
CS:4980 Topics in Computer Science II

Introduction to Automated Reasoning

Decision Procedures for Satisfiability
in Propositional Logic

Cesare Tinelli

Spring 2024



Credits

These slides are based on slides originally developed by Cesare Tinelli at the University of
Iowa, and by Clark Barrett, Caroline Trippel, and Andrew (Haoze) Wu at Stanford University.
Adapted by permission.

1 / 23



Decision procedures for propositional logic

From now on, instead of wffs, we consider only their clausal form (clause sets)

2 / 23



Decision procedures for propositional logic

Observe:

● Each clause l1 ∨⋯ ∨ ln can be itself regarded as a set, of literals: { l1, . . . , ln }

● A set of clauses is satisfiable iff there is an interpretation of its variables that
satisfies at least one literal in each clause

2 / 23



Decision procedures for propositional logic

Observe:

● Each clause l1 ∨⋯ ∨ ln can be itself regarded as a set, of literals: { l1, . . . , ln }

● A set of clauses is satisfiable iff there is an interpretation of its variables that
satisfies at least one literal in each clause

2 / 23



Decision procedures for propositional logic

Observe:

● Each clause l1 ∨⋯ ∨ ln can be itself regarded as a set, of literals: { l1, . . . , ln }

● A set of clauses is satisfiable iff there is an interpretation of its variables that
satisfies at least one literal in each clause

Example:

● The clause set ∆ ∶= {p1 ∨ p3, ¬p1 ∨ p2 ∨ ¬p3 } can be represented as
{{p1,p3 }, {¬p1,p2,¬p3 }}

● v ∶= {p1 ↦ true,p2 ↦ true,p3 ↦ false} is a satisfying assignment for ∆

2 / 23



Decision procedures for propositional logic

Observe:

● Each clause l1 ∨⋯ ∨ ln can be itself regarded as a set, of literals: { l1, . . . , ln }

● A set of clauses is satisfiable iff there is an interpretation of its variables that
satisfies at least one literal in each clause

Observe:

● The empty clause set is trivially satisfiable (no constraints to satisfy)
● The empty clause is trivially unsatisfiable (no options to chose)

2 / 23



Decision procedures for propositional logic

Observe:

● Each clause l1 ∨⋯ ∨ ln can be itself regarded as a set, of literals: { l1, . . . , ln }

● A set of clauses is satisfiable iff there is an interpretation of its variables that
satisfies at least one literal in each clause

Observe:

● The empty clause set is trivially satisfiable (no constraints to satisfy)
● The empty clause is trivially unsatisfiable (no options to chose)

2 / 23



SAT Solver Overview: features

Automated reasoners for the satisfiability problem in PL are called SAT solvers

1. Backtracking search solvers
● Traversing and backtracking on a binary tree
● Sound, complete and terminating

2. Stochastic search solvers
● Solver guesses a full assignment v

● If the set is falsified by v, starts to flip values of variables according to some (greedy)
heuristic

● Sound but neither complete nor terminating
● Nevertheless, quite effective in certain applications

3 / 23



SAT Solver Overview: features

There are two main categories of modern SAT solvers, both working of clause sets:

1. Backtracking search solvers
● Traversing and backtracking on a binary tree
● Sound, complete and terminating

2. Stochastic search solvers
● Solver guesses a full assignment v

● If the set is falsified by v, starts to flip values of variables according to some (greedy)
heuristic

● Sound but neither complete nor terminating
● Nevertheless, quite effective in certain applications

3 / 23



SAT Solver Overview: features

There are two main categories of modern SAT solvers, both working of clause sets:

1. Backtracking search solvers
● Traversing and backtracking on a binary tree
● Sound, complete and terminating

2. Stochastic search solvers
● Solver guesses a full assignment v

● If the set is falsified by v, starts to flip values of variables according to some (greedy)
heuristic

● Sound but neither complete nor terminating
● Nevertheless, quite effective in certain applications

3 / 23



SAT Solver Overview: features

There are two main categories of modern SAT solvers, both working of clause sets:

1. Backtracking search solvers
● Traversing and backtracking on a binary tree
● Sound, complete and terminating

2. Stochastic search solvers
● Solver guesses a full assignment v

● If the set is falsified by v, starts to flip values of variables according to some (greedy)
heuristic

● Sound but neither complete nor terminating
● Nevertheless, quite effective in certain applications

3 / 23



SAT Solver Overview: features

There are two main categories of modern SAT solvers, both working of clause sets:

1. Backtracking search solvers
● Traversing and backtracking on a binary tree
● Sound, complete and terminating

2. Stochastic search solvers
● Solver guesses a full assignment v

● If the set is falsified by v, starts to flip values of variables according to some (greedy)
heuristic

● Sound but neither complete nor terminating
● Nevertheless, quite effective in certain applications

3 / 23

We focus on backtracking solvers in this course



SAT Solver Overview: performance

The SAT problem is hard (NP-complete). How well do SAT solvers do in practice?

● Modern SAT solvers can solve many real-life CNF formulas with hundreds of
thousands or even millions of variables in a reasonable amount of time

● There are also instances of problems two orders of magnitude smaller that the
same tools cannot solve

● In general, it is very hard to predict which instance is going to be hard to solve,
without actually attempting to solve it

SAT portfolio solvers: use machine-learning techniques to extract features of CNF
formulas in order to select the most suitable SAT solver for the job

4 / 23



SAT Solver Overview: performance

The SAT problem is hard (NP-complete). How well do SAT solvers do in practice?

