
CS:4980 Topics in Computer Science II

Introduction to Automated Reasoning

Normal Forms in Propositional Logic

Cesare Tinelli

Spring 2024



Credits

These slides are based on slides originally developed by Cesare Tinelli at the University of
Iowa, Andrei Voronkov at the University of Manchester, Emina Torlak at the University of
Washington, and by Clark Barrett, Caroline Trippel, and Andrew (Haoze) Wu at Stanford
University. Adapted by permission.

1 / 24



Agenda

● NNF, DNF, CNF (CC Ch. 1.6)

2 / 24



Normal forms

For AR purposes, the language of formulas used to model problems may be too large

AR systems usually transform input formulas to formulas in a more restricted format
before reasoning about them

We call these formats normal forms

The normal form a formula α is usually logically equivalent to, or at least equisatiable
with, α

3 / 24



Normal forms

For AR purposes, the language of formulas used to model problems may be too large

AR systems usually transform input formulas to formulas in a more restricted format
before reasoning about them

We call these formats normal forms

The normal form a formula α is usually logically equivalent to, or at least equisatiable
with, α

3 / 24



Normal forms

For AR purposes, the language of formulas used to model problems may be too large

AR systems usually transform input formulas to formulas in a more restricted format
before reasoning about them

We call these formats normal forms

The normal form a formula α is usually logically equivalent to, or at least equisatiable
with, α

3 / 24



Normal forms

For AR purposes, the language of formulas used to model problems may be too large

AR systems usually transform input formulas to formulas in a more restricted format
before reasoning about them

We call these formats normal forms

The normal form a formula α is usually logically equivalent to, or at least equisatiable
with, α

3 / 24



Normal forms for propositional logic

These three normal forms are often used:

● Negation normal form (NNF)

● Disjunctive normal form (DNF)

● Conjunctive normal form (CNF)

Every formula of PL can be converted to an equivalent formula in one of these forms

4 / 24



Normal forms for propositional logic

These three normal forms are often used:

● Negation normal form (NNF)

● Disjunctive normal form (DNF)

● Conjunctive normal form (CNF)

Every formula of PL can be converted to an equivalent formula in one of these forms

4 / 24



Negation normal form (NNF)

● Only logical connectives: ∧, ∨, and ¬
● ¬ only appears in literals

Grammar

⟨Atom⟩ ∶= ⊺ ∣ � ∣ ⟨Variable⟩
⟨Literal⟩ ∶= ⟨Atom⟩ ∣ ¬⟨Atom⟩
⟨Formula⟩ ∶= ⟨Literal⟩ ∣ ⟨Formula⟩ ∨ ⟨Formula⟩ ∣ ⟨Formula⟩ ∧ ⟨Formula⟩

5 / 24



Negation normal form (NNF)

● Only logical connectives: ∧, ∨, and ¬
● ¬ only appears in literals

Grammar

⟨Atom⟩ ∶= ⊺ ∣ � ∣ ⟨Variable⟩
⟨Literal⟩ ∶= ⟨Atom⟩ ∣ ¬⟨Atom⟩
⟨Formula⟩ ∶= ⟨Literal⟩ ∣ ⟨Formula⟩ ∨ ⟨Formula⟩ ∣ ⟨Formula⟩ ∧ ⟨Formula⟩

5 / 24



NNF transformation

Repeatedly apply the following rewrites (Ð→) to the formula and its subformulas,
in any order, to completion1

● Eliminate double implications: α⇔ β Ð→ (α⇒ β) ∧ (β ⇒ α)
● Eliminate implications: α⇒ β Ð→ (¬α ∨ β)
● Push negation inside conjunctions: ¬(α ∧ β)Ð→ (¬α ∨ ¬β)
● Push negation inside disjunctions: ¬(α ∨ β)Ð→ (¬α ∧ ¬β)
● Eliminate double negations: ¬¬α Ð→ α

● Eliminate negated bottom: ¬�Ð→ ⊺
● Eliminate negated top: ¬⊺Ð→ �

1I.e., until none applies anymore
6 / 24



NNF transformation

Repeatedly apply the following rewrites (Ð→) to the formula and its subformulas,
in any order, to completion1

● Eliminate double implications: α⇔ β Ð→ (α⇒ β) ∧ (β ⇒ α)
● Eliminate implications: α⇒ β Ð→ (¬α ∨ β)
● Push negation inside conjunctions: ¬(α ∧ β)Ð→ (¬α ∨ ¬β)
● Push negation inside disjunctions: ¬(α ∨ β)Ð→ (¬α ∧ ¬β)
● Eliminate double negations: ¬¬α Ð→ α

● Eliminate negated bottom: ¬�Ð→ ⊺
● Eliminate negated top: ¬⊺Ð→ �

1I.e., until none applies anymore
6 / 24



NNF transformation properties

Theorem 1
Every wff α not containing double implications (⇔) can be transformed into an
equivalent NNF α′ with a linear increase in the size2 of the formula

2E.g., number of variable occurrences, or number of subformulas
7 / 24



NNF transformation properties
Observe
The NNF of formulas containing⇔ can grow exponentially larger in the worst case!

