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Decision procedures for propositional logic

From now on, instead of wffs, we consider only their clausal form (clause sets)

2 / 23



Decision procedures for propositional logic

Observe:

● Each clause l1 ∨⋯ ∨ ln can be itself regarded as a set, of literals: { l1, . . . , ln }

● A set of clauses is satisfiable iff there is an interpretation of its variables that
satisfies at least one literal in each clause
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● Each clause l1 ∨⋯ ∨ ln can be itself regarded as a set, of literals: { l1, . . . , ln }

● A set of clauses is satisfiable iff there is an interpretation of its variables that
satisfies at least one literal in each clause

Example:

● The clause set ∆ ∶= {p1 ∨ p3, ¬p1 ∨ p2 ∨ ¬p3 } can be represented as
{{p1,p3 }, {¬p1,p2,¬p3 }}

● v ∶= {p1 ↦ true,p2 ↦ true,p3 ↦ false} is a satisfying assignment for ∆
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SAT Solver Overview: features

Automated reasoners for the satisfiability problem in PL are called SAT solvers

1. Backtracking search solvers
● Traversing and backtracking on a binary tree
● Sound, complete and terminating

2. Stochastic search solvers
● Solver guesses a full assignment v

● If the set is falsified by v, starts to flip values of variables according to some (greedy)
heuristic

● Sound but neither complete nor terminating
● Nevertheless, quite effective in certain applications
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We focus on backtracking solvers in this course



SAT Solver Overview: performance

The SAT problem is hard (NP-complete). How well do SAT solvers do in practice?

● Modern SAT solvers can solve many real-life CNF formulas with hundreds of
thousands or even millions of variables in a reasonable amount of time

● There are also instances of problems two orders of magnitude smaller that the
same tools cannot solve

● In general, it is very hard to predict which instance is going to be hard to solve,
without actually attempting to solve it

SAT portfolio solvers: use machine-learning techniques to extract features of CNF
formulas in order to select the most suitable SAT solver for the job
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SAT Solver Overview: performance

0 1,000 2,000 3,000 4,000 5,000
0

50

100

150

200

250

CPU time

so
lv
ed

in
st
a
n
ce
s

SAT Competition Winners on the SC2020 Benchmark Suite

kissat-2020
maple-lcm-disc-cb-dl-v3-2019
maple-lcm-dist-cb-2018
maple-lcm-dist-2017
maple-comsps-drup-2016
lingeling-2014
abcdsat-2015
lingeling-2013
glucose-2012
glucose-2011
cryptominisat-2010
precosat-2009
minisat-2008
berkmin-2003
minisat-2006
rsat-2007
satelite-gti-2005
zchaff-2004
limmat-2002

data produced by Armin Biere and Marijn Heule

Left: Size of industrial clause sets (y-axis) regularly solved by solvers in a few hours each year
(x-axis). Instances come from realistic problems like planning or hardware verification

Right: Top contenders in SAT solver competitions from 2002 to 2020; each point shows number
of solved instances (y-axis) per unit of time (x-axis). Note that no. of instances solved
within 20 minutes more than doubled in less than a decade
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SAT Solver Overview: performance

Success of SAT solvers can largely be attributed to their ability to:

● Learn from failed assignments
● Prune large parts of the search spaces quickly
● Focus first on important variables
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The DIMACS format

A standard format for clause sets accepted by most modern SAT solvers
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The DIMACS format

● Comment lines: Start with a lower-case letter c

● Problem line: p cnf <#variables > <#clauses >

● Clause lines:
● Each variable is assigned a unique index i greater than 0
● A positive literal is represented by an index
● A negative literal is represented by the negation of its complement’s index
● A clause is represented as a list of literals separated by white space
● Value 0 is used to mark the end of a clause

Example:

{p1 ∨ ¬p3, p2 ∨ p3 ∨ ¬p1 }

c example.cnf
p cnf 3 2
1 -3 0
2 3 -1 0
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Basic SAT solvers

● 1960: Davis-Putnam (DP) algorithm

● 1961: Davis-Putnam-Logemann-Loveland (DPLL) algorithm

● 1996: Modern SAT solver based on Conflict-Driven Clause Learning (CDCL)
derived from DP and DPLL
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A proof system for clause sets: resolution

There is a refutation sound and complete proof system for clause sets ∆
that consists of just one proof rule!