● Modern SAT solvers can solve many real-life CNF formulas with hundreds of
thousands or even millions of variables in a reasonable amount of time

● There are also instances of problems two orders of magnitude smaller that the
same tools cannot solve

● In general, it is very hard to predict which instance is going to be hard to solve,
without actually attempting to solve it

SAT portfolio solvers: use machine-learning techniques to extract features of CNF
formulas in order to select the most suitable SAT solver for the job

4 / 23



SAT Solver Overview: performance

The SAT problem is hard (NP-complete). How well do SAT solvers do in practice?

● Modern SAT solvers can solve many real-life CNF formulas with hundreds of
thousands or even millions of variables in a reasonable amount of time

● There are also instances of problems two orders of magnitude smaller that the
same tools cannot solve

● In general, it is very hard to predict which instance is going to be hard to solve,
without actually attempting to solve it

SAT portfolio solvers: use machine-learning techniques to extract features of CNF
formulas in order to select the most suitable SAT solver for the job

4 / 23



SAT Solver Overview: performance

The SAT problem is hard (NP-complete). How well do SAT solvers do in practice?

● Modern SAT solvers can solve many real-life CNF formulas with hundreds of
thousands or even millions of variables in a reasonable amount of time

● There are also instances of problems two orders of magnitude smaller that the
same tools cannot solve

● In general, it is very hard to predict which instance is going to be hard to solve,
without actually attempting to solve it

SAT portfolio solvers: use machine-learning techniques to extract features of CNF
formulas in order to select the most suitable SAT solver for the job

4 / 23



SAT Solver Overview: performance

The SAT problem is hard (NP-complete). How well do SAT solvers do in practice?

● Modern SAT solvers can solve many real-life CNF formulas with hundreds of
thousands or even millions of variables in a reasonable amount of time

● There are also instances of problems two orders of magnitude smaller that the
same tools cannot solve

● In general, it is very hard to predict which instance is going to be hard to solve,
without actually attempting to solve it

SAT portfolio solvers: use machine-learning techniques to extract features of CNF
formulas in order to select the most suitable SAT solver for the job

4 / 23



SAT Solver Overview: performance

0 1,000 2,000 3,000 4,000 5,000
0

50

100

150

200

250

CPU time

so
lv
ed

in
st
a
n
ce
s

SAT Competition Winners on the SC2020 Benchmark Suite

kissat-2020
maple-lcm-disc-cb-dl-v3-2019
maple-lcm-dist-cb-2018
maple-lcm-dist-2017
maple-comsps-drup-2016
lingeling-2014
abcdsat-2015
lingeling-2013
glucose-2012
glucose-2011
cryptominisat-2010
precosat-2009
minisat-2008
berkmin-2003
minisat-2006
rsat-2007
satelite-gti-2005
zchaff-2004
limmat-2002

data produced by Armin Biere and Marijn Heule

Left: Size of industrial clause sets (y-axis) regularly solved by solvers in a few hours each year
(x-axis). Instances come from realistic problems like planning or hardware verification

Right: Top contenders in SAT solver competitions from 2002 to 2020; each point shows number
of solved instances (y-axis) per unit of time (x-axis). Note that no. of instances solved
within 20 minutes more than doubled in less than a decade

5 / 23



SAT Solver Overview: performance

Success of SAT solvers can largely be attributed to their ability to:

● Learn from failed assignments
● Prune large parts of the search spaces quickly
● Focus first on important variables

6 / 23



SAT Solver Overview: performance

Success of SAT solvers can largely be attributed to their ability to:

● Learn from failed assignments
● Prune large parts of the search spaces quickly
● Focus first on important variables

6 / 23



SAT Solver Overview: performance

Success of SAT solvers can largely be attributed to their ability to:

● Learn from failed assignments
● Prune large parts of the search spaces quickly
● Focus first on important variables

6 / 23



The DIMACS format

A standard format for clause sets accepted by most modern SAT solvers

7 / 23



The DIMACS format

● Comment lines: Start with a lower-case letter c

● Problem line: p cnf <#variables > <#clauses >

● Clause lines:
● Each variable is assigned a unique index i greater than 0
● A positive literal is represented by an index
● A negative literal is represented by the negation of its complement’s index
● A clause is represented as a list of literals separated by white space
● Value 0 is used to mark the end of a clause

Example:

{p1 ∨ ¬p3, p2 ∨ p3 ∨ ¬p1 }

c example.cnf
p cnf 3 2
1 -3 0
2 3 -1 0

7 / 23



The DIMACS format

● Comment lines: Start with a lower-case letter c

● Problem line: p cnf <#variables > <#clauses >

● Clause lines:
● Each variable is assigned a unique index i greater than 0
● A positive literal is represented by an index
● A negative literal is represented by the negation of its complement’s index
● A clause is represented as a list of literals separated by white space
● Value 0 is used to mark the end of a clause

Example:

{p1 ∨ ¬p3, p2 ∨ p3 ∨ ¬p1 }

c example.cnf
p cnf 3 2
1 -3 0
2 3 -1 0

7 / 23



Basic SAT solvers

● 1960: Davis-Putnam (DP) algorithm

● 1961: Davis-Putnam-Logemann-Loveland (DPLL) algorithm

● 1996: Modern SAT solver based on Conflict-Driven Clause Learning (CDCL)
derived from DP and DPLL

8 / 23



Basic SAT solvers

● 1960: Davis-Putnam (DP) algorithm

● 1961: Davis-Putnam-Logemann-Loveland (DPLL) algorithm

● 1996: Modern SAT solver based on Conflict-Driven Clause Learning (CDCL)
derived from DP and DPLL

8 / 23



A proof system for clause sets: resolution

There is a refutation sound and complete proof system for clause sets ∆
that consists of just one proof rule!

