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Agenda

● NNF, DNF, CNF (CC Ch. 1.6)
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Normal forms

For AR purposes, the language of formulas used to model problems may be too large

AR systems usually transform input formulas to formulas in a more restricted format
before reasoning about them

We call these formats normal forms

The normal form a formula α is usually logically equivalent to, or at least equisatiable
with, α
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Normal forms for propositional logic

These three normal forms are often used:

● Negation normal form (NNF)

● Disjunctive normal form (DNF)

● Conjunctive normal form (CNF)

Every formula of PL can be converted to an equivalent formula in one of these forms
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Negation normal form (NNF)

● Only logical connectives: ∧, ∨, and ¬
● ¬ only appears in literals

Grammar

⟨Atom⟩ ∶= ⊺ ∣ � ∣ ⟨Variable⟩
⟨Literal⟩ ∶= ⟨Atom⟩ ∣ ¬⟨Atom⟩
⟨Formula⟩ ∶= ⟨Literal⟩ ∣ ⟨Formula⟩ ∨ ⟨Formula⟩ ∣ ⟨Formula⟩ ∧ ⟨Formula⟩
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NNF transformation

Repeatedly apply the following rewrites (Ð→) to the formula and its subformulas,
in any order, to completion1

● Eliminate double implications: α⇔ β Ð→ (α⇒ β) ∧ (β ⇒ α)
● Eliminate implications: α⇒ β Ð→ (¬α ∨ β)
● Push negation inside conjunctions: ¬(α ∧ β)Ð→ (¬α ∨ ¬β)
● Push negation inside disjunctions: ¬(α ∨ β)Ð→ (¬α ∧ ¬β)
● Eliminate double negations: ¬¬α Ð→ α

● Eliminate negated bottom: ¬�Ð→ ⊺
● Eliminate negated top: ¬⊺Ð→ �

1I.e., until none applies anymore
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NNF transformation properties

Theorem 1
Every wff α not containing double implications (⇔) can be transformed into an
equivalent NNF α′ with a linear increase in the size2 of the formula

2E.g., number of variable occurrences, or number of subformulas
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NNF transformation properties
Observe
The NNF of formulas containing⇔ can grow exponentially larger in the worst case!

Example

(a1 ⇔ a2)⇔ (a3 ⇔ a4) 4 vars
↓

(a1⇔ a2)⇒ (a3 ⇔ a4) ∧ (a3 ⇔ a4)⇒ (a1 ⇔ a2) 8 vars
↓
⋮
↓

((a1 ⇒ a2) ∧ (a2 ⇒ a1))⇒ ((a3 ⇒ a4) ∧ (a4 ⇒ a3))
∧ 16 vars

((a3 ⇒ a4) ∧ (a4 ⇒ a3))⇒ ((a1 ⇒ a2) ∧ (a2 ⇒ a1))
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Disjunctive normal form (DNF)

● Formula is in NNF

● Formula is a disjunction of conjunctions of literals, i.e., of the form:

⋁
i
(⋀

j
lij)

Grammar

⟨Atom⟩ ∶= ⊺ ∣ � ∣ ⟨Variable⟩
⟨Literal⟩ ∶= ⟨Atom⟩ ∣ ¬⟨Atom⟩
⟨Cube⟩ ∶= ⟨Literal⟩ ∣ ⟨Literal⟩ ∧ ⟨Cube⟩

⟨Formula⟩ ∶= ⟨Cube⟩ ∣ ⟨Cube⟩ ∨ ⟨Formula⟩
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DNF transformation

Apply the following rewrites, in any order, to completion

● Apply NNF transformation rewrites
● Distribute ∧ over ∨ (another source of exponential increase):

● α ∧ (β ∨ γ)Ð→ (α ∧ β) ∨ (α ∧ γ)

● (α ∨ β) ∧ γ Ð→ (α ∧ γ) ∨ (β ∧ γ)

● Normalize nested conjunctions and disjunctions
● (α ∧ β) ∧ γ Ð→ α ∧ (β ∧ γ)

● (α ∨ β) ∨ γ Ð→ α ∨ (β ∨ γ)

Note: Instead of having nested conjunctions or disjunctions, it is convenient to treat ∧ and ∨ as
n-ary operators for any n > 1 (e.g., we treat a1 ∨ (a2 ∨ (a3 ∨ a4)) as a1 ∨ a2 ∨ a3 ∨ a4)
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DNF transformation

Theorem 2
Every wff α can be transformed into a logically equivalent DNF α′, with a potentially
exponential increase in the size of the formula

Note: The exponential increase can occur even in the absence of⇔
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Exercise
Transform each of these formulas (separately) into DNF:

¬((p ∨ ¬q)⇒ r) ¬(a⇒ (¬b⇒ a))

NNF transformation rewrites:

1. α⇔ β Ð→ (α⇒ β) ∧ (β ⇒ α)

2. α⇒ β Ð→ ¬α ∨ β

3. ¬(α ∨ β)Ð→ (¬α ∧ ¬β)

4. ¬(α ∧ β)Ð→ (¬α ∨ ¬β)

5. ¬¬α Ð→ α

6. ¬⊺Ð→ �

7. ¬�Ð→ ⊺

DNF transformation rewrites:

1. α ∧ (β ∨ γ)Ð→ (α ∧ β) ∨ (α ∧ γ)

