{3}\right\},\left\{\neg p_{3}\right\}\right\}}{\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\},\left\{p_{1}\right\},\left\{p_{3}\right\},\left\{\neg p_{3}\right\},\{ \}\right\}}$

Proofs by resolution

Example: Prove that the following clause set is unsatisfiable
$\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\}\right\}$
$\frac{\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\},\left\{p_{1}\right\}\right\}}{\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\},\left\{p_{1}\right\},\left\{p_{3}\right\}\right\}}$
$\frac{\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\},\left\{p_{1}\right\},\left\{p_{3}\right\},\left\{\neg p_{3}\right\}\right\}}{\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\},\left\{p_{1}\right\},\left\{p_{3}\right\},\left\{\neg p_{3}\right\},\{ \}\right\}}$

Proofs by resolution

Example: Prove that the following clause set is unsatisfiable
$\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\}\right\}$
$\frac{\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\},\left\{p_{1}\right\}\right\}}{\left(\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\},\left\{p_{1}\right\},\left\{p_{3}\right\}\right\}\right.}$
$\frac{\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\},\left\{p_{1}\right\},\left\{p_{3}\right\},\left\{\neg p_{3}\right\}\right\}}{\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\},\left\{p_{1}\right\},\left\{p_{3}\right\},\left\{\neg p_{3}\right\},\{ \}\right\}}$

- The last clause set is unsatisfiable since it contains the empty clause $\}$

Proofs by resolution

Example: Prove that the following clause set is unsatisfiable
$\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\}\right\}$
$\frac{\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\},\left\{p_{1}\right\}\right\}}{\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\},\left\{p_{1}\right\},\left\{p_{3}\right\}\right\}}$
$\frac{\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\},\left\{p_{1}\right\},\left\{p_{3}\right\},\left\{\neg p_{3}\right\}\right\}}{\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\},\left\{p_{1}\right\},\left\{p_{3}\right\},\left\{\neg p_{3}\right\},\{ \}\right\}}$

- The last clause set is unsatisfiable since it contains the empty clause $\}$
- Since every clause set entails the next, it must be that the first one is unsatisfiable

A resolution-based satisfiability proof system

- In addition to the SAT and UNSAT states, we consider states of the form

$$
\langle\Delta, \Phi\rangle
$$

with \triangle and Φ clause sets

- Initial states have the form

$$
\left\langle\Delta_{0},\{ \}\right\rangle
$$

where Δ_{0} is the clause set to be checked for satisfiability

A resolution-based satisfiability proof system

We modify the resolution rule Resolve as highlighted below and add three more rules

$$
\begin{array}{r}
\text { Resolve } \begin{array}{r}
C_{1}, C_{2} \in \Delta \quad p \in C_{1} \quad \neg p \in C_{2} \quad C=\left(C_{1} \backslash\{p\}\right) \cup\left(C_{2} \backslash\{\neg p\}\right) \quad C \notin \Delta \cup \Phi \\
\Delta:=\Delta \cup\{C\} \\
\text { CLASH } \frac{C \in \Delta \quad p, \neg p \in C}{\Delta:=\Delta \backslash\{C\} \quad \Phi:=\Phi \cup\{C\}} \\
\text { UNSAT } \frac{\} \in \Delta}{\text { UNSAT }} \quad \text { SAT } \frac{\text { No other rules apply }}{\text { SAT }}
\end{array}
\end{array}
$$

A resolution-based satisfiability proof system

We modify the resolution rule Resolve as highlighted below and add three more rules

$$
\text { Resolve } \begin{aligned}
& C_{1}, C_{2} \in \Delta \quad p \in C_{1} \quad \neg p \in C_{2} \quad C=\left(C_{1} \backslash\{p\}\right) \cup\left(C_{2} \backslash\{\neg p\}\right) \quad C \notin \Delta \cup \Phi \\
& \Delta:=\Delta \cup\{C\}
\end{aligned}
$$

$$
\text { CLASH } \frac{C \in \Delta \quad p, \neg p \in C}{\Delta:=\Delta \backslash\{C\} \quad \Phi:=\Phi \cup\{C\}}
$$

$$
\text { UNSAT } \frac{\} \in \Delta}{\text { UNSAT }} \quad \text { SAT } \frac{\text { No other rules apply }}{\text { SAT }}
$$

This proof system is sound, complete and terminating

A resolution-based decision procedure

Given a clause set \triangle, apply CLASH or Resolve until either

1. an empty clause is derived (return UNSAT)
2. neither applies (return SAT)

