CS:4980 Topics in Computer Science II Introduction to Automated Reasoning

Normal Forms in Propositional Logic

Cesare Tinelli

Spring 2024

Credits

These slides are based on slides originally developed by Cesare Tinelli at the University of Iowa, Andrei Voronkov at the University of Manchester, Emina Torlak at the University of Washington, and by Clark Barrett, Caroline Trippel, and Andrew (Haoze) Wu at Stanford University. Adapted by permission.

Agenda

- NNF, DNF, CNF (CC Ch. 1.6)

Normal forms

For AR purposes, the language of formulas used to model problems may be too large

Normal forms

For AR purposes, the language of formulas used to model problems may be too large

AR systems usually transform input formulas to formulas in a more restricted format before reasoning about them

Normal forms

For AR purposes, the language of formulas used to model problems may be too large

AR systems usually transform input formulas to formulas in a more restricted format before reasoning about them

We call these formats normal forms

Normal forms

For AR purposes, the language of formulas used to model problems may be too large

AR systems usually transform input formulas to formulas in a more restricted format before reasoning about them

We call these formats normal forms

The normal form a formula α is usually logically equivalent to, or at least equisatiable with, α

Normal forms for propositional logic

These three normal forms are often used:

- Negation normal form (NNF)
- Disjunctive normal form (DNF)
- Conjunctive normal form (CNF)

Normal forms for propositional logic

These three normal forms are often used:

- Negation normal form (NNF)
- Disjunctive normal form (DNF)
- Conjunctive normal form (CNF)

Every formula of PL can be converted to an equivalent formula in one of these forms

Negation normal form (NNF)

- Only logical connectives: \wedge, \vee, and
- \neg only appears in literals

Negation normal form (NNF)

- Only logical connectives: \wedge, \vee, and
- \neg only appears in literals

Grammar

```
    \langleAtom\rangle := T | \perp | 〈Variable\rangle
    \langleLiteral\rangle := \langleAtom\rangle | \neg\langleAtom\rangle
\langleFormula\rangle := \langleLiteral\rangle | \langleFormula\rangle\vee \Formula\rangle | \langleFormula \rangle}^\langle\mathrm{ Formula}
```


NNF transformation

Repeatedly apply the following rewrites (\longrightarrow) to the formula and its subformulas, in any order, to completion ${ }^{1}$
${ }^{1}$ I.e., until none applies anymore

NNF transformation

Repeatedly apply the following rewrites (\longrightarrow) to the formula and its subformulas, in any order, to completion ${ }^{1}$

- Eliminate double implications: $\quad \alpha \Leftrightarrow \beta \longrightarrow(\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)$
- Eliminate implications: $\alpha \Rightarrow \beta \longrightarrow(\neg \alpha \vee \beta)$
- Push negation inside conjunctions: $\neg(\alpha \wedge \beta) \longrightarrow(\neg \alpha \vee \neg \beta)$
- Push negation inside disjunctions: $\quad \neg(\alpha \vee \beta) \longrightarrow(\neg \alpha \wedge \neg \beta)$
- Eliminate double negations: $\quad \neg \neg \alpha \longrightarrow \alpha$
- Eliminate negated bottom: $\quad \neg \perp \longrightarrow T$
- Eliminate negated top: $\quad \neg T \longrightarrow \perp$

[^0]
NNF transformation properties

Theorem 1
Every wff α not containing double implications (\Leftrightarrow) can be transformed into an equivalent NNF α^{\prime} with a linear increase in the size ${ }^{2}$ of the formula

[^1]
NNF transformation properties

Observe
The NNF of formulas containing \Leftrightarrow can grow exponentially larger in the worst case!

NNF transformation properties

Observe
The NNF of formulas containing \Leftrightarrow can grow exponentially larger in the worst case!