Example

(a1 ⇔ a2)⇔ (a3 ⇔ a4) 4 vars
↓

(a1⇔ a2)⇒ (a3 ⇔ a4) ∧ (a3 ⇔ a4)⇒ (a1 ⇔ a2) 8 vars
↓
⋮
↓

((a1 ⇒ a2) ∧ (a2 ⇒ a1))⇒ ((a3 ⇒ a4) ∧ (a4 ⇒ a3))
∧ 16 vars

((a3 ⇒ a4) ∧ (a4 ⇒ a3))⇒ ((a1 ⇒ a2) ∧ (a2 ⇒ a1))

8 / 24



NNF transformation properties
Observe
The NNF of formulas containing⇔ can grow exponentially larger in the worst case!

Example

(a1 ⇔ a2)⇔ (a3 ⇔ a4) 4 vars
↓

(a1 ⇔ a2)⇒ (a3 ⇔ a4) ∧ (a3 ⇔ a4)⇒ (a1 ⇔ a2) 8 vars
↓
⋮
↓

((a1 ⇒ a2) ∧ (a2 ⇒ a1))⇒ ((a3 ⇒ a4) ∧ (a4 ⇒ a3))
∧ 16 vars

((a3 ⇒ a4) ∧ (a4 ⇒ a3))⇒ ((a1 ⇒ a2) ∧ (a2 ⇒ a1))

8 / 24



Disjunctive normal form (DNF)

● Formula is in NNF

● Formula is a disjunction of conjunctions of literals, i.e., of the form:

⋁
i
(⋀

j
lij)

Grammar

⟨Atom⟩ ∶= ⊺ ∣ � ∣ ⟨Variable⟩
⟨Literal⟩ ∶= ⟨Atom⟩ ∣ ¬⟨Atom⟩
⟨Cube⟩ ∶= ⟨Literal⟩ ∣ ⟨Literal⟩ ∧ ⟨Cube⟩

⟨Formula⟩ ∶= ⟨Cube⟩ ∣ ⟨Cube⟩ ∨ ⟨Formula⟩

9 / 24



Disjunctive normal form (DNF)

● Formula is in NNF

● Formula is a disjunction of conjunctions of literals, i.e., of the form:

⋁
i
(⋀

j
lij)

Grammar

⟨Atom⟩ ∶= ⊺ ∣ � ∣ ⟨Variable⟩
⟨Literal⟩ ∶= ⟨Atom⟩ ∣ ¬⟨Atom⟩
⟨Cube⟩ ∶= ⟨Literal⟩ ∣ ⟨Literal⟩ ∧ ⟨Cube⟩

⟨Formula⟩ ∶= ⟨Cube⟩ ∣ ⟨Cube⟩ ∨ ⟨Formula⟩

9 / 24



DNF transformation

Apply the following rewrites, in any order, to completion

● Apply NNF transformation rewrites
● Distribute ∧ over ∨ (another source of exponential increase):

● α ∧ (β ∨ γ)Ð→ (α ∧ β) ∨ (α ∧ γ)

● (α ∨ β) ∧ γ Ð→ (α ∧ γ) ∨ (β ∧ γ)

● Normalize nested conjunctions and disjunctions
● (α ∧ β) ∧ γ Ð→ α ∧ (β ∧ γ)

● (α ∨ β) ∨ γ Ð→ α ∨ (β ∨ γ)

Note: Instead of having nested conjunctions or disjunctions, it is convenient to treat ∧ and ∨ as
n-ary operators for any n > 1 (e.g., we treat a1 ∨ (a2 ∨ (a3 ∨ a4)) as a1 ∨ a2 ∨ a3 ∨ a4)

10 / 24



DNF transformation

Apply the following rewrites, in any order, to completion

● Apply NNF transformation rewrites
● Distribute ∧ over ∨ (another source of exponential increase):

● α ∧ (β ∨ γ)Ð→ (α ∧ β) ∨ (α ∧ γ)

● (α ∨ β) ∧ γ Ð→ (α ∧ γ) ∨ (β ∧ γ)

● Normalize nested conjunctions and disjunctions
● (α ∧ β) ∧ γ Ð→ α ∧ (β ∧ γ)

● (α ∨ β) ∨ γ Ð→ α ∨ (β ∨ γ)

Note: Instead of having nested conjunctions or disjunctions, it is convenient to treat ∧ and ∨ as
n-ary operators for any n > 1 (e.g., we treat a1 ∨ (a2 ∨ (a3 ∨ a4)) as a1 ∨ a2 ∨ a3 ∨ a4)

10 / 24



DNF transformation

Theorem 2
Every wff α can be transformed into a logically equivalent DNF α′, with a potentially
exponential increase in the size of the formula

