CS:4980 Topics in Computer Science II Introduction to Automated Reasoning

Abstract Proof Systems

Cesare Tinelli

Spring 2024

Credits

These slides are based on slides originally developed by **Cesare Tinelli** at the University of Iowa and by **Clark Barrett**, **Caroline Trippel**, and **Andrew (Haoze) Wu** at Stanford University. Adapted by permission.

Agenda

- Abstract Proof Systems
- Satisfiability Proof Systems
- Soundness, Completeness, Termination, and Progressiveness
- A Decision Procedure for Propositional Logic
- Strategies

Proofs for Automated Reasoning

In AR, representing algorithms as proof systems has several advantages

- They are modularity and composable
- It is easier to prove things about the algorithms
- Can choose which implementation aspects to highlight and which to leave out

Abstract Proof Systems

An *abstract proof system* is a tuple $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$

where $\mathbb S$ is a set of proof states and $\mathbb R$ is a set of proof rules

Proof state: Data structure representing what is known at each stage of the proof **Example:** a set of propositional formulas

Proof Rule: A partial function from proof states to sets of proof states **Example:** Modus Ponens maps a state $S \supseteq \{\alpha, \alpha \Rightarrow \beta\}$ to the state $S \cup \{\beta\}$

Abstract Proof Systems

An *abstract proof system* is a tuple $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$

where $\mathbb S$ is a set of proof states and $\mathbb R$ is a set of proof rules

Proof state: Data structure representing what is known at each stage of the proof **Example:** a set of propositional formulas

Proof Rule: A partial function from proof states to sets of proof states **Example:** Modus Ponens maps a state $S \supseteq \{\alpha, \alpha \Rightarrow \beta\}$ to the state $S \cup \{\beta\}$

Abstract Proof Systems

An *abstract proof system* is a tuple $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$

where $\mathbb S$ is a set of proof states and $\mathbb R$ is a set of proof rules

Proof state: Data structure representing what is known at each stage of the proof **Example:** a set of propositional formulas

Proof Rule: A partial function from proof states to sets of proof states

Example: Modus Ponens maps a state $S \supseteq \{\alpha, \alpha \Rightarrow \beta\}$ to the state $S \cup \{\beta\}$

Proof Rules

- Take an input proof state S
- Are only applicable if *S* satisfies some *premises*
- Return one or more *derived* proof states, the *conclusions*

Notation:

- **R** is the rule's name (for reference)
- Each *P_i* is a premise, each *C_i* is a conclusion

Note: Intuitively, premises are conjunctive; conclusions are disjunctive

Proof Rules

- Take an input proof state S
- Are only applicable if *S* satisfies some *premises*
- Return one or more *derived* proof states, the *conclusions*

Notation:

$$\mathbf{R} \begin{array}{cccc} P_1 & P_2 & \cdots & P_m \\ \hline C_1 & C_2 & \cdots & C_n \end{array}$$

- **R** is the rule's name (for reference)
- Each *P_i* is a premise, each *C_i* is a conclusion

Note: Intuitively, premises are conjunctive; conclusions are disjunctive

Proof Rules

- Take an input proof state S
- Are only applicable if *S* satisfies some *premises*
- Return one or more *derived* proof states, the *conclusions*

Notation:

$$\mathbf{R} \begin{array}{cccc} P_1 & P_2 & \cdots & P_m \\ \hline C_1 & C_2 & \cdots & C_n \end{array}$$

- **R** is the rule's name (for reference)
- Each P_i is a premise, each C_i is a conclusion

Note: Intuitively, premises are conjunctive; conclusions are disjunctive

Let $\mathbb{P}_{PL} = \langle \mathbb{S}_{PL}, \mathbb{R}_{PL} \rangle$ where every proof state $S \in \mathbb{S}_{PL}$ is a set of wffs of PL

If \mathbb{R}_{PL} contains the *modus ponens* rule (MP for short) we can write MP as follows:

 $\mathsf{MP} \xrightarrow{\alpha \in S} \alpha \Rightarrow \beta \in S \quad \beta \notin S$ $S \cup \{\beta\}$

Let $\mathbb{P}_{PL} = \langle \mathbb{S}_{PL}, \mathbb{R}_{PL} \rangle$ where every proof state $S \in \mathbb{S}_{PL}$ is a set of wffs of PL