Example

$$
\begin{array}{rlrl}
\left(a_{1} \Leftrightarrow a_{2}\right) & \Leftrightarrow\left(a_{3} \Leftrightarrow a_{4}\right) & 4 \text { vars } \\
& \downarrow & \\
\left(a_{1} \Leftrightarrow a_{2}\right) \Rightarrow\left(a_{3} \Leftrightarrow a_{4}\right) & \wedge & \\
& \downarrow & \left(a_{3} \Leftrightarrow a_{4}\right) \Rightarrow\left(a_{1} \Leftrightarrow a_{2}\right) & 8 \text { vars } \\
& \vdots & \\
\left(\left(a_{1} \Rightarrow a_{2}\right) \wedge\left(a_{2} \Rightarrow a_{1}\right)\right) & \downarrow \\
& \wedge\left(\left(a_{3} \Rightarrow a_{4}\right) \wedge\left(a_{4} \Rightarrow a_{3}\right)\right) & \\
\left(\left(a_{3} \Rightarrow a_{4}\right) \wedge\left(a_{4} \Rightarrow a_{3}\right)\right) & & \\
& 16 \text { vars } \\
\left(\left(a_{1} \Rightarrow a_{2}\right) \wedge\left(a_{2} \Rightarrow a_{1}\right)\right) &
\end{array}
$$

Disjunctive normal form (DNF)

- Formula is in NNF
- Formula is a disjunction of conjunctions of literals, i.e., of the form:

Disjunctive normal form (DNF)

- Formula is in NNF
- Formula is a disjunction of conjunctions of literals, i.e., of the form:

Grammar

```
    \langleAtom\rangle := \top | \perp | \langleVariable\rangle
    \langleLiteral\rangle := \langleAtom\rangle | \neg\langleAtom\rangle
    \langleCube\rangle := \langleLiteral\rangle | \langleLiteral\rangle^\langleCube\rangle
\langleFormula\rangle := \langleCube\rangle | \langleCube\rangle\vee \langleFormula\rangle
```


DNF transformation

Apply the following rewrites, in any order, to completion

- Apply NNF transformation rewrites
- Distribute \wedge over \vee (another source of exponential increase):
- $\alpha \wedge(\beta \vee \gamma) \longrightarrow(\alpha \wedge \beta) \vee(\alpha \wedge \gamma)$
- $(\alpha \vee \beta) \wedge \gamma \longrightarrow(\alpha \wedge \gamma) \vee(\beta \wedge \gamma)$
- Normalize nested conjunctions and disjunctions
- $(\alpha \wedge \beta) \wedge \gamma \longrightarrow \alpha \wedge(\beta \wedge \gamma)$
- $(\alpha \vee \beta) \vee \gamma \longrightarrow \alpha \vee(\beta \vee \gamma)$

DNF transformation

Apply the following rewrites, in any order, to completion

- Apply NNF transformation rewrites
- Distribute \wedge over \vee (another source of exponential increase):
- $\alpha \wedge(\beta \vee \gamma) \longrightarrow(\alpha \wedge \beta) \vee(\alpha \wedge \gamma)$
- $(\alpha \vee \beta) \wedge \gamma \longrightarrow(\alpha \wedge \gamma) \vee(\beta \wedge \gamma)$
- Normalize nested conjunctions and disjunctions
- $(\alpha \wedge \beta) \wedge \gamma \longrightarrow \alpha \wedge(\beta \wedge \gamma)$
- $(\alpha \vee \beta) \vee \gamma \longrightarrow \alpha \vee(\beta \vee \gamma)$

Note: Instead of having nested conjunctions or disjunctions, it is convenient to treat \wedge and \vee as n-ary operators for any $n>1$ (e.g., we treat $a_{1} \vee\left(a_{2} \vee\left(a_{3} \vee a_{4}\right)\right)$ as $\left.a_{1} \vee a_{2} \vee a_{3} \vee a_{4}\right)$

DNF transformation

Theorem 2
Every wff α can be transformed into a logically equivalent DNF α^{\prime}, with a potentially exponential increase in the size of the formula