A resolution-based decision procedure

Given a clause set \triangle, apply CLASH or Resolve until either

1. an empty clause is derived (return UNSAT)
2. neither applies (return SAT)

This procedure is terminating and decides the SAT problem

Unit resolution

Notation If $/$ is a literal and p is its variable, $\bar{l}= \begin{cases}\neg p & \text { if } l=p \\ p & \text { if } l=\neg p\end{cases}$

Unit resolution

Notation If $/$ is a literal and p is its variable, $\bar{l}= \begin{cases}\neg p & \text { if } l=p \\ p & \text { if } l=\neg p\end{cases}$
The unit resolution rule is a special case of resolution where one of the resolving clauses is a unit clause, i.e., a clause with only one literal

$$
\text { Unit Resolve } \frac{C_{1}, C_{2} \in \Delta \quad C_{1}=\{l\} \quad C_{2}=\{\bar{l}\} \cup D}{\Delta \cup\{D\}}
$$

Unit resolution

Notation If $/$ is a literal and p is its variable, $\bar{l}= \begin{cases}\neg p & \text { if } l=p \\ p & \text { if } l=\neg p\end{cases}$
The unit resolution rule is a special case of resolution where one of the resolving clauses is a unit clause, i.e., a clause with only one literal

$$
\text { Unit Resolve } \frac{C_{1}, C_{2} \in \Delta \quad C_{1}=\{l\} \quad C_{2}=\{\bar{l}\} \cup D}{\Delta \cup\{D\}}
$$

A proof system with unit resolution alone is not refutation-complete (consider an unsat Δ with no unit clauses)

Unit resolution

Notation If $/$ is a literal and p is its variable, $\bar{l}= \begin{cases}\neg p & \text { if } l=p \\ p & \text { if } l=\neg p\end{cases}$
The unit resolution rule is a special case of resolution where one of the resolving clauses is a unit clause, i.e., a clause with only one literal

$$
\text { Unit Resolve } \frac{C_{1}, C_{2} \in \Delta \quad C_{1}=\{l\} \quad C_{2}=\{\bar{l}\} \cup D}{\Delta \cup\{D\}}
$$

Modern SAT solvers use unit resolution plus backtracking search for deciding SAT

Davis-Putnam (DP) procedure

A decision procedure for the SAT problem

Davis-Putnam (DP) procedure

A decision procedure for the SAT problem
First procedure to implement something more sophisticated than truth tables

Davis-Putnam (DP) procedure

A decision procedure for the SAT problem
First procedure to implement something more sophisticated than truth tables
DP leverages 4 satisfiability-preserving transformations:

Davis-Putnam (DP) procedure

A decision procedure for the SAT problem
First procedure to implement something more sophisticated than truth tables
DP leverages 4 satisfiability-preserving transformations:

- Unit propagation

Davis-Putnam (DP) procedure

A decision procedure for the SAT problem
First procedure to implement something more sophisticated than truth tables
DP leverages 4 satisfiability-preserving transformations:

- Unit propagation
- Pure literal elimination

Davis-Putnam (DP) procedure

A decision procedure for the SAT problem
First procedure to implement something more sophisticated than truth tables
DP leverages 4 satisfiability-preserving transformations:

- Unit propagation
- Pure literal elimination
- Tautology elimination

Davis-Putnam (DP) procedure

A decision procedure for the SAT problem
First procedure to implement something more sophisticated than truth tables
DP leverages 4 satisfiability-preserving transformations:

- Unit propagation
- Pure literal elimination
- Tautology elimination
- Exhaustive resolution

Davis-Putnam (DP) procedure

A decision procedure for the SAT problem
First procedure to implement something more sophisticated than truth tables
DP leverages 4 satisfiability-preserving transformations:

- Unit propagation
- Pure literal elimination
- Tautology elimination
- Exhaustive resolution

The first two transformations reduce the total number of literals in the clause set

Davis-Putnam (DP) procedure

A decision procedure for the SAT problem
First procedure to implement something more sophisticated than truth tables
DP leverages 4 satisfiability-preserving transformations:

- Unit propagation
- Pure literal elimination
- Tautology elimination
- Exhaustive resolution

The first two transformations reduce the total number of literals in the clause set
The third transformation reduces the number of clauses

Davis-Putnam (DP) procedure

A decision procedure for the SAT problem
First procedure to implement something more sophisticated than truth tables
DP leverages 4 satisfiability-preserving transformations:

- Unit propagation
- Pure literal elimination
- Tautology elimination
- Exhaustive resolution