If \mathbb{R}_{PL} contains the *modus ponens* rule (MP for short) we can write MP as follows:

$$\mathsf{MP} \xrightarrow{\alpha \in \mathcal{S} \quad \alpha \Rightarrow \beta \in \mathcal{S} \quad \beta \notin \mathcal{S}}{\mathcal{S} \cup \{\beta\}}$$

Let $\mathbb{P}_{PL} = \langle \mathbb{S}_{PL}, \mathbb{R}_{PL} \rangle$ where every proof state $S \in \mathbb{S}_{PL}$ is a set of wffs of PL

If \mathbb{R}_{PL} contains the *modus ponens* rule (MP for short) we can write MP as follows:

$$\mathsf{MP} \quad \frac{\alpha \in \mathcal{S} \quad \alpha \Rightarrow \beta \in \mathcal{S} \quad \beta \notin \mathcal{S}}{\mathcal{S} \cup \{\beta\}}$$

- α and β are *parameters*, and each possible instantiation with wffs is a separate proof rule
- For convenience, we will refer to proof rule schemas also as proof rules

Let $\mathbb{P}_{PL} = \langle \mathbb{S}_{PL}, \mathbb{R}_{PL} \rangle$ where every proof state $S \in \mathbb{S}_{PL}$ is a set of wffs of PL

If \mathbb{R}_{PL} contains the *modus ponens* rule (MP for short) we can write MP as follows:

$$\mathsf{MP} \quad \frac{\alpha \in \mathcal{S} \quad \alpha \Rightarrow \beta \in \mathcal{S} \quad \beta \notin \mathcal{S}}{\mathcal{S} \cup \{\beta\}}$$

- α and β are *parameters*, and each possible instantiation with wffs is a separate proof rule
- For convenience, we will refer to proof rule schemas also as proof rules

Let $\mathbb{P}_{PL} = \langle \mathbb{S}_{PL}, \mathbb{R}_{PL} \rangle$ where every proof state $S \in \mathbb{S}_{PL}$ is a set of wffs of PL

If \mathbb{R}_{PL} contains the *modus ponens* rule (MP for short) we can write MP as follows:

$$\mathsf{MP} \quad \frac{\alpha \in \mathcal{S} \quad \alpha \Rightarrow \beta \in \mathcal{S} \quad \beta \notin \mathcal{S}}{\mathcal{S} \cup \{\beta\}}$$

- α and β are *parameters*, and each possible instantiation with wffs is a separate proof rule
- For convenience, we will refer to proof rule schemas also as *proof rules*

$$\mathsf{MP} \quad \frac{\alpha \in \mathcal{S} \quad \alpha \Rightarrow \beta \in \mathcal{S} \quad \beta \notin \mathcal{S}}{\mathcal{S} \cup \{\beta\}}$$

Let *a*, *b*, *c*, *d* be propositional variables

- 1. $\{a, a \Rightarrow b\}$ $\{a, a \Rightarrow b, b\}$
- 2. $\{\neg d, a \lor \neg c, \neg d \Rightarrow b\}$ $\{a \lor \neg c, \neg d, \neg d \Rightarrow b, b\}$
- 3. $\{c, d, c \Rightarrow d\}$ does not apply

$$\mathsf{MP} \quad \frac{\alpha \in \mathcal{S} \quad \alpha \Rightarrow \beta \in \mathcal{S} \quad \beta \notin \mathcal{S}}{\mathcal{S} \cup \{\beta\}}$$

Let *a*, *b*, *c*, *d* be propositional variables

- 1. $\{a, a \Rightarrow b\}$ $\{a, a \Rightarrow b, b\}$
- 2. $\{\neg d, a \lor \neg c, \neg d \Rightarrow b\}$ $\{a \lor \neg c, \neg d, \neg d \Rightarrow b, b\}$
- 3. $\{c, d, c \Rightarrow d\}$ does not apply

$$\mathsf{MP} \quad \frac{\alpha \in \mathcal{S} \quad \alpha \Rightarrow \beta \in \mathcal{S} \quad \beta \notin \mathcal{S}}{\mathcal{S} \cup \{\beta\}}$$