DNF transformation

Theorem 2

Every wff α can be transformed into a logically equivalent DNF α^{\prime}, with a potentially exponential increase in the size of the formula

Note: The exponential increase can occur even in the absence of \Leftrightarrow

Exercise

Transform each of these formulas (separately) into DNF:

$$
\neg((p \vee \neg q) \Rightarrow r) \quad \neg(a \Rightarrow(\neg b \Rightarrow a))
$$

NNF transformation rewrites:

1. $\alpha \Leftrightarrow \beta \longrightarrow(\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)$
2. $\alpha \Rightarrow \beta \longrightarrow \neg \alpha \vee \beta$
3. $\neg(\alpha \vee \beta) \longrightarrow(\neg \alpha \wedge \neg \beta)$
4. $\neg(\alpha \wedge \beta) \longrightarrow(\neg \alpha \vee \neg \beta)$
5. $\neg \neg \alpha \longrightarrow \alpha$
6. $\neg T \longrightarrow \perp$
7. $\neg \perp \longrightarrow \top$

DNF transformation rewrites:

1. $\alpha \wedge(\beta \vee \gamma) \longrightarrow(\alpha \wedge \beta) \vee(\alpha \wedge \gamma)$
2. $(\alpha \vee \beta) \wedge \gamma \longrightarrow(\alpha \wedge \gamma) \vee(\beta \wedge \gamma)$
3. $(\alpha \wedge \beta) \wedge \gamma \longrightarrow \alpha \wedge(\beta \wedge \gamma)$
4. $(\alpha \vee \beta) \vee \gamma \longrightarrow \alpha \vee(\beta \vee \gamma)$

Conjunctive normal form (CNF)

- Formula is in NNF
- Formula is a conjunction of disjunctions of literals, i.e., of the form:

Conjunctive normal form (CNF)

- Formula is in NNF
- Formula is a conjunction of disjunctions of literals, i.e., of the form:

Grammar

```
    \langleAtom\rangle := T | \perp | \langleVariable\rangle
    \langleLiteral\rangle := \langleAtom\rangle | \neg\langleAtom\rangle
    \langleClause\rangle := \langleLiteral\rangle | \langleLiteral\rangle v <Clause\rangle
\langleFormula\rangle := \langleClause\rangle | \langleClause\rangle^\langleFormula\rangle
```


CNF transformation

Apply the following rewrites, in any order, to completion

- Apply NNF transformation rewrites
- Distribute \vee over \wedge (another source of exponential increase):
- $\alpha \vee(\beta \wedge \gamma) \longrightarrow(\alpha \vee \beta) \wedge(\alpha \vee \gamma)$
- $(\alpha \wedge \beta) \vee \gamma \longrightarrow(\alpha \vee \gamma) \wedge(\beta \vee \gamma)$
- Normalize nested conjunctions and disjunctions
- $(\alpha \wedge \beta) \wedge \gamma \longrightarrow \alpha \wedge(\beta \wedge \gamma)$
- $(\alpha \vee \beta) \vee \gamma \longrightarrow \alpha \vee(\beta \vee \gamma)$

Exercise

Transform each of these formulas (separately) into CNF:

$$
\neg((p \vee \neg q) \Rightarrow r) \quad \neg(a \Rightarrow(\neg b \Rightarrow a))
$$

NNF transformation rewrites:

1. $\alpha \Leftrightarrow \beta \longrightarrow(\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)$
2. $\alpha \Rightarrow \beta \longrightarrow \neg \alpha \vee \beta$
3. $\neg(\alpha \vee \beta) \longrightarrow(\neg \alpha \wedge \neg \beta)$
4. $\neg(\alpha \wedge \beta) \longrightarrow(\neg \alpha \vee \neg \beta)$
5. $\neg \neg \alpha \longrightarrow \alpha$
6. $\neg \top \longrightarrow \perp$
7. $\neg \perp \longrightarrow \top$

CNF transformation rewrites:

1. $\alpha \vee(\beta \wedge \gamma) \longrightarrow(\alpha \vee \beta) \wedge(\alpha \vee \gamma)$
2. $(\alpha \wedge \beta) \vee \gamma \longrightarrow(\alpha \vee \gamma) \wedge(\beta \vee \gamma)$
3. $(\alpha \wedge \beta) \wedge \gamma \longrightarrow \alpha \wedge(\beta \wedge \gamma)$
4. $(\alpha \vee \beta) \vee \gamma \longrightarrow \alpha \vee(\beta \vee \gamma)$

CNF transformation

Theorem 3
Every wff a can be transformed into a logically equivalent CNF α^{\prime}, with a potentially exponential increase in the size of the formula

CNF transformation

Theorem 3

Every wff α can be transformed into a logically equivalent CNF α^{\prime}, with a potentially exponential increase in the size of the formula

Note: The size increase can occur even in the absence of \Leftrightarrow

CNF transformation can be exponential

There are formulas whose shortest CNF has an exponential size

CNF transformation can be exponential

There are formulas whose shortest CNF has an exponential size

Is there any way to avoid exponential blowup?

CNF transformation can be exponential

There are formulas whose shortest CNF has an exponential size

Is there any way to avoid exponential blowup? Yes!

A space-efficient CNF transformation

Using so-called naming, definition introduction, or Tseitin's transformation

A space-efficient CNF transformation

Using so-called naming, definition introduction, or Tseitin's transformation

1. Take a non-literal subformula α of formula φ

$$
\varphi=p_{1} \Leftrightarrow(p_{2} \Leftrightarrow(p_{3} \Leftrightarrow(p_{4} \Leftrightarrow(\overbrace{p_{5} \Leftrightarrow p_{6}}^{\alpha})))
$$

A space-efficient CNF transformation

Using so-called naming, definition introduction, or Tseitin's transformation

1. Take a non-literal subformula α of formula φ
2. Introduce a new name n for it, i.e., a fresh propositional variable

$$
\varphi=p_{1} \Leftrightarrow(p_{2} \Leftrightarrow(p_{3} \Leftrightarrow(p_{4} \Leftrightarrow(\overbrace{p_{5} \Leftrightarrow p_{6}}^{\alpha})))
$$

A space-efficient CNF transformation

Using so-called naming, definition introduction, or Tseitin's transformation

1. Take a non-literal subformula α of formula φ
2. Introduce a new name n for it, i.e., a fresh propositional variable
3. Add a definition for n, i.e., a formula stating that n is equivalent to α

$$
\begin{aligned}
\varphi= & p_{1} \Leftrightarrow(p_{2} \Leftrightarrow(p_{3} \Leftrightarrow(p_{4} \Leftrightarrow(\overbrace{p_{5} \Leftrightarrow p_{6}}^{\alpha}))) \\
& n \Leftrightarrow\left(p_{5} \Leftrightarrow p_{6}\right)
\end{aligned}
$$

A space-efficient CNF transformation

Using so-called naming, definition introduction, or Tseitin's transformation

1. Take a non-literal subformula α of formula φ
2. Introduce a new name n for it, i.e., a fresh propositional variable
3. Add a definition for n, i.e., a formula stating that n is equivalent to α

$$
\begin{aligned}
\varphi= & p_{1} \Leftrightarrow(p_{2} \Leftrightarrow(p_{3} \Leftrightarrow(p_{4} \Leftrightarrow(\overbrace{p_{5} \Leftrightarrow p_{6}}^{\alpha}))) \\
& n \Leftrightarrow\left(p_{5} \Leftrightarrow p_{6}\right)
\end{aligned}
$$

4. Replace α in φ by its name n :

$$
S=\left\{\begin{array}{l}
p_{1} \Leftrightarrow\left(p_{2} \Leftrightarrow\left(p_{3} \Leftrightarrow\left(p_{4} \Leftrightarrow n\right)\right)\right) \\
n \Leftrightarrow\left(p_{5} \Leftrightarrow p_{6}\right)
\end{array}\right\}
$$