Note: The exponential increase can occur even in the absence of⇔

11 / 24



DNF transformation

Theorem 2
Every wff α can be transformed into a logically equivalent DNF α′, with a potentially
exponential increase in the size of the formula

Note: The exponential increase can occur even in the absence of⇔

11 / 24



Exercise
Transform each of these formulas (separately) into DNF:

¬((p ∨ ¬q)⇒ r) ¬(a⇒ (¬b⇒ a))

NNF transformation rewrites:

1. α⇔ β Ð→ (α⇒ β) ∧ (β ⇒ α)

2. α⇒ β Ð→ ¬α ∨ β

3. ¬(α ∨ β)Ð→ (¬α ∧ ¬β)

4. ¬(α ∧ β)Ð→ (¬α ∨ ¬β)

5. ¬¬α Ð→ α

6. ¬⊺Ð→ �

7. ¬�Ð→ ⊺

DNF transformation rewrites:

1. α ∧ (β ∨ γ)Ð→ (α ∧ β) ∨ (α ∧ γ)

2. (α ∨ β) ∧ γ Ð→ (α ∧ γ) ∨ (β ∧ γ)

3. (α ∧ β) ∧ γ Ð→ α ∧ (β ∧ γ)

4. (α ∨ β) ∨ γ Ð→ α ∨ (β ∨ γ)

12 / 24



Conjunctive normal form (CNF)

● Formula is in NNF

● Formula is a conjunction of disjunctions of literals, i.e., of the form:

⋀
i
(⋁

j
lij)

Grammar

⟨Atom⟩ ∶= ⊺ ∣ � ∣ ⟨Variable⟩
⟨Literal⟩ ∶= ⟨Atom⟩ ∣ ¬⟨Atom⟩
⟨Clause⟩ ∶= ⟨Literal⟩ ∣ ⟨Literal⟩ ∨ ⟨Clause⟩
⟨Formula⟩ ∶= ⟨Clause⟩ ∣ ⟨Clause⟩ ∧ ⟨Formula⟩

13 / 24



Conjunctive normal form (CNF)

● Formula is in NNF

● Formula is a conjunction of disjunctions of literals, i.e., of the form:

⋀
i
(⋁

j
lij)

Grammar

⟨Atom⟩ ∶= ⊺ ∣ � ∣ ⟨Variable⟩
⟨Literal⟩ ∶= ⟨Atom⟩ ∣ ¬⟨Atom⟩
⟨Clause⟩ ∶= ⟨Literal⟩ ∣ ⟨Literal⟩ ∨ ⟨Clause⟩
⟨Formula⟩ ∶= ⟨Clause⟩ ∣ ⟨Clause⟩ ∧ ⟨Formula⟩

13 / 24



CNF transformation

Apply the following rewrites, in any order, to completion

● Apply NNF transformation rewrites
● Distribute ∨ over ∧ (another source of exponential increase):

● α ∨ (β ∧ γ)Ð→ (α ∨ β) ∧ (α ∨ γ)

● (α ∧ β) ∨ γ Ð→ (α ∨ γ) ∧ (β ∨ γ)

● Normalize nested conjunctions and disjunctions
● (α ∧ β) ∧ γ Ð→ α ∧ (β ∧ γ)

● (α ∨ β) ∨ γ Ð→ α ∨ (β ∨ γ)

14 / 24



Exercise
Transform each of these formulas (separately) into CNF:

¬((p ∨ ¬q)⇒ r) ¬(a⇒ (¬b⇒ a))

NNF transformation rewrites:

1. α⇔ β Ð→ (α⇒ β) ∧ (β ⇒ α)

2. α⇒ β Ð→ ¬α ∨ β

3. ¬(α ∨ β)Ð→ (¬α ∧ ¬β)

4. ¬(α ∧ β)Ð→ (¬α ∨ ¬β)

5. ¬¬α Ð→ α

6. ¬⊺Ð→ �

7. ¬�Ð→ ⊺

CNF transformation rewrites:

1. α ∨ (β ∧ γ)Ð→ (α ∨ β) ∧ (α ∨ γ)

2. (α ∧ β) ∨ γ Ð→ (α ∨ γ) ∧ (β ∨ γ)

3. (α ∧ β) ∧ γ Ð→ α ∧ (β ∧ γ)

4. (α ∨ β) ∨ γ Ð→ α ∨ (β ∨ γ)

15 / 24



CNF transformation

Theorem 3
Every wff α can be transformed into a logically equivalent CNF α′, with a potentially
exponential increase in the size of the formula

Note: The size increase can occur even in the absence of⇔

16 / 24



CNF transformation

Theorem 3
Every wff α can be transformed into a logically equivalent CNF α′, with a potentially
exponential increase in the size of the formula

Note: The size increase can occur even in the absence of⇔

16 / 24



CNF transformation can be exponential

There are formulas whose shortest CNF has an exponential size

Is there any way to avoid exponential blowup? Yes!