RESOLVE C1,C2 ∈∆ p ∈ C1 ¬p ∈ C2 C = (C1 ∖ {p}) ∪ (C2 ∖ {¬p}) C ∉∆
∆ ∪ {C}

Clause C is a (p-)resolvent of C1 and C2, and p is the pivot

Example: ∆ ∶= {{p1,p3 },{p2,¬p3 }} has a p3-resolvent: {p1,p2 }

Note: if C is a resolvent of C1,C2 ∈∆ then {C1,C2} ⊧ C and so ∆ ⊧∆ ∪ {C}

9 / 23



A proof system for clause sets: resolution

There is a refutation sound and complete proof system for clause sets ∆
that consists of just one proof rule!

RESOLVE C1,C2 ∈∆ p ∈ C1 ¬p ∈ C2 C = (C1 ∖ {p}) ∪ (C2 ∖ {¬p}) C ∉∆
∆ ∪ {C}

Clause C is a (p-)resolvent of C1 and C2, and p is the pivot

Example: ∆ ∶= {{p1,p3 },{p2,¬p3 }} has a p3-resolvent: {p1,p2 }

Note: if C is a resolvent of C1,C2 ∈∆ then {C1,C2} ⊧ C and so ∆ ⊧∆ ∪ {C}

9 / 23



A proof system for clause sets: resolution

There is a refutation sound and complete proof system for clause sets ∆
that consists of just one proof rule!

RESOLVE C1,C2 ∈∆ p ∈ C1 ¬p ∈ C2 C = (C1 ∖ {p}) ∪ (C2 ∖ {¬p}) C ∉∆
∆ ∪ {C}

Clause C is a (p-)resolvent of C1 and C2, and p is the pivot

Example: ∆ ∶= {{p1,p3 },{p2,¬p3 }} has a p3-resolvent: {p1,p2 }

Note: if C is a resolvent of C1,C2 ∈∆ then {C1,C2} ⊧ C and so ∆ ⊧∆ ∪ {C}

9 / 23



A proof system for clause sets: resolution

There is a refutation sound and complete proof system for clause sets ∆
that consists of just one proof rule!

RESOLVE C1,C2 ∈∆ p ∈ C1 ¬p ∈ C2 C = (C1 ∖ {p}) ∪ (C2 ∖ {¬p}) C ∉∆
∆ ∪ {C}

Clause C is a (p-)resolvent of C1 and C2, and p is the pivot

Example: ∆ ∶= {{p1,p3 },{p2,¬p3 }} has a p3-resolvent: {p1,p2 }

Note: if C is a resolvent of C1,C2 ∈∆ then {C1,C2} ⊧ C and so ∆ ⊧∆ ∪ {C}

9 / 23



A proof system for clause sets: resolution

There is a refutation sound and complete proof system for clause sets ∆
that consists of just one proof rule!

RESOLVE C1,C2 ∈∆ p ∈ C1 ¬p ∈ C2 C = (C1 ∖ {p}) ∪ (C2 ∖ {¬p}) C ∉∆
∆ ∪ {C}

Clause C is a (p-)resolvent of C1 and C2, and p is the pivot

Example: ∆ ∶= {{p1,p3 },{p2,¬p3 }} has a p3-resolvent: {p1,p2 }

Note: if C is a resolvent of C1,C2 ∈∆ then {C1,C2} ⊧ C and so ∆ ⊧∆ ∪ {C}

9 / 23



A proof system for clause sets: resolution

There is a refutation sound and complete proof system for clause sets ∆
that consists of just one proof rule!

RESOLVE C1,C2 ∈∆ p ∈ C1 ¬p ∈ C2 C = (C1 ∖ {p}) ∪ (C2 ∖ {¬p}) C ∉∆
∆ ∪ {C}

Clause C is a (p-)resolvent of C1 and C2, and p is the pivot

Example: ∆ ∶= {{p1,p3 },{p2,¬p3 }} has a p3-resolvent: {p1,p2 }

Note: if C is a resolvent of C1,C2 ∈∆ then {C1,C2} ⊧ C and so ∆ ⊧∆ ∪ {C}

9 / 23



Proofs by resolution

Example: Prove that the following clause set is unsatisfiable

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 }}

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 },{p1 }}

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 },{p1 },{p3 }}

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 },{p1 },{p3 },{¬p3 }}

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 },{p1 },{p3 },{¬p3 },{ }}

● The last clause set is unsatisfiable since it contains the empty clause { }
● Since every clause set entails the next, it must be that the first one is unsatisfiable

10 / 23



Proofs by resolution

Example: Prove that the following clause set is unsatisfiable

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 }}

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 },{p1 }}

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 },{p1 },{p3 }}

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 },{p1 },{p3 },{¬p3 }}

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 },{p1 },{p3 },{¬p3 },{ }}

● The last clause set is unsatisfiable since it contains the empty clause { }
● Since every clause set entails the next, it must be that the first one is unsatisfiable