Repeatedly applying these tranformations, eventually leads to an empty clause (indicating unsatisfiability) or an empty clause set (indicating satisfiability)

DP procedure: unit propagation

Also called the 1-literal rule

DP procedure: unit propagation

Also called the 1-literal rule

Premise: The clause set \triangle contains a unit clause $C=\{1\}$

DP procedure: unit propagation

Also called the 1-literal rule

Premise: The clause set \triangle contains a unit clause $C=\{1\}$
Conclusion:

- Remove all occurrences of $\overline{/}$ from clauses in \triangle
- Remove all clauses containing $/$ (including C)

DP procedure: unit propagation

Also called the 1-literal rule

Premise: The clause set \triangle contains a unit clause $C=\{1\}$
Conclusion:

- Remove all occurrences of $\overline{/}$ from clauses in Δ
- Remove all clauses containing $/$ (including C)

Justification: The only way to satisfy C is to make / true; thus, (i) / cannot be used to satisfy any clause, and (ii) any clause containing / is satisfied and can be ignored

DP procedure: unit propagation

Also called the 1-literal rule

Premise: The clause set \triangle contains a unit clause $C=\{1\}$
Conclusion:

- Remove all occurrences of $\overline{/}$ from clauses in Δ
- Remove all clauses containing ((including C)

Example:

$$
\Delta_{0}:=\left\{\left\{p_{1}\right\},\left\{p_{1}, p_{4}\right\},\left\{p_{2}, p_{3}, \neg p_{1}\right\}\right\}
$$

DP procedure: unit propagation

Also called the 1-literal rule

Premise: The clause set \triangle contains a unit clause $C=\{1\}$
Conclusion:

- Remove all occurrences of $\overline{/}$ from clauses in Δ
- Remove all clauses containing ((including C)

Example:

$$
\begin{aligned}
& \Delta_{0}:=\left\{\left\{p_{1}\right\},\left\{p_{1}, p_{4}\right\},\left\{p_{2}, p_{3}, \neg p_{1}\right\}\right\} \\
& \Delta_{1}:=\left\{\left\{p_{4}\right\},\left\{p_{2}, p_{3}\right\}\right\}
\end{aligned}
$$

DP procedure: unit propagation

Also called the 1-literal rule

Premise: The clause set \triangle contains a unit clause $C=\{1\}$
Conclusion:

- Remove all occurrences of $\overline{/}$ from clauses in Δ
- Remove all clauses containing / (including C)

Example:

$$
\begin{aligned}
& \Delta_{0}:=\left\{\left\{p_{1}\right\},\left\{p_{1}, p_{4}\right\},\left\{p_{2}, p_{3}, \neg p_{1}\right\}\right\} \\
& \Delta_{1}:=\left\{\left\{p_{4}\right\},\left\{p_{2}, p_{3}\right\}\right\} \\
& \Delta_{2}:=\left\{\left\{p_{2}, p_{3}\right\}\right\}
\end{aligned}
$$

(unit propagation on p_{1})
(unit propagation on p_{4})

DP procedure: pure literal elimination

Also called the affirmation-negation rule

DP procedure: pure literal elimination

Also called the affirmation-negation rule

Premise: A literal / occurs in Δ but \bar{l} does not

DP procedure: pure literal elimination

Also called the affirmation-negation rule

Premise: A literal / occurs in Δ but \bar{l} does not
Conclusion: Delete all clauses containing $/$

DP procedure: pure literal elimination

Also called the affirmation-negation rule
Premise: A literal / occurs in Δ but \bar{l} does not
Conclusion: Delete all clauses containing /
Justification: For every assignment that satisfies Δ there is one that satisfies both Δ and $/$; thus, all clauses containing / can be deleted since they can always be satisfied

DP procedure: pure literal elimination

Also called the affirmation-negation rule

Premise: A literal / occurs in Δ but \bar{l} does not
Conclusion: Delete all clauses containing

Example:

$$
\Delta_{0}:=\left\{\left\{p_{1}, p_{2}, \neg p_{3}\right\},\left\{\neg p_{1}, p_{4}\right\},\left\{\neg p_{3}, \neg p_{2}\right\},\left\{\neg p_{3}, \neg p_{4}\right\}\right\}
$$

DP procedure: pure literal elimination

Also called the affirmation-negation rule

Premise: A literal / occurs in Δ but \bar{l} does not
Conclusion: Delete all clauses containing