A space-efficient CNF transformation

The new set S of formulas and the original formula φ are not equivalent

$$
\begin{aligned}
\varphi= & p_{1} \Leftrightarrow\left(p_{2} \Leftrightarrow\left(p_{3} \Leftrightarrow\left(p_{4} \Leftrightarrow\left(\widetilde{p_{5} \Leftrightarrow p_{6}}\right)\right)\right)\right) \\
& n \Leftrightarrow\left(p_{5} \Leftrightarrow p_{6}\right)
\end{aligned}
$$

$$
S=\left\{\begin{array}{l}
p_{1} \Leftrightarrow\left(p_{2} \Leftrightarrow\left(p_{3} \Leftrightarrow\left(p_{4} \Leftrightarrow n\right)\right)\right) \\
n \Leftrightarrow\left(p_{5} \Leftrightarrow p_{6}\right)
\end{array}\right\}
$$

A space-efficient CNF transformation

The new set S of formulas and the original formula φ are not equivalent but they are equisatisfiable:

$$
\begin{aligned}
& \varphi=p_{1} \Leftrightarrow\left(p_{2} \Leftrightarrow\left(p_{3} \Leftrightarrow\left(p_{4} \Leftrightarrow\left(p_{5} \Leftrightarrow p_{6}\right)\right)\right)\right) \\
& n \Leftrightarrow\left(p_{5} \Leftrightarrow p_{6}\right) \\
& S=\left\{\begin{array}{l}
p_{1} \Leftrightarrow\left(p_{2} \Leftrightarrow\left(p_{3} \Leftrightarrow\left(p_{4} \Leftrightarrow n\right)\right)\right) \\
n \Leftrightarrow\left(p_{5} \Leftrightarrow p_{6}\right)
\end{array}\right\}
\end{aligned}
$$

A space-efficient CNF transformation

The new set S of formulas and the original formula φ are not equivalent but they are equisatisfiable:

1. every interpretation satisfying S satisfies φ as well, and

$$
\begin{aligned}
& \varphi=p_{1} \Leftrightarrow\left(p_{2} \Leftrightarrow\left(p_{3} \Leftrightarrow\left(p_{4} \Leftrightarrow\left(\widetilde{p_{5} \Leftrightarrow p_{6}}\right)\right)\right)\right) \\
& n \Leftrightarrow\left(p_{5} \Leftrightarrow p_{6}\right) \\
& S=\left\{\begin{array}{l}
p_{1} \Leftrightarrow\left(p_{2} \Leftrightarrow\left(p_{3} \Leftrightarrow\left(p_{4} \Leftrightarrow n\right)\right)\right) \\
n \Leftrightarrow\left(p_{5} \Leftrightarrow p_{6}\right)
\end{array}\right\}
\end{aligned}
$$

A space-efficient CNF transformation

The new set S of formulas and the original formula φ are not equivalent but they are equisatisfiable:

1. every interpretation satisfying S satisfies φ as well, and
2. every interpretation satisfying φ can be extended to one that satisfies S (by assigning to n the value of $p_{5} \Leftrightarrow p_{6}$)

$$
\begin{aligned}
\varphi= & p_{1} \Leftrightarrow\left(p_{2} \Leftrightarrow\left(p_{3} \Leftrightarrow\left(p_{4} \Leftrightarrow\left(\widetilde{p_{5} \Leftrightarrow p_{6}}\right)\right)\right)\right) \\
& n \Leftrightarrow\left(p_{5} \Leftrightarrow p_{6}\right) \\
& S=\left\{\begin{array}{l}
p_{1} \Leftrightarrow\left(p_{2} \Leftrightarrow\left(p_{3} \Leftrightarrow\left(p_{4} \Leftrightarrow n\right)\right)\right) \\
n \Leftrightarrow\left(p_{5} \Leftrightarrow p_{6}\right)
\end{array}\right\}
\end{aligned}
$$