10 / 23



Proofs by resolution

Example: Prove that the following clause set is unsatisfiable

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 }}

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 },{p1 }}

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 },{p1 },{p3 }}

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 },{p1 },{p3 },{¬p3 }}

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 },{p1 },{p3 },{¬p3 },{ }}

● The last clause set is unsatisfiable since it contains the empty clause { }
● Since every clause set entails the next, it must be that the first one is unsatisfiable

10 / 23



Proofs by resolution

Example: Prove that the following clause set is unsatisfiable

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 }}

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 },{p1 }}

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 },{p1 },{p3 }}

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 },{p1 },{p3 },{¬p3 }}

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 },{p1 },{p3 },{¬p3 },{ }}

● The last clause set is unsatisfiable since it contains the empty clause { }
● Since every clause set entails the next, it must be that the first one is unsatisfiable

10 / 23



Proofs by resolution

Example: Prove that the following clause set is unsatisfiable

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 }}

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 },{p1 }}

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 },{p1 },{p3 }}

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 },{p1 },{p3 },{¬p3 }}

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 },{p1 },{p3 },{¬p3 },{ }}

● The last clause set is unsatisfiable since it contains the empty clause { }
● Since every clause set entails the next, it must be that the first one is unsatisfiable

10 / 23



Proofs by resolution

Example: Prove that the following clause set is unsatisfiable

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 }}

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 },{p1 }}

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 },{p1 },{p3 }}

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 },{p1 },{p3 },{¬p3 }}

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 },{p1 },{p3 },{¬p3 },{ }}

● The last clause set is unsatisfiable since it contains the empty clause { }
● Since every clause set entails the next, it must be that the first one is unsatisfiable

10 / 23



Proofs by resolution

Example: Prove that the following clause set is unsatisfiable

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 }}

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 },{p1 }}

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 },{p1 },{p3 }}

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 },{p1 },{p3 },{¬p3 }}

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 },{p1 },{p3 },{¬p3 },{ }}

● The last clause set is unsatisfiable since it contains the empty clause { }
● Since every clause set entails the next, it must be that the first one is unsatisfiable

10 / 23



Proofs by resolution

Example: Prove that the following clause set is unsatisfiable

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 }}

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 },{p1 }}

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 },{p1 },{p3 }}

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 },{p1 },{p3 },{¬p3 }}

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 },{p1 },{p3 },{¬p3 },{ }}

● The last clause set is unsatisfiable since it contains the empty clause { }
● Since every clause set entails the next, it must be that the first one is unsatisfiable

10 / 23



Proofs by resolution

Example: Prove that the following clause set is unsatisfiable

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 }}

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 },{p1 }}

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 },{p1 },{p3 }}

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 },{p1 },{p3 },{¬p3 }}

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 },{p1 },{p3 },{¬p3 },{ }}

● The last clause set is unsatisfiable since it contains the empty clause { }
● Since every clause set entails the next, it must be that the first one is unsatisfiable

10 / 23



Proofs by resolution

Example: Prove that the following clause set is unsatisfiable

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 }}

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 },{p1 }}

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 },{p1 },{p3 }}

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 },{p1 },{p3 },{¬p3 }}

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 },{p1 },{p3 },{¬p3 },{ }}

● The last clause set is unsatisfiable since it contains the empty clause { }
● Since every clause set entails the next, it must be that the first one is unsatisfiable

10 / 23



Proofs by resolution

Example: Prove that the following clause set is unsatisfiable

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 }}

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 },{p1 }}

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 },{p1 },{p3 }}

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 },{p1 },{p3 },{¬p3 }}

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 },{p1 },{p3 },{¬p3 },{ }}

● The last clause set is unsatisfiable since it contains the empty clause { }
● Since every clause set entails the next, it must be that the first one is unsatisfiable

10 / 23



A resolution-based satisfiability proof system

● In addition to the SAT and UNSAT states, we consider states of the form

⟨∆,Φ⟩

with ∆ and Φ clause sets

● Initial states have the form
⟨∆0,{}⟩

where ∆0 is the clause set to be checked for satisfiability

11 / 23



A resolution-based satisfiability proof system

We modify the resolution rule RESOLVE as highlighted below and add three more rules

RESOLVE C1,C2 ∈∆ p ∈ C1 ¬p ∈ C2 C = (C1 ∖ {p}) ∪ (C2 ∖ {¬p}) C ∉∆ ∪Φ
∆ ∶=∆ ∪ {C}

CLASH C ∈∆ p,¬p ∈ C
∆ ∶=∆ ∖ {C} Φ ∶= Φ ∪ {C}

UNSAT {} ∈∆UNSAT SAT No other rules apply
SAT

This proof system is sound, complete and terminating

12 / 23



A resolution-based satisfiability proof system

We modify the resolution rule RESOLVE as highlighted below and add three more rules

RESOLVE C1,C2 ∈∆ p ∈ C1 ¬p ∈ C2 C = (C1 ∖ {p}) ∪ (C2 ∖ {¬p}) C ∉∆ ∪Φ
∆ ∶=∆ ∪ {C}

CLASH C ∈∆ p,¬p ∈ C
∆ ∶=∆ ∖ {C} Φ ∶= Φ ∪ {C}

UNSAT {} ∈∆UNSAT SAT No other rules apply
SAT

This proof system is sound, complete and terminating

12 / 23



A resolution-based decision procedure

Given a clause set ∆, apply CLASH or RESOLVE until either

1. an empty clause is derived (return UNSAT)

2. neither applies (return SAT)