2. (α ∨ β) ∧ γ Ð→ (α ∧ γ) ∨ (β ∧ γ)

3. (α ∧ β) ∧ γ Ð→ α ∧ (β ∧ γ)

4. (α ∨ β) ∨ γ Ð→ α ∨ (β ∨ γ)
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Conjunctive normal form (CNF)

● Formula is in NNF

● Formula is a conjunction of disjunctions of literals, i.e., of the form:

⋀
i
(⋁

j
lij)

Grammar

⟨Atom⟩ ∶= ⊺ ∣ � ∣ ⟨Variable⟩
⟨Literal⟩ ∶= ⟨Atom⟩ ∣ ¬⟨Atom⟩
⟨Clause⟩ ∶= ⟨Literal⟩ ∣ ⟨Literal⟩ ∨ ⟨Clause⟩
⟨Formula⟩ ∶= ⟨Clause⟩ ∣ ⟨Clause⟩ ∧ ⟨Formula⟩
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CNF transformation

Apply the following rewrites, in any order, to completion

● Apply NNF transformation rewrites
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CNF transformation

Theorem 3
Every wff α can be transformed into a logically equivalent CNF α′, with a potentially
exponential increase in the size of the formula

Note: The size increase can occur even in the absence of⇔
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CNF transformation can be exponential

There are formulas whose shortest CNF has an exponential size

Is there any way to avoid exponential blowup? Yes!
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A space-efficient CNF transformation
Using so-called naming, definition introduction, or Tseitin’s transformation

1. Take a non-literal subformula α of formula φ

2. Introduce a new name n for it, i.e., a fresh propositional variable

3. Add a definition for n, i.e., a formula stating that n is equivalent to α

φ = p1 ⇔ (p2 ⇔ (p3 ⇔ (p4 ⇔ (
α

³¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹µ
p5 ⇔ p6))))

n⇔ (p5 ⇔ p6)

4. Replace α in φ by its name n:

S = { p1 ⇔ (p2 ⇔ (p3 ⇔ (p4 ⇔ n)))
n⇔ (p5 ⇔ p6)

}
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The new set S of formulas and the original formula φ are not equivalent but
they are equisatisfiable:

1. every interpretation satisfying S satisfies φ as well, and

2. every interpretation satisfying φ can be extended to one that satisfies S
(by assigning to n the value of p5 ⇔ p6)
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After several steps

p1 ⇔ (p2⇔ (p3 ⇔ (p4 ⇔ (p5 ⇔ p6)))

p1 ⇔ (p2 ⇔ n3)
n3 ⇔ (p3⇔ n4)
n4 ⇔ (p4⇔ n5)
n5 ⇔ (p5 ⇔ p6)

The conversion of the original formula to CNF introduces 32 copies of p6

The conversion of the new set of formulas to CNF introduces 4 copies of p6
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Clausal Form

Clausal form of a formula α: a set Sα of clauses which is satisfiable iff α is satisfiable

Clausal form of a set S of formulas: a set S′ of clauses which is satisfiable iff so is S

Big advantage of clausal normal form over CNF:

we can convert any formula to a set of clauses in almost linear time
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Definitional Clause Form Transformation

How to convert a formula α into a set S of clauses that is a clausal normal form of α:

1. If α has the form C1 ∧⋯ ∧ Cn, where n ≥ 1 and each Ci is a clause, then

S ∶= {C1, . . . ,Cn }

2. Otherwise, introduce a name for each subformula β of α that is not a literal, and
use this name instead of β

21 / 24
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Converting a formula to clausal form, Example
non-literal subformula definition clauses

¬((p⇒ q) ∧ (p ∧ q⇒ r)⇒ (p⇒ r)) ¬n1
n1 ¬((p⇒ q) ∧ (p ∧ q⇒ r)⇒ (p⇒ r)) n1 ⇔ ¬n2 ¬n1 ∨ ¬n2

¬n1 ∨ ¬n2
n2 ¬)(p⇒ q) ∧ (p ∧ q⇒ r)⇒ (p⇒ r) n2 ⇔ (n3 ⇒ n7) ¬n2 ∨ ¬n3 ∨ n7

¬n3 ∨ ¬n2
¬n7 ∨ ¬n2

n3 ¬)(p⇒ q) ∧ (p ∧ q⇒ r) n3 ⇔ (n4 ∧ n5) ¬n3 ∨ ¬n4
¬n3 ∨ ¬n5
¬n4 ∨ ¬n5 ∨ n3

n4 ¬)(p⇒ q n4 ⇔ (p⇒ q) ¬n4 ∨ ¬p3 ∨ q7
¬p3 ∨ ¬n4
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Convert the
definition
formulas to
CNF in the
standard way
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DNF vs. CNF for satisfiability checking

DNF

● Satisfiability is decidable in linear time, with one traversal of the cubes
● The DNF is unsatisfiable iff every cube contains both a literal and its complement

● However, converting to an equivalent DNF may result in exponential size increase

CNF

● Deciding satisfiability is hard (NP-hard)

● Converting to an equivalent CNF may result in exponential size increase

● However, converting into an equisatisfiable CNF can be done with only a linear
size increase
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DNF vs. CNF for satisfiability checking

Modern satisfiability checkers for PL expect CNF-like input

They choose to tackle the hardness of the satisfiability problem at runtime
rather than at transformation time
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