After several steps

$$
p_{1} \Leftrightarrow\left(p_{2} \Leftrightarrow\left(p_{3} \Leftrightarrow\left(p_{4} \Leftrightarrow\left(p_{5} \Leftrightarrow p_{6}\right)\right)\right)\right.
$$

$$
\begin{aligned}
& p_{1} \Leftrightarrow\left(p_{2} \Leftrightarrow n_{3}\right) \\
& n_{3} \Leftrightarrow\left(p_{3} \Leftrightarrow n_{4}\right) \\
& n_{4} \Leftrightarrow\left(p_{4} \Leftrightarrow n_{5}\right) \\
& n_{5} \Leftrightarrow\left(p_{5} \Leftrightarrow p_{6}\right)
\end{aligned}
$$

After several steps

$$
\begin{aligned}
& p_{1} \Leftrightarrow\left(p_{2} \Leftrightarrow\right.\left(p_{3} \Leftrightarrow\left(p_{4} \Leftrightarrow\left(p_{5} \Leftrightarrow p_{6}\right)\right)\right) \\
& p_{1} \Leftrightarrow\left(p_{2} \Leftrightarrow n_{3}\right) \\
& n_{3} \Leftrightarrow\left(p_{3} \Leftrightarrow n_{4}\right) \\
& n_{4} \Leftrightarrow\left(p_{4} \Leftrightarrow n_{5}\right) \\
& n_{5} \Leftrightarrow\left(p_{5} \Leftrightarrow p_{6}\right)
\end{aligned}
$$

The conversion of the original formula to CNF introduces 32 copies of p_{6}

After several steps

$$
\begin{aligned}
& p_{1} \Leftrightarrow\left(p_{2} \Leftrightarrow\left(p_{3} \Leftrightarrow\left(p_{4} \Leftrightarrow\left(p_{5} \Leftrightarrow p_{6}\right)\right)\right)\right. \\
& p_{1} \Leftrightarrow\left(p_{2} \Leftrightarrow n_{3}\right) \\
& n_{3} \Leftrightarrow\left(p_{3} \Leftrightarrow n_{4}\right) \\
& n_{4}
\end{aligned} \Leftrightarrow\left(p_{4} \Leftrightarrow n_{5}\right) .
$$

The conversion of the original formula to CNF introduces 32 copies of p_{6}
The conversion of the new set of formulas to CNF introduces 4 copies of p_{6}

Clausal Form

Clausal form of a formula α : a set S_{α} of clauses which is satisfiable iff α is satisfiable

Clausal Form

Clausal form of a formula α : a set S_{α} of clauses which is satisfiable iff α is satisfiable
Clausal form of a set S of formulas: a set S^{\prime} of clauses which is satisfiable iff so is S

Clausal Form

Clausal form of a formula α : a set S_{α} of clauses which is satisfiable iff α is satisfiable

Clausal form of a set S of formulas: a set S^{\prime} of clauses which is satisfiable iff so is S

Big advantage of clausal normal form over CNF:
we can convert any formula to a set of clauses in almost linear time

Definitional Clause Form Transformation

How to convert a formula α into a set S of clauses that is a clausal normal form of α :

Definitional Clause Form Transformation

How to convert a formula α into a set S of clauses that is a clausal normal form of α :

1. If α has the form $C_{1} \wedge \cdots \wedge C_{n}$, where $n \geq 1$ and each C_{i} is a clause, then

$$
S:=\left\{C_{1}, \ldots, C_{n}\right\}
$$

Definitional Clause Form Transformation

How to convert a formula α into a set S of clauses that is a clausal normal form of α :