This procedure is terminating and decides the SAT problem

13 / 23



A resolution-based decision procedure

Given a clause set ∆, apply CLASH or RESOLVE until either

1. an empty clause is derived (return UNSAT)

2. neither applies (return SAT)

This procedure is terminating and decides the SAT problem

13 / 23



Unit resolution

Notation If l is a literal and p is its variable, l̄ =
⎧⎪⎪
⎨
⎪⎪⎩

¬p if l = p
p if l = ¬p

The unit resolution rule is a special case of resolution where one of the resolving
clauses is a unit clause, i.e., a clause with only one literal

UNIT RESOLVE C1,C2 ∈∆ C1 = { l } C2 = { l̄ } ∪ D
∆ ∪ {D}

14 / 23



Unit resolution

Notation If l is a literal and p is its variable, l̄ =
⎧⎪⎪
⎨
⎪⎪⎩

¬p if l = p
p if l = ¬p

The unit resolution rule is a special case of resolution where one of the resolving
clauses is a unit clause, i.e., a clause with only one literal

UNIT RESOLVE C1,C2 ∈∆ C1 = { l } C2 = { l̄ } ∪ D
∆ ∪ {D}

14 / 23



Unit resolution

Notation If l is a literal and p is its variable, l̄ =
⎧⎪⎪
⎨
⎪⎪⎩

¬p if l = p
p if l = ¬p

The unit resolution rule is a special case of resolution where one of the resolving
clauses is a unit clause, i.e., a clause with only one literal

UNIT RESOLVE C1,C2 ∈∆ C1 = { l } C2 = { l̄ } ∪ D
∆ ∪ {D}

A proof system with unit resolution alone is not refutation-complete
(consider an unsat ∆ with no unit clauses)

14 / 23



Unit resolution

Notation If l is a literal and p is its variable, l̄ =
⎧⎪⎪
⎨
⎪⎪⎩

¬p if l = p
p if l = ¬p

The unit resolution rule is a special case of resolution where one of the resolving
clauses is a unit clause, i.e., a clause with only one literal

UNIT RESOLVE C1,C2 ∈∆ C1 = { l } C2 = { l̄ } ∪ D
∆ ∪ {D}

Modern SAT solvers use unit resolution plus backtracking search for deciding SAT

14 / 23



Davis-Putnam (DP) procedure
A decision procedure for the SAT problem

First procedure to implement something more sophisticated than truth tables

DP leverages 4 satisfiability-preserving transformations:

● Unit propagation
● Pure literal elimination
● Tautology elimination
● Exhaustive resolution

15 / 23



Davis-Putnam (DP) procedure
A decision procedure for the SAT problem

First procedure to implement something more sophisticated than truth tables

DP leverages 4 satisfiability-preserving transformations:

● Unit propagation
● Pure literal elimination
● Tautology elimination
● Exhaustive resolution

15 / 23



Davis-Putnam (DP) procedure
A decision procedure for the SAT problem

First procedure to implement something more sophisticated than truth tables

DP leverages 4 satisfiability-preserving transformations:

● Unit propagation
● Pure literal elimination
● Tautology elimination
● Exhaustive resolution

15 / 23



Davis-Putnam (DP) procedure
A decision procedure for the SAT problem

First procedure to implement something more sophisticated than truth tables

DP leverages 4 satisfiability-preserving transformations:

● Unit propagation
● Pure literal elimination
● Tautology elimination
● Exhaustive resolution

15 / 23



Davis-Putnam (DP) procedure
A decision procedure for the SAT problem

First procedure to implement something more sophisticated than truth tables

DP leverages 4 satisfiability-preserving transformations:

● Unit propagation
● Pure literal elimination
● Tautology elimination
● Exhaustive resolution

15 / 23



Davis-Putnam (DP) procedure
A decision procedure for the SAT problem

First procedure to implement something more sophisticated than truth tables

DP leverages 4 satisfiability-preserving transformations:

● Unit propagation
● Pure literal elimination
● Tautology elimination
● Exhaustive resolution

15 / 23



Davis-Putnam (DP) procedure
A decision procedure for the SAT problem

First procedure to implement something more sophisticated than truth tables

DP leverages 4 satisfiability-preserving transformations:

● Unit propagation
● Pure literal elimination
● Tautology elimination
● Exhaustive resolution

15 / 23



Davis-Putnam (DP) procedure
A decision procedure for the SAT problem

First procedure to implement something more sophisticated than truth tables

DP leverages 4 satisfiability-preserving transformations:

● Unit propagation
● Pure literal elimination
● Tautology elimination
● Exhaustive resolution

The first two transformations reduce the total number of literals in the clause set

15 / 23



Davis-Putnam (DP) procedure
A decision procedure for the SAT problem

First procedure to implement something more sophisticated than truth tables

DP leverages 4 satisfiability-preserving transformations:

● Unit propagation
● Pure literal elimination
● Tautology elimination
● Exhaustive resolution

The first two transformations reduce the total number of literals in the clause set

The third transformation reduces the number of clauses

15 / 23



Davis-Putnam (DP) procedure
A decision procedure for the SAT problem

First procedure to implement something more sophisticated than truth tables

DP leverages 4 satisfiability-preserving transformations:

● Unit propagation
● Pure literal elimination
● Tautology elimination
● Exhaustive resolution

Repeatedly applying these tranformations, eventually leads to
an empty clause (indicating unsatisfiability) or
an empty clause set (indicating satisfiability)