17 / 24



CNF transformation can be exponential

There are formulas whose shortest CNF has an exponential size

Is there any way to avoid exponential blowup? Yes!

17 / 24



CNF transformation can be exponential

There are formulas whose shortest CNF has an exponential size

Is there any way to avoid exponential blowup? Yes!

17 / 24



A space-efficient CNF transformation
Using so-called naming, definition introduction, or Tseitin’s transformation

1. Take a non-literal subformula α of formula φ

2. Introduce a new name n for it, i.e., a fresh propositional variable

3. Add a definition for n, i.e., a formula stating that n is equivalent to α

φ = p1 ⇔ (p2 ⇔ (p3 ⇔ (p4 ⇔ (
α

³¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹µ
p5 ⇔ p6))))

n⇔ (p5 ⇔ p6)

4. Replace α in φ by its name n:

S = { p1 ⇔ (p2 ⇔ (p3 ⇔ (p4 ⇔ n)))
n⇔ (p5 ⇔ p6)

}

18 / 24



A space-efficient CNF transformation
Using so-called naming, definition introduction, or Tseitin’s transformation

1. Take a non-literal subformula α of formula φ

2. Introduce a new name n for it, i.e., a fresh propositional variable

3. Add a definition for n, i.e., a formula stating that n is equivalent to α

φ = p1 ⇔ (p2 ⇔ (p3 ⇔ (p4 ⇔ (
α

³¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹µ
p5 ⇔ p6))))

n⇔ (p5 ⇔ p6)

4. Replace α in φ by its name n:

S = { p1 ⇔ (p2 ⇔ (p3 ⇔ (p4 ⇔ n)))
n⇔ (p5 ⇔ p6)

}

18 / 24



A space-efficient CNF transformation
Using so-called naming, definition introduction, or Tseitin’s transformation

1. Take a non-literal subformula α of formula φ

2. Introduce a new name n for it, i.e., a fresh propositional variable

3. Add a definition for n, i.e., a formula stating that n is equivalent to α

φ = p1 ⇔ (p2 ⇔ (p3 ⇔ (p4 ⇔ (
α

³¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹µ
p5 ⇔ p6))))

n⇔ (p5 ⇔ p6)

4. Replace α in φ by its name n:

S = { p1 ⇔ (p2 ⇔ (p3 ⇔ (p4 ⇔ n)))
n⇔ (p5 ⇔ p6)

}

18 / 24



A space-efficient CNF transformation
Using so-called naming, definition introduction, or Tseitin’s transformation

1. Take a non-literal subformula α of formula φ

2. Introduce a new name n for it, i.e., a fresh propositional variable

3. Add a definition for n, i.e., a formula stating that n is equivalent to α

φ = p1 ⇔ (p2 ⇔ (p3 ⇔ (p4 ⇔ (
α

³¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹µ
p5 ⇔ p6))))

n⇔ (p5 ⇔ p6)

4. Replace α in φ by its name n:

S = { p1 ⇔ (p2 ⇔ (p3 ⇔ (p4 ⇔ n)))
n⇔ (p5 ⇔ p6)

}

18 / 24



A space-efficient CNF transformation
Using so-called naming, definition introduction, or Tseitin’s transformation

1. Take a non-literal subformula α of formula φ

2. Introduce a new name n for it, i.e., a fresh propositional variable

3. Add a definition for n, i.e., a formula stating that n is equivalent to α

φ = p1 ⇔ (p2 ⇔ (p3 ⇔ (p4 ⇔ (
α

³¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹µ
p5 ⇔ p6))))

n⇔ (p5 ⇔ p6)

4. Replace α in φ by its name n:

S = { p1 ⇔ (p2 ⇔ (p3 ⇔ (p4 ⇔ n)))
n⇔ (p5 ⇔ p6)

}

18 / 24



A space-efficient CNF transformation
Using so-called naming, definition introduction, or Tseitin’s transformation

1. Take a non-literal subformula α of formula φ

2. Introduce a new name n for it, i.e., a fresh propositional variable

3. Add a definition for n, i.e., a formula stating that n is equivalent to α

φ = p1 ⇔ (p2 ⇔ (p3 ⇔ (p4 ⇔ (
α

³¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹µ
p5 ⇔ p6))))

n⇔ (p5 ⇔ p6)

4. Replace α in φ by its name n:

S = { p1 ⇔ (p2 ⇔ (p3 ⇔ (p4 ⇔ n)))
n⇔ (p5 ⇔ p6)

}

18 / 24

The new set S of formulas and the original formula φ are not equivalent but
they are equisatisfiable:

1. every interpretation satisfying S satisfies φ as well, and

2. every interpretation satisfying φ can be extended to one that satisfies S
(by assigning to n the value of p5 ⇔ p6)