Example:

$$
\begin{aligned}
& \Delta_{0}:=\left\{\left\{p_{1}, p_{2}, \neg p_{3}\right\},\left\{\neg p_{1}, p_{4}\right\},\left\{\neg p_{3}, \neg p_{2}\right\},\left\{\neg p_{3}, \neg p_{4}\right\}\right\} \\
& \Delta_{1}:=\left\{\left\{\neg p_{1}, p_{4}\right\}\right\}
\end{aligned}
$$

DP procedure: tautology elimination

Also called the clashing clause rule

DP procedure: tautology elimination

Also called the clashing clause rule

Premise: a clause $C \in \triangle$ contains both p and $\neg p$

DP procedure: tautology elimination

Also called the clashing clause rule

Premise: a clause $C \in \Delta$ contains both p and $\neg p$
Conclusion: remove C from \triangle

DP procedure: tautology elimination

Also called the clashing clause rule

Premise: a clause $C \in \Delta$ contains both p and $\neg p$
Conclusion: remove C from \triangle
Justification: C is satisfied by every variable assignment

DP procedure: resolution

Also called the rule for eliminating atomic formulas

DP procedure: resolution

Also called the rule for eliminating atomic formulas

Premise: A variable p occurs in a clause of \triangle and $\neg p$ occurs in another clause

DP procedure: resolution

Also called the rule for eliminating atomic formulas

Premise: A variable p occurs in a clause of Δ and $\neg p$ occurs in another clause
Conclusion:

- Let P be the set of clauses in \triangle where p occurs positively and let N be the set of clauses in Δ where p occurs negatively

DP procedure: resolution

Also called the rule for eliminating atomic formulas

Premise: A variable p occurs in a clause of Δ and $\neg p$ occurs in another clause

Conclusion:

- Let P be the set of clauses in \triangle where p occurs positively and let N be the set of clauses in Δ where p occurs negatively
- Replace the clauses in P and N with those obtained by resolution on p using all pairs of clauses from $P \times N$

DP procedure: resolution

Also called the rule for eliminating atomic formulas

Premise: A variable p occurs in a clause of Δ and $\neg p$ occurs in another clause

Conclusion:

- Let P be the set of clauses in \triangle where p occurs positively and let N be the set of clauses in Δ where p occurs negatively
- Replace the clauses in P and N with those obtained by resolution on p using all pairs of clauses from $P \times N$

Example:

$$
\Delta_{0}:=\left\{\left\{p_{1}, p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}, p_{4}\right\},\left\{p_{2}, \neg p_{4}\right\}\right\}
$$

DP procedure: resolution

Also called the rule for eliminating atomic formulas

Premise: A variable p occurs in a clause of Δ and $\neg p$ occurs in another clause

Conclusion:

- Let P be the set of clauses in \triangle where p occurs positively and let N be the set of clauses in Δ where p occurs negatively
- Replace the clauses in P and N with those obtained by resolution on p using all pairs of clauses from $P \times N$