15 / 23



DP procedure: unit propagation
Also called the 1-literal rule

Premise: The clause set ∆ contains a unit clause C = { l }

Conclusion:

● Remove all occurrences of l̄ from clauses in ∆

● Remove all clauses containing l (including C)

16 / 23



DP procedure: unit propagation
Also called the 1-literal rule

Premise: The clause set ∆ contains a unit clause C = { l }

Conclusion:

● Remove all occurrences of l̄ from clauses in ∆

● Remove all clauses containing l (including C)

16 / 23



DP procedure: unit propagation
Also called the 1-literal rule

Premise: The clause set ∆ contains a unit clause C = { l }

Conclusion:

● Remove all occurrences of l̄ from clauses in ∆

● Remove all clauses containing l (including C)

16 / 23



DP procedure: unit propagation
Also called the 1-literal rule

Premise: The clause set ∆ contains a unit clause C = { l }

Conclusion:

● Remove all occurrences of l̄ from clauses in ∆

● Remove all clauses containing l (including C)

Justification: The only way to satisfy C is to make l true; thus, (i) l̄ cannot be used to
satisfy any clause, and (ii) any clause containing l is satisfied and can be ignored

16 / 23



DP procedure: unit propagation
Also called the 1-literal rule

Premise: The clause set ∆ contains a unit clause C = { l }

Conclusion:

● Remove all occurrences of l̄ from clauses in ∆

● Remove all clauses containing l (including C)

Example:

∆0 ∶= {{p1 },{p1,p4 },{p2,p3,¬p1 }}

16 / 23



DP procedure: unit propagation
Also called the 1-literal rule

Premise: The clause set ∆ contains a unit clause C = { l }

Conclusion:

● Remove all occurrences of l̄ from clauses in ∆

● Remove all clauses containing l (including C)

Example:

∆0 ∶= {{p1 },{p1,p4 },{p2,p3,¬p1 }}

∆1 ∶= {{p4 },{p2,p3 }} (unit propagation on p1)

16 / 23



DP procedure: unit propagation
Also called the 1-literal rule

Premise: The clause set ∆ contains a unit clause C = { l }

Conclusion:

● Remove all occurrences of l̄ from clauses in ∆

● Remove all clauses containing l (including C)

Example:

∆0 ∶= {{p1 },{p1,p4 },{p2,p3,¬p1 }}

∆1 ∶= {{p4 },{p2,p3 }} (unit propagation on p1)

∆2 ∶= {{p2,p3 }} (unit propagation on p4)

16 / 23



DP procedure: pure literal elimination
Also called the affirmation-negation rule

Premise: A literal l occurs in ∆ but l̄ does not

Conclusion: Delete all clauses containing l

17 / 23



DP procedure: pure literal elimination
Also called the affirmation-negation rule

Premise: A literal l occurs in ∆ but l̄ does not

Conclusion: Delete all clauses containing l

17 / 23



DP procedure: pure literal elimination
Also called the affirmation-negation rule

Premise: A literal l occurs in ∆ but l̄ does not

Conclusion: Delete all clauses containing l

17 / 23



DP procedure: pure literal elimination
Also called the affirmation-negation rule

Premise: A literal l occurs in ∆ but l̄ does not

Conclusion: Delete all clauses containing l

Justification: For every assignment that satisfies ∆ there is one that satisfies both ∆
and l; thus, all clauses containing l can be deleted since they can always be satisfied

17 / 23



DP procedure: pure literal elimination
Also called the affirmation-negation rule

Premise: A literal l occurs in ∆ but l̄ does not

Conclusion: Delete all clauses containing l

Example:

∆0 ∶= {{p1,p2,¬p3 },{¬p1,p4 },{¬p3,¬p2 },{¬p3,¬p4 }}

17 / 23



DP procedure: pure literal elimination
Also called the affirmation-negation rule

Premise: A literal l occurs in ∆ but l̄ does not

Conclusion: Delete all clauses containing l

Example:

∆0 ∶= {{p1,p2,¬p3 },{¬p1,p4 },{¬p3,¬p2 },{¬p3,¬p4 }}

∆1 ∶= {{¬p1,p4 }}

17 / 23



DP procedure: tautology elimination
Also called the clashing clause rule

Premise: a clause C ∈∆ contains both p and ¬p

Conclusion: remove C from ∆

Justification: C is satisfied by every variable assignment

18 / 23



DP procedure: tautology elimination
Also called the clashing clause rule

Premise: a clause C ∈∆ contains both p and ¬p

Conclusion: remove C from ∆

Justification: C is satisfied by every variable assignment

18 / 23



DP procedure: tautology elimination
Also called the clashing clause rule

Premise: a clause C ∈∆ contains both p and ¬p

Conclusion: remove C from ∆

Justification: C is satisfied by every variable assignment

18 / 23



DP procedure: tautology elimination
Also called the clashing clause rule

Premise: a clause C ∈∆ contains both p and ¬p

Conclusion: remove C from ∆

Justification: C is satisfied by every variable assignment

18 / 23



DP procedure: resolution
Also called the rule for eliminating atomic formulas

Premise: A variable p occurs in a clause of ∆ and ¬p occurs in another clause

Conclusion:

● Let P be the set of clauses in ∆ where p occurs positively and
let N be the set of clauses in ∆ where p occurs negatively

● Replace the clauses in P and N with those obtained by resolution on p
using all pairs of clauses from P × N