Let *a*, *b*, *c*, *d* be propositional variables

- 1. $\{a, a \Rightarrow b\}$
- 2. $\{\neg d, a \lor \neg c, \neg d \Rightarrow b\} \{a \lor \neg c, \neg d, \neg d \Rightarrow b, b\}$
- 3. $\{c, d, c \Rightarrow d\}$ does not apply

$$\mathsf{MP} \quad \frac{\alpha \in \mathcal{S} \quad \alpha \Rightarrow \beta \in \mathcal{S} \quad \beta \notin \mathcal{S}}{\mathcal{S} \cup \{\beta\}}$$

Let *a*, *b*, *c*, *d* be propositional variables

- **1.** $\{a, a \Rightarrow b\}$ $\{a, a \Rightarrow b, b\}$
- 2. $\{\neg d, a \lor \neg c, \neg d \Rightarrow b\} \{a \lor \neg c, \neg d, \neg d \Rightarrow b, b\}$
- 3. $\{c, d, c \Rightarrow d\}$ does not apply

$$\mathsf{MP} \quad \frac{\alpha \in \mathcal{S} \quad \alpha \Rightarrow \beta \in \mathcal{S} \quad \beta \notin \mathcal{S}}{\mathcal{S} \cup \{\beta\}}$$

Let *a*, *b*, *c*, *d* be propositional variables

What is the result of applying MP to the following proof states?

- **1.** $\{a, a \Rightarrow b\}$ $\{a, a \Rightarrow b, b\}$
- 2. $\{\neg d, a \lor \neg c, \neg d \Rightarrow b\}$ $\{a \lor \neg c, \neg d \Rightarrow b, b\}$

3. $\{c, d, c \Rightarrow d\}$ does not apply

$$\mathsf{MP} \quad \frac{\alpha \in \mathcal{S} \quad \alpha \Rightarrow \beta \in \mathcal{S} \quad \beta \notin \mathcal{S}}{\mathcal{S} \cup \{\beta\}}$$

Let *a*, *b*, *c*, *d* be propositional variables

What is the result of applying MP to the following proof states?

- **1.** $\{a, a \Rightarrow b\}$ $\{a, a \Rightarrow b, b\}$
- **2.** $\{\neg d, a \lor \neg c, \neg d \Rightarrow b\}$ $\{a \lor \neg c, \neg d, \neg d \Rightarrow b, b\}$

3. $\{c, d, c \Rightarrow d\}$ does not apply

$$\mathsf{MP} \quad \frac{\alpha \in \mathcal{S} \quad \alpha \Rightarrow \beta \in \mathcal{S} \quad \beta \notin \mathcal{S}}{\mathcal{S} \cup \{\beta\}}$$

Let *a*, *b*, *c*, *d* be propositional variables

- **1.** $\{a, a \Rightarrow b\}$ $\{a, a \Rightarrow b, b\}$
- **2.** $\{\neg d, a \lor \neg c, \neg d \Rightarrow b\}$ $\{a \lor \neg c, \neg d, \neg d \Rightarrow b, b\}$
- **3.** $\{c, d, c \Rightarrow d\}$ does not apply

$$\mathsf{MP} \quad \frac{\alpha \in \mathcal{S} \quad \alpha \Rightarrow \beta \in \mathcal{S} \quad \beta \notin \mathcal{S}}{\mathcal{S} \cup \{\beta\}}$$

Let *a*, *b*, *c*, *d* be propositional variables

- **1.** $\{a, a \Rightarrow b\}$ $\{a, a \Rightarrow b, b\}$
- **2.** $\{\neg d, a \lor \neg c, \neg d \Rightarrow b\}$ $\{a \lor \neg c, \neg d, \neg d \Rightarrow b, b\}$
- 3. $\{c, d, c \Rightarrow d\}$ does not apply

Let $\mathcal V$ be the set of all propositional variables

Consider the following rule for \mathbb{P}_{PL} :

Let $\mathcal V$ be the set of all propositional variables

Consider the following rule for \mathbb{P}_{PL} :

SPLIT $\frac{\alpha \in \mathcal{V} \quad \alpha \text{ occurs in some formula of } \mathcal{S} \quad \alpha \notin \mathcal{S} \quad \neg \alpha \notin \mathcal{S}}{\mathcal{S} \cup \{\alpha\}}$