Example:

```
\Delta _ { 0 } : = \{ \{ p _ { 1 } , p _ { 2 } \} , \{ \neg p _ { 1 } , p _ { 3 } \} , \{ \neg p _ { 1 } , \neg p _ { 3 } , p _ { 4 } \} , \{ p _ { 2 } , \neg p _ { 4 } \} \} \}
\Delta

\section*{DP Example 1}
\[
\Delta:=\left\{\left\{p_{1}, p_{2}, p_{3}\right\},\left\{p_{2}, \neg p_{3}, \neg p_{6}\right\},\left\{\neg p_{2}, p_{5}\right\}\right\}
\]

\section*{DP Example 1}
\[
\Delta:=\left\{\left\{p_{1}, p_{2}, p_{3}\right\},\left\{p_{2}, \neg p_{3}, \neg p_{6}\right\},\left\{\neg p_{2}, p_{5}\right\}\right\}
\]
\[
\left\{p_{1}, p_{2}, p_{3}\right\} \quad\left\{p_{2}, \neg p_{3}, \neg p_{6}\right\} \quad\left\{\neg p_{2}, p_{5}\right\}
\]

\section*{DP Example 1}
\[
\Delta:=\left\{\left\{p_{1}, p_{2}, p_{3}\right\},\left\{p_{2}, \neg p_{3}, \neg p_{6}\right\},\left\{\neg p_{2}, p_{5}\right\}\right\}
\]
\[
\operatorname{Res} p_{2}\left\{p_{1}, p_{2}, p_{3}\right\} \quad\left\{p_{2}, \neg p_{3}, \neg p_{6}\right\} \quad\left\{\neg p_{2}, p_{5}\right\}
\]

\section*{DP Example 1}
\[
\Delta:=\left\{\left\{p_{1}, p_{2}, p_{3}\right\},\left\{p_{2}, \neg p_{3}, \neg p_{6}\right\},\left\{\neg p_{2}, p_{5}\right\}\right\}
\]


\section*{DP Example 1}
\[
\Delta:=\left\{\left\{p_{1}, p_{2}, p_{3}\right\},\left\{p_{2}, \neg p_{3}, \neg p_{6}\right\},\left\{\neg p_{2}, p_{5}\right\}\right\}
\]


\section*{DP Example 1}
\[
\Delta:=\left\{\left\{p_{1}, p_{2}, p_{3}\right\},\left\{p_{2}, \neg p_{3}, \neg p_{6}\right\},\left\{\neg p_{2}, p_{5}\right\}\right\}
\]


\section*{DP Example 1}
\[
\Delta:=\left\{\left\{p_{1}, p_{2}, p_{3}\right\},\left\{p_{2}, \neg p_{3}, \neg p_{6}\right\},\left\{\neg p_{2}, p_{5}\right\}\right\}
\]


\section*{DP Example 1}
\[
\Delta:=\left\{\left\{p_{1}, p_{2}, p_{3}\right\},\left\{p_{2}, \neg p_{3}, \neg p_{6}\right\},\left\{\neg p_{2}, p_{5}\right\}\right\}
\]


\section*{DP Example 2}
\(\Delta:=\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\}\right\}\)

\section*{DP Example 2}
\(\Delta:=\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\}\right\}\)
\[
\operatorname{Res} p_{2} \quad\left\{p_{1}, p_{2}\right\}\left\{p_{1}, \neg p_{2}\right\}\left\{\neg p_{1}, p_{3}\right\}\left\{\neg p_{1}, \neg p_{3}\right\}
\]

\section*{DP Example 2}
\(\Delta:=\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\}\right\}\)


\section*{DP Example 2}
\(\Delta:=\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\}\right\}\)


\section*{DP Example 2}
\(\Delta:=\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\}\right\}\)


\section*{DP Example 2}
\(\Delta:=\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\}\right\}\)


\section*{DP Example 2}
\(\Delta:=\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, \neg p_{2}\right\},\left\{\neg p_{1}, p_{3}\right\},\left\{\neg p_{1}, \neg p_{3}\right\}\right\}\)


\section*{From DP to DPLL}

The resolution transformation does not increase the number of variables However, it may increase the size of the clause set

\section*{From DP to DPLL}

The resolution transformation does not increase the number of variables However, it may increase the size of the clause set

Question: If a variable appears positively in 3 clauses and negatively in 3 clauses, how many clauses after applying resolution?

\section*{From DP to DPLL}

The resolution transformation does not increase the number of variables However, it may increase the size of the clause set

Question: If a variable appears positively in 3 clauses and negatively in 3 clauses, how many clauses after applying resolution? 9

\section*{From DP to DPLL}

The resolution transformation does not increase the number of variables However, it may increase the size of the clause set

Question: If a variable appears positively in 3 clauses and negatively in 3 clauses, how many clauses after applying resolution? 9

In the worst case, the resolution transformation can cause a quadratic expansion each time it is applied

\section*{From DP to DPLL}

The resolution transformation does not increase the number of variables However, it may increase the size of the clause set

Question: If a variable appears positively in 3 clauses and negatively in 3 clauses, how many clauses after applying resolution? 9

In the worst case, the resolution transformation can cause a quadratic expansion each time it is applied

For large enough formulas, this can quickly exhaust the available memory

\section*{From DP to DPLL}

The DPLL procedure improves on DP by replacing resolution with splitting:

\section*{From DP to DPLL}

The DPLL procedure improves on DP by replacing resolution with splitting:
- Let \(\Delta\) be the input clause set
- Arbitrarily choose a literal / occurring in \(\triangle\)
- Recursively check the satisfiability of \(\Delta \cup\{\{l\}\}\)
- If result is SAT, return SAT
- Otherwise, recursively check the satisfiability of \(\Delta \cup\{\{\neg l\}\}\) and return that result

\section*{From DP to DPLL}

The DPLL procedure improves on DP by replacing resolution with splitting:
- Let \(\triangle\) be the input clause set
- Arbitrarily choose a literal / occurring in \(\triangle\)
- Recursively check the satisfiability of \(\Delta \cup\{\{l\}\}\)
- If result is SAT, return SAT
- Otherwise, recursively check the satisfiability of \(\Delta \cup\{\{\neg l\}\}\) and return that result

We will discuss DPLL in more detail next time```