A space-efficient CNF transformation
Using so-called naming, definition introduction, or Tseitin’s transformation

1. Take a non-literal subformula α of formula φ

2. Introduce a new name n for it, i.e., a fresh propositional variable

3. Add a definition for n, i.e., a formula stating that n is equivalent to α

φ = p1 ⇔ (p2 ⇔ (p3 ⇔ (p4 ⇔ (
α

³¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹µ
p5 ⇔ p6))))

n⇔ (p5 ⇔ p6)

4. Replace α in φ by its name n:

S = { p1 ⇔ (p2 ⇔ (p3 ⇔ (p4 ⇔ n)))
n⇔ (p5 ⇔ p6)

}

18 / 24

The new set S of formulas and the original formula φ are not equivalent but
they are equisatisfiable:

1. every interpretation satisfying S satisfies φ as well, and

2. every interpretation satisfying φ can be extended to one that satisfies S
(by assigning to n the value of p5 ⇔ p6)



A space-efficient CNF transformation
Using so-called naming, definition introduction, or Tseitin’s transformation

1. Take a non-literal subformula α of formula φ

2. Introduce a new name n for it, i.e., a fresh propositional variable

3. Add a definition for n, i.e., a formula stating that n is equivalent to α

φ = p1 ⇔ (p2 ⇔ (p3 ⇔ (p4 ⇔ (
α

³¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹µ
p5 ⇔ p6))))

n⇔ (p5 ⇔ p6)

4. Replace α in φ by its name n:

S = { p1 ⇔ (p2 ⇔ (p3 ⇔ (p4 ⇔ n)))
n⇔ (p5 ⇔ p6)

}

18 / 24

The new set S of formulas and the original formula φ are not equivalent but
they are equisatisfiable:

1. every interpretation satisfying S satisfies φ as well, and

2. every interpretation satisfying φ can be extended to one that satisfies S
(by assigning to n the value of p5 ⇔ p6)



A space-efficient CNF transformation
Using so-called naming, definition introduction, or Tseitin’s transformation

1. Take a non-literal subformula α of formula φ

2. Introduce a new name n for it, i.e., a fresh propositional variable

3. Add a definition for n, i.e., a formula stating that n is equivalent to α

φ = p1 ⇔ (p2 ⇔ (p3 ⇔ (p4 ⇔ (
α

³¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹µ
p5 ⇔ p6))))

n⇔ (p5 ⇔ p6)

4. Replace α in φ by its name n:

S = { p1 ⇔ (p2 ⇔ (p3 ⇔ (p4 ⇔ n)))
n⇔ (p5 ⇔ p6)

}

18 / 24

The new set S of formulas and the original formula φ are not equivalent but
they are equisatisfiable:

1. every interpretation satisfying S satisfies φ as well, and

2. every interpretation satisfying φ can be extended to one that satisfies S
(by assigning to n the value of p5 ⇔ p6)



After several steps

p1 ⇔ (p2⇔ (p3 ⇔ (p4 ⇔ (p5 ⇔ p6)))

p1 ⇔ (p2 ⇔ n3)
n3 ⇔ (p3⇔ n4)
n4 ⇔ (p4⇔ n5)
n5 ⇔ (p5 ⇔ p6)

The conversion of the original formula to CNF introduces 32 copies of p6

The conversion of the new set of formulas to CNF introduces 4 copies of p6

19 / 24



After several steps

p1 ⇔ (p2⇔ (p3 ⇔ (p4 ⇔ (p5 ⇔ p6)))

p1 ⇔ (p2 ⇔ n3)
n3 ⇔ (p3⇔ n4)
n4 ⇔ (p4⇔ n5)
n5 ⇔ (p5 ⇔ p6)

The conversion of the original formula to CNF introduces 32 copies of p6

The conversion of the new set of formulas to CNF introduces 4 copies of p6

19 / 24



After several steps

p1 ⇔ (p2⇔ (p3 ⇔ (p4 ⇔ (p5 ⇔ p6)))

p1 ⇔ (p2 ⇔ n3)
n3 ⇔ (p3⇔ n4)
n4 ⇔ (p4⇔ n5)
n5 ⇔ (p5 ⇔ p6)

The conversion of the original formula to CNF introduces 32 copies of p6

The conversion of the new set of formulas to CNF introduces 4 copies of p6

19 / 24



Clausal Form

Clausal form of a formula α: a set Sα of clauses which is satisfiable iff α is satisfiable

Clausal form of a set S of formulas: a set S′ of clauses which is satisfiable iff so is S

Big advantage of clausal normal form over CNF:

we can convert any formula to a set of clauses in almost linear time

20 / 24



Clausal Form

Clausal form of a formula α: a set Sα of clauses which is satisfiable iff α is satisfiable

Clausal form of a set S of formulas: a set S′ of clauses which is satisfiable iff so is S