1. If α has the form $C_{1} \wedge \cdots \wedge C_{n}$, where $n \geq 1$ and each C_{i} is a clause, then

$$
S:=\left\{C_{1}, \ldots, C_{n}\right\}
$$

2. Otherwise, introduce a name for each subformula β of α that is not a literal, and use this name instead of β

Converting a formula to clausal form, Example

Converting a formula to clausal form, Example

	non-literal subformula	definition	clauses
	$\neg((p \Rightarrow q) \wedge(p \wedge q \Rightarrow r) \Rightarrow(p \Rightarrow r))$		
	$\neg((p \Rightarrow q) \wedge(p \wedge q \Rightarrow r) \Rightarrow(p \Rightarrow r))$		
	$(p \Rightarrow q) \wedge(p \wedge q \Rightarrow r) \Rightarrow(p \Rightarrow r)$		
	$(p \Rightarrow q) \wedge(p \wedge q \Rightarrow r)$		
	$p \Rightarrow q$		
	$p \wedge q \Rightarrow r$		
	$p \wedge q$		

Consider all subformulas that are not literals

Converting a formula to clausal form, Example

	non-literal subformula	definition	clauses
	$\neg((p \Rightarrow q) \wedge(p \wedge q \Rightarrow r) \Rightarrow(p \Rightarrow r))$		
n_{1}	$\neg((p \Rightarrow q) \wedge(p \wedge q \Rightarrow r) \Rightarrow(p \Rightarrow r))$		
n_{2}	$(p \Rightarrow q) \wedge(p \wedge q \Rightarrow r) \Rightarrow(p \Rightarrow r)$		
n_{3}	$(p \Rightarrow q) \wedge(p \wedge q \Rightarrow r)$		
n_{4}	$p \Rightarrow q$		
n_{5}	$p \wedge q \Rightarrow r$		
n_{6}	$p \wedge q$		
n_{7}			

Introduce names for these formulas

Converting a formula to clausal form, Example

	non-literal subformula	definition	clauses
	$\neg((p \Rightarrow q) \wedge(p \wedge q \Rightarrow r) \Rightarrow(p \Rightarrow r))$		
n_{1}	$\neg((p \Rightarrow q) \wedge(p \wedge q \Rightarrow r) \Rightarrow(p \Rightarrow r))$	$n_{1} \Leftrightarrow \neg n_{2}$	
n_{2}	$(p \Rightarrow q) \wedge(p \wedge q \Rightarrow r) \Rightarrow(p \Rightarrow r)$	$n_{2} \Leftrightarrow\left(n_{3} \Rightarrow n_{7}\right)$	
n_{3}	$(p \Rightarrow q) \wedge(p \wedge q \Rightarrow r)$	$n_{3} \Leftrightarrow\left(n_{4} \wedge n_{5}\right)$	
n_{4}	$p \Rightarrow q$	$n_{4} \Leftrightarrow(p \Rightarrow q)$	
n_{5}	$p \wedge q \Rightarrow r$	$n_{5} \Leftrightarrow\left(n_{6} \Rightarrow r\right)$	
n_{6}		$p \wedge q$	$n_{6} \Leftrightarrow(p \wedge q)$
n_{7}			