RESOLVE C1,C2 ∈∆ p ∈ C1 ¬p ∈ C2 C = (C1 ∖ {p}) ∪ (C2 ∖ {¬p}) C ∉∆
∆ ∪ {C}

Clause C is a (p-)resolvent of C1 and C2, and p is the pivot

Example: ∆ ∶= {{p1,p3 },{p2,¬p3 }} has a p3-resolvent: {p1,p2 }

Note: if C is a resolvent of C1,C2 ∈∆ then {C1,C2} ⊧ C and so ∆ ⊧∆ ∪ {C}
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Proofs by resolution

Example: Prove that the following clause set is unsatisfiable

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 }}

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 },{p1 }}

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 },{p1 },{p3 }}

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 },{p1 },{p3 },{¬p3 }}

{{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 },{p1 },{p3 },{¬p3 },{ }}

● The last clause set is unsatisfiable since it contains the empty clause { }
● Since every clause set entails the next, it must be that the first one is unsatisfiable
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A resolution-based satisfiability proof system

● In addition to the SAT and UNSAT states, we consider states of the form

⟨∆,Φ⟩

with ∆ and Φ clause sets

● Initial states have the form
⟨∆0,{}⟩

where ∆0 is the clause set to be checked for satisfiability
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A resolution-based satisfiability proof system

We modify the resolution rule RESOLVE as highlighted below and add three more rules

RESOLVE C1,C2 ∈∆ p ∈ C1 ¬p ∈ C2 C = (C1 ∖ {p}) ∪ (C2 ∖ {¬p}) C ∉∆ ∪Φ
∆ ∶=∆ ∪ {C}

CLASH C ∈∆ p,¬p ∈ C
∆ ∶=∆ ∖ {C} Φ ∶= Φ ∪ {C}

UNSAT {} ∈∆UNSAT SAT No other rules apply
SAT

This proof system is sound, complete and terminating
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A resolution-based decision procedure

Given a clause set ∆, apply CLASH or RESOLVE until either

1. an empty clause is derived (return UNSAT)

2. neither applies (return SAT)

This procedure is terminating and decides the SAT problem
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Unit resolution

Notation If l is a literal and p is its variable, l̄ =
⎧⎪⎪
⎨
⎪⎪⎩

¬p if l = p
p if l = ¬p

The unit resolution rule is a special case of resolution where one of the resolving
clauses is a unit clause, i.e., a clause with only one literal

UNIT RESOLVE C1,C2 ∈∆ C1 = { l } C2 = { l̄ } ∪ D
∆ ∪ {D}
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clauses is a unit clause, i.e., a clause with only one literal

UNIT RESOLVE C1,C2 ∈∆ C1 = { l } C2 = { l̄ } ∪ D
∆ ∪ {D}

A proof system with unit resolution alone is not refutation-complete
(consider an unsat ∆ with no unit clauses)
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¬p if l = p
p if l = ¬p

The unit resolution rule is a special case of resolution where one of the resolving
clauses is a unit clause, i.e., a clause with only one literal

UNIT RESOLVE C1,C2 ∈∆ C1 = { l } C2 = { l̄ } ∪ D
∆ ∪ {D}

Modern SAT solvers use unit resolution plus backtracking search for deciding SAT
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Davis-Putnam (DP) procedure
A decision procedure for the SAT problem

First procedure to implement something more sophisticated than truth tables

DP leverages 4 satisfiability-preserving transformations:

● Unit propagation
● Pure literal elimination
● Tautology elimination
● Exhaustive resolution
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Davis-Putnam (DP) procedure
A decision procedure for the SAT problem

First procedure to implement something more sophisticated than truth tables

DP leverages 4 satisfiability-preserving transformations:

● Unit propagation
● Pure literal elimination
● Tautology elimination
● Exhaustive resolution

Repeatedly applying these tranformations, eventually leads to
an empty clause (indicating unsatisfiability) or
an empty clause set (indicating satisfiability)

15 / 23



DP procedure: unit propagation
Also called the 1-literal rule

Premise: The clause set ∆ contains a unit clause C = { l }

Conclusion:

● Remove all occurrences of l̄ from clauses in ∆

● Remove all clauses containing l (including C)
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DP procedure: unit propagation
Also called the 1-literal rule