Big advantage of clausal normal form over CNF:

we can convert any formula to a set of clauses in almost linear time

20 / 24



Clausal Form

Clausal form of a formula α: a set Sα of clauses which is satisfiable iff α is satisfiable

Clausal form of a set S of formulas: a set S′ of clauses which is satisfiable iff so is S

Big advantage of clausal normal form over CNF:

we can convert any formula to a set of clauses in almost linear time

20 / 24



Definitional Clause Form Transformation

How to convert a formula α into a set S of clauses that is a clausal normal form of α:

1. If α has the form C1 ∧⋯ ∧ Cn, where n ≥ 1 and each Ci is a clause, then

S ∶= {C1, . . . ,Cn }

2. Otherwise, introduce a name for each subformula β of α that is not a literal, and
use this name instead of β

21 / 24



Definitional Clause Form Transformation

How to convert a formula α into a set S of clauses that is a clausal normal form of α:

1. If α has the form C1 ∧⋯ ∧ Cn, where n ≥ 1 and each Ci is a clause, then

S ∶= {C1, . . . ,Cn }

2. Otherwise, introduce a name for each subformula β of α that is not a literal, and
use this name instead of β

21 / 24



Definitional Clause Form Transformation

How to convert a formula α into a set S of clauses that is a clausal normal form of α:

1. If α has the form C1 ∧⋯ ∧ Cn, where n ≥ 1 and each Ci is a clause, then

S ∶= {C1, . . . ,Cn }

2. Otherwise, introduce a name for each subformula β of α that is not a literal, and
use this name instead of β

21 / 24



Converting a formula to clausal form, Example
non-literal subformula definition clauses

¬((p⇒ q) ∧ (p ∧ q⇒ r)⇒ (p⇒ r)) ¬n1
n1 ¬((p⇒ q) ∧ (p ∧ q⇒ r)⇒ (p⇒ r)) n1 ⇔ ¬n2 ¬n1 ∨ ¬n2

¬n1 ∨ ¬n2
n2 ¬)(p⇒ q) ∧ (p ∧ q⇒ r)⇒ (p⇒ r) n2 ⇔ (n3 ⇒ n7) ¬n2 ∨ ¬n3 ∨ n7

¬n3 ∨ ¬n2
¬n7 ∨ ¬n2

n3 ¬)(p⇒ q) ∧ (p ∧ q⇒ r) n3 ⇔ (n4 ∧ n5) ¬n3 ∨ ¬n4
¬n3 ∨ ¬n5
¬n4 ∨ ¬n5 ∨ n3

n4 ¬)(p⇒ q n4 ⇔ (p⇒ q) ¬n4 ∨ ¬p3 ∨ q7
¬p3 ∨ ¬n4
¬q7 ∨ ¬n4

n5 ¬)(p⇒ q) ∧ (p ∧ q⇒ r n5 ⇔ (n6 ⇒ r) ¬n5 ∨ ¬n6 ∨ r7
¬n6 ∨ ¬n5
¬r7 ∨ ¬n5

n6 ¬)(p⇒ q) ∧ (p ∧ q n6 ⇔ (p ∧ q) ¬n6 ∨ ¬p4
¬n6 ∨ ¬q5
¬p4 ∨ ¬q5 ∨ n6

n7 ¬)(p⇒ q) ∧ (p ∧ q⇒ r)⇒ (p⇒ r n7 ⇔ (p⇒ r) ¬n7 ∨ ¬p3 ∨ r7
¬p3 ∨ ¬n7
¬r7 ∨ ¬n7

22 / 24



Converting a formula to clausal form, Example
non-literal subformula definition clauses

¬((p⇒ q) ∧ (p ∧ q⇒ r)⇒ (p⇒ r)) ¬n1
n1 ¬((p⇒ q) ∧ (p ∧ q⇒ r)⇒ (p⇒ r)) n1 ⇔ ¬n2 ¬n1 ∨ ¬n2

¬n1 ∨ ¬n2
n2 ¬)(p⇒ q) ∧ (p ∧ q⇒ r)⇒ (p⇒ r) n2 ⇔ (n3 ⇒ n7) ¬n2 ∨ ¬n3 ∨ n7

¬n3 ∨ ¬n2
¬n7 ∨ ¬n2

n3 ¬)(p⇒ q) ∧ (p ∧ q⇒ r) n3 ⇔ (n4 ∧ n5) ¬n3 ∨ ¬n4
¬n3 ∨ ¬n5
¬n4 ∨ ¬n5 ∨ n3

n4 ¬)(p⇒ q n4 ⇔ (p⇒ q) ¬n4 ∨ ¬p3 ∨ q7
¬p3 ∨ ¬n4
¬q7 ∨ ¬n4

n5 ¬)(p⇒ q) ∧ (p ∧ q⇒ r n5 ⇔ (n6 ⇒ r) ¬n5 ∨ ¬n6 ∨ r7
¬n6 ∨ ¬n5
¬r7 ∨ ¬n5

n6 ¬)(p⇒ q) ∧ (p ∧ q n6 ⇔ (p ∧ q) ¬n6 ∨ ¬p4
¬n6 ∨ ¬q5
¬p4 ∨ ¬q5 ∨ n6

n7 ¬)(p⇒ q) ∧ (p ∧ q⇒ r)⇒ (p⇒ r n7 ⇔ (p⇒ r) ¬n7 ∨ ¬p3 ∨ r7
¬p3 ∨ ¬n7
¬r7 ∨ ¬n7

Consider all
subformulas
that are not
literals

22 / 24



Converting a formula to clausal form, Example
non-literal subformula definition clauses