Introduce definitions

Converting a formula to clausal form, Example

	non-literal subformula	definition	clauses
	$\neg((p \Rightarrow q) \wedge(p \wedge q \Rightarrow r) \Rightarrow(p \Rightarrow r))$		n_{1}
n_{1}	$\neg((p \Rightarrow q) \wedge(p \wedge q \Rightarrow r) \Rightarrow(p \Rightarrow r))$	$n_{1} \Leftrightarrow \neg n_{2}$	$\begin{array}{r} \neg n_{1} \vee \neg n_{2} \\ n_{1} \vee n_{2} \end{array}$
n_{2}	$(p \Rightarrow q) \wedge(p \wedge q \Rightarrow r) \Rightarrow(p \Rightarrow r)$	$n_{2} \Leftrightarrow\left(n_{3} \Rightarrow n_{7}\right)$	$\begin{aligned} & \neg n_{2} \vee \neg n_{3} \vee n_{7} \\ & n_{3} \vee n_{2} \\ & \neg n_{7} \vee n_{2} \end{aligned}$
n_{3}	$(p \Rightarrow q) \wedge(p \wedge q \Rightarrow r)$	$n_{3} \Leftrightarrow\left(n_{4} \wedge n_{5}\right)$	$\begin{aligned} & \neg n_{3} \vee n_{4} \\ & \neg n_{3} \vee n_{5} \\ & \neg n_{4} \vee \neg n_{5} \vee n_{3} \end{aligned}$
n_{4}	$p \Rightarrow q$	$n_{4} \Leftrightarrow(p \Rightarrow q)$	$\begin{aligned} & \neg n_{4} \vee \neg p \vee q \\ & p \vee n_{4} \\ & \neg q \vee n_{4} \end{aligned}$
n_{5}	$p \wedge q \Rightarrow r$	$n_{5} \Leftrightarrow\left(n_{6} \Rightarrow r\right)$	$\begin{gathered} \neg n_{5} \vee \neg n_{6} \vee r \\ n_{6} \vee n_{5} \\ \neg r \vee n_{5} \end{gathered}$
n_{6}	$p \wedge q$	$n_{6} \Leftrightarrow(p \wedge q)$	$\begin{aligned} & \neg n_{6} \vee \quad p \\ & \neg n_{6} \vee q \\ & \neg p \vee \vee q \vee n_{6} \end{aligned}$
n_{7}	$p \Rightarrow r$	$n_{7} \Leftrightarrow(p \Rightarrow r)$	$\begin{aligned} & \neg n_{7} \vee \neg p \vee r \\ & p \vee n_{7} \\ & \neg r \vee n_{7} \end{aligned}$

Convert the definition formulas to CNF in the standard way

DNF vs. CNF for satisfiability checking

DNF

- Satisfiability is decidable in linear time, with one traversal of the cubes

DNF vs. CNF for satisfiability checking

DNF

- Satisfiability is decidable in linear time, with one traversal of the cubes
- The DNF is unsatisfiable iff every cube contains both a literal and its complement

DNF vs. CNF for satisfiability checking

DNF

- Satisfiability is decidable in linear time, with one traversal of the cubes
- The DNF is unsatisfiable iff every cube contains both a literal and its complement
- However, converting to an equivalent DNF may result in exponential size increase

DNF vs. CNF for satisfiability checking

DNF

- Satisfiability is decidable in linear time, with one traversal of the cubes
- The DNF is unsatisfiable iff every cube contains both a literal and its complement
- However, converting to an equivalent DNF may result in exponential size increase

CNF

- Deciding satisfiability is hard (NP-hard)

DNF vs. CNF for satisfiability checking

DNF

- Satisfiability is decidable in linear time, with one traversal of the cubes
- The DNF is unsatisfiable iff every cube contains both a literal and its complement
- However, converting to an equivalent DNF may result in exponential size increase

CNF

- Deciding satisfiability is hard (NP-hard)
- Converting to an equivalent CNF may result in exponential size increase

DNF vs. CNF for satisfiability checking

DNF

- Satisfiability is decidable in linear time, with one traversal of the cubes
- The DNF is unsatisfiable iff every cube contains both a literal and its complement
- However, converting to an equivalent DNF may result in exponential size increase

CNF

- Deciding satisfiability is hard (NP-hard)
- Converting to an equivalent CNF may result in exponential size increase
- However, converting into an equisatisfiable CNF can be done with only a linear size increase

DNF vs. CNF for satisfiability checking

Modern satisfiability checkers for PL expect CNF-like input

DNF vs. CNF for satisfiability checking

Modern satisfiability checkers for PL expect CNF-like input

They choose to tackle the hardness of the satisfiability problem at runtime rather than at transformation time

[^0]: ${ }^{1}$ I.e., until none applies anymore

[^1]: ${ }^{2}$ E.g., number of variable occurrences, or number of subformulas