Premise: The clause set ∆ contains a unit clause C = { l }

Conclusion:

● Remove all occurrences of l̄ from clauses in ∆

● Remove all clauses containing l (including C)

Justification: The only way to satisfy C is to make l true; thus, (i) l̄ cannot be used to
satisfy any clause, and (ii) any clause containing l is satisfied and can be ignored
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Example:

∆0 ∶= {{p1 },{p1,p4 },{p2,p3,¬p1 }}
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Also called the 1-literal rule

Premise: The clause set ∆ contains a unit clause C = { l }

Conclusion:

● Remove all occurrences of l̄ from clauses in ∆

● Remove all clauses containing l (including C)

Example:

∆0 ∶= {{p1 },{p1,p4 },{p2,p3,¬p1 }}

∆1 ∶= {{p4 },{p2,p3 }} (unit propagation on p1)

∆2 ∶= {{p2,p3 }} (unit propagation on p4)
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DP procedure: pure literal elimination
Also called the affirmation-negation rule

Premise: A literal l occurs in ∆ but l̄ does not

Conclusion: Delete all clauses containing l
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DP procedure: pure literal elimination
Also called the affirmation-negation rule

Premise: A literal l occurs in ∆ but l̄ does not

Conclusion: Delete all clauses containing l

Justification: For every assignment that satisfies ∆ there is one that satisfies both ∆
and l; thus, all clauses containing l can be deleted since they can always be satisfied
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Conclusion: Delete all clauses containing l
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DP procedure: tautology elimination
Also called the clashing clause rule

Premise: a clause C ∈∆ contains both p and ¬p

Conclusion: remove C from ∆

Justification: C is satisfied by every variable assignment
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DP procedure: resolution
Also called the rule for eliminating atomic formulas

Premise: A variable p occurs in a clause of ∆ and ¬p occurs in another clause

Conclusion:

● Let P be the set of clauses in ∆ where p occurs positively and
let N be the set of clauses in ∆ where p occurs negatively

● Replace the clauses in P and N with those obtained by resolution on p
using all pairs of clauses from P × N
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DP procedure: resolution
Also called the rule for eliminating atomic formulas

Premise: A variable p occurs in a clause of ∆ and ¬p occurs in another clause

Conclusion:

● Let P be the set of clauses in ∆ where p occurs positively and
let N be the set of clauses in ∆ where p occurs negatively

● Replace the clauses in P and N with those obtained by resolution on p
using all pairs of clauses from P × N

Example:

∆0 ∶= {{p1,p2 },{¬p1,p3 },{¬p1,¬p3,p4 },{p2,¬p4 }}

∆1 ∶= {{p2,p3 },{p2,¬p3,p4 },{p2,¬p4 }} (resolution on p1)
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DP Example 1

∆ ∶= {{p1,p2,p3 },{p2,¬p3,¬p6 },{¬p2,p5 }}

{p1,p2,p3 } {p2,¬p3,¬p6 } {¬p2,p5 }Res p2

{¬p3,¬p6,p5 }{p1,p3,p5 }Res p3

{p1,p5,¬p6 }PL p1

∅SAT
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DP Example 2

∆ ∶= {{p1,p2 },{p1,¬p2 },{¬p1,p3 },{¬p1,¬p3 }}

{p1,p2 } {p1,¬p2 } {¬p1,p3 } {¬p1,¬p3 }Res p2

{p1 } {¬p1,p3 }{¬p1,¬p3 }UP p1

{p3 } {¬p3 }Res p3

{ }UNSAT
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From DP to DPLL

The resolution transformation does not increase the number of variables
However, it may increase the size of the clause set

Question: If a variable appears positively in 3 clauses and negatively in 3 clauses,
how many clauses after applying resolution? 9

In the worst case, the resolution transformation can cause a quadratic expansion
each time it is applied

For large enough formulas, this can quickly exhaust the available memory
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From DP to DPLL

The DPLL procedure improves on DP by replacing resolution with splitting:

● Let ∆ be the input clause set
● Arbitrarily choose a literal l occurring in ∆

● Recursively check the satisfiability of ∆ ∪ {{ l }}
● If result is SAT, return SAT
● Otherwise, recursively check the satisfiability of ∆ ∪ {{¬l }}

and return that result

We will discuss DPLL in more detail next time
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