¬((p⇒ q) ∧ (p ∧ q⇒ r)⇒ (p⇒ r)) ¬n1
n1 ¬((p⇒ q) ∧ (p ∧ q⇒ r)⇒ (p⇒ r)) n1 ⇔ ¬n2 ¬n1 ∨ ¬n2

¬n1 ∨ ¬n2
n2 ¬)(p⇒ q) ∧ (p ∧ q⇒ r)⇒ (p⇒ r) n2 ⇔ (n3 ⇒ n7) ¬n2 ∨ ¬n3 ∨ n7

¬n3 ∨ ¬n2
¬n7 ∨ ¬n2

n3 ¬)(p⇒ q) ∧ (p ∧ q⇒ r) n3 ⇔ (n4 ∧ n5) ¬n3 ∨ ¬n4
¬n3 ∨ ¬n5
¬n4 ∨ ¬n5 ∨ n3

n4 ¬)(p⇒ q n4 ⇔ (p⇒ q) ¬n4 ∨ ¬p3 ∨ q7
¬p3 ∨ ¬n4
¬q7 ∨ ¬n4

n5 ¬)(p⇒ q) ∧ (p ∧ q⇒ r n5 ⇔ (n6 ⇒ r) ¬n5 ∨ ¬n6 ∨ r7
¬n6 ∨ ¬n5
¬r7 ∨ ¬n5

n6 ¬)(p⇒ q) ∧ (p ∧ q n6 ⇔ (p ∧ q) ¬n6 ∨ ¬p4
¬n6 ∨ ¬q5
¬p4 ∨ ¬q5 ∨ n6

n7 ¬)(p⇒ q) ∧ (p ∧ q⇒ r)⇒ (p⇒ r n7 ⇔ (p⇒ r) ¬n7 ∨ ¬p3 ∨ r7
¬p3 ∨ ¬n7
¬r7 ∨ ¬n7

Introduce
names for
these
formulas

22 / 24



Converting a formula to clausal form, Example
non-literal subformula definition clauses

¬((p⇒ q) ∧ (p ∧ q⇒ r)⇒ (p⇒ r)) ¬n1
n1 ¬((p⇒ q) ∧ (p ∧ q⇒ r)⇒ (p⇒ r)) n1 ⇔ ¬n2 ¬n1 ∨ ¬n2

¬n1 ∨ ¬n2
n2 ¬)(p⇒ q) ∧ (p ∧ q⇒ r)⇒ (p⇒ r) n2 ⇔ (n3 ⇒ n7) ¬n2 ∨ ¬n3 ∨ n7

¬n3 ∨ ¬n2
¬n7 ∨ ¬n2

n3 ¬)(p⇒ q) ∧ (p ∧ q⇒ r) n3 ⇔ (n4 ∧ n5) ¬n3 ∨ ¬n4
¬n3 ∨ ¬n5
¬n4 ∨ ¬n5 ∨ n3

n4 ¬)(p⇒ q n4 ⇔ (p⇒ q) ¬n4 ∨ ¬p3 ∨ q7
¬p3 ∨ ¬n4
¬q7 ∨ ¬n4

n5 ¬)(p⇒ q) ∧ (p ∧ q⇒ r n5 ⇔ (n6 ⇒ r) ¬n5 ∨ ¬n6 ∨ r7
¬n6 ∨ ¬n5
¬r7 ∨ ¬n5

n6 ¬)(p⇒ q) ∧ (p ∧ q n6 ⇔ (p ∧ q) ¬n6 ∨ ¬p4
¬n6 ∨ ¬q5
¬p4 ∨ ¬q5 ∨ n6

n7 ¬)(p⇒ q) ∧ (p ∧ q⇒ r)⇒ (p⇒ r n7 ⇔ (p⇒ r) ¬n7 ∨ ¬p3 ∨ r7
¬p3 ∨ ¬n7
¬r7 ∨ ¬n7

Introduce
definitions

22 / 24



Converting a formula to clausal form, Example
non-literal subformula definition clauses

¬((p⇒ q) ∧ (p ∧ q⇒ r)⇒ (p⇒ r)) ¬n1
n1 ¬((p⇒ q) ∧ (p ∧ q⇒ r)⇒ (p⇒ r)) n1 ⇔ ¬n2 ¬n1 ∨ ¬n2