19 / 23



DP procedure: resolution
Also called the rule for eliminating atomic formulas

Premise: A variable p occurs in a clause of ∆ and ¬p occurs in another clause

Conclusion:

● Let P be the set of clauses in ∆ where p occurs positively and
let N be the set of clauses in ∆ where p occurs negatively

● Replace the clauses in P and N with those obtained by resolution on p
using all pairs of clauses from P × N

19 / 23



DP procedure: resolution
Also called the rule for eliminating atomic formulas

Premise: A variable p occurs in a clause of ∆ and ¬p occurs in another clause

Conclusion:

● Let P be the set of clauses in ∆ where p occurs positively and
let N be the set of clauses in ∆ where p occurs negatively

● Replace the clauses in P and N with those obtained by resolution on p
using all pairs of clauses from P × N

19 / 23



DP procedure: resolution
Also called the rule for eliminating atomic formulas

Premise: A variable p occurs in a clause of ∆ and ¬p occurs in another clause

Conclusion:

● Let P be the set of clauses in ∆ where p occurs positively and
let N be the set of clauses in ∆ where p occurs negatively

● Replace the clauses in P and N with those obtained by resolution on p
using all pairs of clauses from P × N

19 / 23



DP procedure: resolution
Also called the rule for eliminating atomic formulas

Premise: A variable p occurs in a clause of ∆ and ¬p occurs in another clause

Conclusion:

● Let P be the set of clauses in ∆ where p occurs positively and
let N be the set of clauses in ∆ where p occurs negatively

● Replace the clauses in P and N with those obtained by resolution on p
using all pairs of clauses from P × N

Example:

∆0 ∶= {{p1,p2 },{¬p1,p3 },{¬p1,¬p3,p4 },{p2,¬p4 }}

19 / 23



DP procedure: resolution
Also called the rule for eliminating atomic formulas

Premise: A variable p occurs in a clause of ∆ and ¬p occurs in another clause

Conclusion:

● Let P be the set of clauses in ∆ where p occurs positively and
let N be the set of clauses in ∆ where p occurs negatively

● Replace the clauses in P and N with those obtained by resolution on p
using all pairs of clauses from P × N

Example:

∆0 ∶= {{p1,p2 },{¬p1,p3 },{¬p1,¬p3,p4 },{p2,¬p4 }}

∆1 ∶= {{p2,p3 },{p2,¬p3,p4 },{p2,¬p4 }} (resolution on p1)
19 / 23



DP Example 1

∆ ∶= {{p1,p2,p3 },{p2,¬p3,¬p6 },{¬p2,p5 }}

{p1,p2,p3 } {p2,¬p3,¬p6 } {¬p2,p5 }Res p2

{¬p3,¬p6,p5 }{p1,p3,p5 }Res p3

{p1,p5,¬p6 }PL p1

∅SAT

20 / 23



DP Example 1

∆ ∶= {{p1,p2,p3 },{p2,¬p3,¬p6 },{¬p2,p5 }}

{p1,p2,p3 } {p2,¬p3,¬p6 } {¬p2,p5 }Res p2

{¬p3,¬p6,p5 }{p1,p3,p5 }Res p3

{p1,p5,¬p6 }PL p1

∅SAT

20 / 23



DP Example 1

∆ ∶= {{p1,p2,p3 },{p2,¬p3,¬p6 },{¬p2,p5 }}

{p1,p2,p3 } {p2,¬p3,¬p6 } {¬p2,p5 }Res p2

{¬p3,¬p6,p5 }{p1,p3,p5 }Res p3

{p1,p5,¬p6 }PL p1

∅SAT

20 / 23



DP Example 1

∆ ∶= {{p1,p2,p3 },{p2,¬p3,¬p6 },{¬p2,p5 }}

{p1,p2,p3 } {p2,¬p3,¬p6 } {¬p2,p5 }Res p2

{¬p3,¬p6,p5 }{p1,p3,p5 }Res p3

{p1,p5,¬p6 }PL p1

∅SAT

20 / 23



DP Example 1

∆ ∶= {{p1,p2,p3 },{p2,¬p3,¬p6 },{¬p2,p5 }}

{p1,p2,p3 } {p2,¬p3,¬p6 } {¬p2,p5 }Res p2

{¬p3,¬p6,p5 }{p1,p3,p5 }Res p3

{p1,p5,¬p6 }PL p1

∅SAT

20 / 23



DP Example 1

∆ ∶= {{p1,p2,p3 },{p2,¬p3,¬p6 },{¬p2,p5 }}

{p1,p2,p3 } {p2,¬p3,¬p6 } {¬p2,p5 }Res p2

{¬p3,¬p6,p5 }{p1,p3,p5 }Res p3

{p1,p5,¬p6 }PL p1

∅SAT

20 / 23



DP Example 1

∆ ∶= {{p1,p2,p3 },{p2,¬p3,¬p6 },{¬p2,p5 }}

{p1,p2,p3 } {p2,¬p3,¬p6 } {¬p2,p5 }Res p2

{¬p3,¬p6,p5 }{p1,p3,p5 }Res p3

{p1,p5,¬p6 }PL p1

∅SAT

20 / 23



DP Example 1

∆ ∶= {{p1,p2,p3 },{p2,¬p3,¬p6 },{¬p2,p5 }}

{p1,p2,p3 } {p2,¬p3,¬p6 } {¬p2,p5 }Res p2

{¬p3,¬p6,p5 }{p1,p3,p5 }Res p3

{p1,p5,¬p6 }PL p1

∅SAT

20 / 23



DP Example 2

∆ ∶= {{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 }}

{p1,p2 } {p1,¬p2 } {¬p1,p3 } {¬p1,¬p3 }Res p2

{p1 } {¬p1,p3 }{¬p1,¬p3 }UP p1

{p3 } {¬p3 }Res p3

{ }UNSAT

21 / 23



DP Example 2

∆ ∶= {{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 }}

{p1,p2 } {p1,¬p2 } {¬p1,p3 } {¬p1,¬p3 }Res p2

{p1 } {¬p1,p3 }{¬p1,¬p3 }UP p1

{p3 } {¬p3 }Res p3

{ }UNSAT

21 / 23



DP Example 2

∆ ∶= {{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 }}

{p1,p2 } {p1,¬p2 } {¬p1,p3 } {¬p1,¬p3 }Res p2

{p1 } {¬p1,p3 }{¬p1,¬p3 }UP p1

{p3 } {¬p3 }Res p3

{ }UNSAT

21 / 23



DP Example 2

∆ ∶= {{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 }}

{p1,p2 } {p1,¬p2 } {¬p1,p3 } {¬p1,¬p3 }Res p2

{p1 } {¬p1,p3 }{¬p1,¬p3 }UP p1

{p3 } {¬p3 }Res p3

{ }UNSAT

21 / 23



DP Example 2

∆ ∶= {{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 }}

{p1,p2 } {p1,¬p2 } {¬p1,p3 } {¬p1,¬p3 }Res p2

{p1 } {¬p1,p3 }{¬p1,¬p3 }UP p1

{p3 } {¬p3 }Res p3

{ }UNSAT

21 / 23



DP Example 2

∆ ∶= {{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 }}

{p1,p2 } {p1,¬p2 } {¬p1,p3 } {¬p1,¬p3 }Res p2

{p1 } {¬p1,p3 }{¬p1,¬p3 }UP p1

{p3 } {¬p3 }Res p3

{ }UNSAT

21 / 23



DP Example 2

∆ ∶= {{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 }}

{p1,p2 } {p1,¬p2 } {¬p1,p3 } {¬p1,¬p3 }Res p2

{p1 } {¬p1,p3 }{¬p1,¬p3 }UP p1

{p3 } {¬p3 }Res p3

{ }UNSAT

21 / 23



From DP to DPLL

The resolution transformation does not increase the number of variables
However, it may increase the size of the clause set

Question: If a variable appears positively in 3 clauses and negatively in 3 clauses,
how many clauses after applying resolution? 9

In the worst case, the resolution transformation can cause a quadratic expansion
each time it is applied

For large enough formulas, this can quickly exhaust the available memory

22 / 23



From DP to DPLL

The resolution transformation does not increase the number of variables
However, it may increase the size of the clause set

Question: If a variable appears positively in 3 clauses and negatively in 3 clauses,
how many clauses after applying resolution? 9

In the worst case, the resolution transformation can cause a quadratic expansion
each time it is applied

For large enough formulas, this can quickly exhaust the available memory

22 / 23



From DP to DPLL

The resolution transformation does not increase the number of variables
However, it may increase the size of the clause set

Question: If a variable appears positively in 3 clauses and negatively in 3 clauses,
how many clauses after applying resolution? 9

In the worst case, the resolution transformation can cause a quadratic expansion
each time it is applied

For large enough formulas, this can quickly exhaust the available memory

22 / 23



From DP to DPLL

The resolution transformation does not increase the number of variables
However, it may increase the size of the clause set

Question: If a variable appears positively in 3 clauses and negatively in 3 clauses,
how many clauses after applying resolution? 9

In the worst case, the resolution transformation can cause a quadratic expansion
each time it is applied

For large enough formulas, this can quickly exhaust the available memory

22 / 23



From DP to DPLL

The resolution transformation does not increase the number of variables
However, it may increase the size of the clause set

Question: If a variable appears positively in 3 clauses and negatively in 3 clauses,
how many clauses after applying resolution? 9

In the worst case, the resolution transformation can cause a quadratic expansion
each time it is applied

For large enough formulas, this can quickly exhaust the available memory

22 / 23



From DP to DPLL

The DPLL procedure improves on DP by replacing resolution with splitting:

● Let ∆ be the input clause set
● Arbitrarily choose a literal l occurring in ∆

● Recursively check the satisfiability of ∆ ∪ {{ l }}
● If result is SAT, return SAT
● Otherwise, recursively check the satisfiability of ∆ ∪ {{¬l }}

and return that result

We will discuss DPLL in more detail next time

23 / 23



From DP to DPLL

The DPLL procedure improves on DP by replacing resolution with splitting:

● Let ∆ be the input clause set
● Arbitrarily choose a literal l occurring in ∆

● Recursively check the satisfiability of ∆ ∪ {{ l }}
● If result is SAT, return SAT
● Otherwise, recursively check the satisfiability of ∆ ∪ {{¬l }}

and return that result

We will discuss DPLL in more detail next time

23 / 23



From DP to DPLL

The DPLL procedure improves on DP by replacing resolution with splitting:

● Let ∆ be the input clause set
● Arbitrarily choose a literal l occurring in ∆

● Recursively check the satisfiability of ∆ ∪ {{ l }}
● If result is SAT, return SAT
● Otherwise, recursively check the satisfiability of ∆ ∪ {{¬l }}

and return that result

We will discuss DPLL in more detail next time

23 / 23