¬n1 ∨ ¬n2
n2 ¬)(p⇒ q) ∧ (p ∧ q⇒ r)⇒ (p⇒ r) n2 ⇔ (n3 ⇒ n7) ¬n2 ∨ ¬n3 ∨ n7

¬n3 ∨ ¬n2
¬n7 ∨ ¬n2

n3 ¬)(p⇒ q) ∧ (p ∧ q⇒ r) n3 ⇔ (n4 ∧ n5) ¬n3 ∨ ¬n4
¬n3 ∨ ¬n5
¬n4 ∨ ¬n5 ∨ n3

n4 ¬)(p⇒ q n4 ⇔ (p⇒ q) ¬n4 ∨ ¬p3 ∨ q7
¬p3 ∨ ¬n4
¬q7 ∨ ¬n4

n5 ¬)(p⇒ q) ∧ (p ∧ q⇒ r n5 ⇔ (n6 ⇒ r) ¬n5 ∨ ¬n6 ∨ r7
¬n6 ∨ ¬n5
¬r7 ∨ ¬n5

n6 ¬)(p⇒ q) ∧ (p ∧ q n6 ⇔ (p ∧ q) ¬n6 ∨ ¬p4
¬n6 ∨ ¬q5
¬p4 ∨ ¬q5 ∨ n6

n7 ¬)(p⇒ q) ∧ (p ∧ q⇒ r)⇒ (p⇒ r n7 ⇔ (p⇒ r) ¬n7 ∨ ¬p3 ∨ r7
¬p3 ∨ ¬n7
¬r7 ∨ ¬n7

Convert the
definition
formulas to
CNF in the
standard way

22 / 24



DNF vs. CNF for satisfiability checking

DNF

● Satisfiability is decidable in linear time, with one traversal of the cubes
● The DNF is unsatisfiable iff every cube contains both a literal and its complement

● However, converting to an equivalent DNF may result in exponential size increase

CNF

● Deciding satisfiability is hard (NP-hard)

● Converting to an equivalent CNF may result in exponential size increase

● However, converting into an equisatisfiable CNF can be done with only a linear
size increase

23 / 24



DNF vs. CNF for satisfiability checking

DNF

● Satisfiability is decidable in linear time, with one traversal of the cubes
● The DNF is unsatisfiable iff every cube contains both a literal and its complement

● However, converting to an equivalent DNF may result in exponential size increase

CNF

● Deciding satisfiability is hard (NP-hard)

● Converting to an equivalent CNF may result in exponential size increase

● However, converting into an equisatisfiable CNF can be done with only a linear
size increase

23 / 24



DNF vs. CNF for satisfiability checking

DNF

● Satisfiability is decidable in linear time, with one traversal of the cubes
● The DNF is unsatisfiable iff every cube contains both a literal and its complement

● However, converting to an equivalent DNF may result in exponential size increase

CNF

● Deciding satisfiability is hard (NP-hard)

● Converting to an equivalent CNF may result in exponential size increase

● However, converting into an equisatisfiable CNF can be done with only a linear
size increase

23 / 24



DNF vs. CNF for satisfiability checking

DNF

● Satisfiability is decidable in linear time, with one traversal of the cubes
● The DNF is unsatisfiable iff every cube contains both a literal and its complement

● However, converting to an equivalent DNF may result in exponential size increase

CNF

● Deciding satisfiability is hard (NP-hard)

● Converting to an equivalent CNF may result in exponential size increase

● However, converting into an equisatisfiable CNF can be done with only a linear
size increase

23 / 24



DNF vs. CNF for satisfiability checking

DNF

● Satisfiability is decidable in linear time, with one traversal of the cubes
● The DNF is unsatisfiable iff every cube contains both a literal and its complement

● However, converting to an equivalent DNF may result in exponential size increase

CNF

● Deciding satisfiability is hard (NP-hard)

● Converting to an equivalent CNF may result in exponential size increase

● However, converting into an equisatisfiable CNF can be done with only a linear
size increase

23 / 24



DNF vs. CNF for satisfiability checking

DNF

● Satisfiability is decidable in linear time, with one traversal of the cubes
● The DNF is unsatisfiable iff every cube contains both a literal and its complement

● However, converting to an equivalent DNF may result in exponential size increase

CNF

● Deciding satisfiability is hard (NP-hard)

● Converting to an equivalent CNF may result in exponential size increase

● However, converting into an equisatisfiable CNF can be done with only a linear
size increase

23 / 24



DNF vs. CNF for satisfiability checking

Modern satisfiability checkers for PL expect CNF-like input

They choose to tackle the hardness of the satisfiability problem at runtime
rather than at transformation time

24 / 24



DNF vs. CNF for satisfiability checking

Modern satisfiability checkers for PL expect CNF-like input

They choose to tackle the hardness of the satisfiability problem at runtime
rather than at transformation time

24 / 24