Let $\mathcal V$ be the set of all propositional variables

Consider the following rule for \mathbb{P}_{PL} :

 $\begin{array}{c|c} \mathbf{SPLIT} & \underline{\alpha \in \mathcal{V}} & \alpha \text{ occurs in some formula of } \mathcal{S} & \alpha \notin \mathcal{S} & \neg \alpha \notin \mathcal{S} \\ \hline & \mathcal{S} \cup \{\alpha\} & \mathcal{S} \cup \{\neg \alpha\} \end{array}$

Can we apply **SPLIT** to $\{a \lor (b \land c), \neg d\}$?

Let \mathcal{V} be the set of all propositional variables

Consider the following rule for \mathbb{P}_{PL} :

 $\begin{array}{c|c} \mathbf{SPLIT} & \underline{\alpha \in \mathcal{V}} & \underline{\alpha \text{ occurs in some formula of } \mathcal{S}} & \underline{\alpha \notin \mathcal{S}} & \neg \alpha \notin \mathcal{S} \\ \hline & \mathcal{S} \cup \{\alpha\} & \mathcal{S} \cup \{\neg \alpha\} \end{array}$

Can we apply **SPLIT** to $\{a \lor (b \land c), \neg d\}$?

Yes, if we choose to instantiate α with a, b, or c but not d

Let \mathcal{V} be the set of all propositional variables

Consider the following rule for \mathbb{P}_{PL} :

```
\begin{array}{c|c} \mathbf{SPLIT} & \underline{\alpha \in \mathcal{V}} & \underline{\alpha \text{ occurs in some formula of } \mathcal{S}} & \underline{\alpha \notin \mathcal{S}} & \neg \alpha \notin \mathcal{S} \\ \hline & \mathcal{S} \cup \{\alpha\} & \mathcal{S} \cup \{\neg \alpha\} \end{array}
```

Let **Split**_b be the proof rule obtained by instantiating α with b

Let \mathcal{V} be the set of all propositional variables

Consider the following rule for \mathbb{P}_{PL} :

 $\begin{array}{c|c} \mathbf{SPLIT} & \underline{\alpha \in \mathcal{V}} & \alpha \text{ occurs in some formula of } \mathcal{S} & \alpha \notin \mathcal{S} & \neg \alpha \notin \mathcal{S} \\ \hline & \mathcal{S} \cup \{\alpha\} & \mathcal{S} \cup \{\neg \alpha\} \end{array}$

Let **SPLIT**_b be the proof rule obtained by instantiating α with b Then, formally:

 $\{a \lor (b \land c), \neg d\} \stackrel{\mathsf{Split}_b}{\longmapsto} \{\{a \lor (b \land c), \neg d, b\}, \{a \lor (b \land c), \neg d, \neg b\}\}$

Let \mathcal{V} be the set of all propositional variables and let $\mathcal{L} = \mathcal{V} \cup \{\neg \alpha \mid \alpha \in \mathcal{V}\}$

 $\mathcal L$ is the set of all propositional *literals*, variables or negations of variables

Now consider the following rule for \mathbb{P}_{PL} :

$$\mathsf{Contr} = \frac{\alpha \in \mathcal{V} \quad \alpha \in \mathcal{S} \quad \neg \alpha \in \mathcal{S}}{\mathsf{UNSAT}}$$

where UNSAT is a distinguished state

Note: The rule applies only to states with contradictory literals

Let \mathcal{V} be the set of all propositional variables and let $\mathcal{L} = \mathcal{V} \cup \{\neg \alpha \mid \alpha \in \mathcal{V}\}$

 $\mathcal L$ is the set of all propositional *literals*, variables or negations of variables

Now consider the following rule for \mathbb{P}_{PL} :

$$\mathsf{CONTR} = \frac{\alpha \in \mathcal{V} \quad \alpha \in \mathcal{S} \quad \neg \alpha \in \mathcal{S}}{\mathsf{UNSAT}}$$

where **UNSAT** is a distinguished state

Note: The rule applies only to states with contradictory literals

- A *derivation tree* (in \mathbb{P}) from \mathcal{S}_0 is a finite tree with
 - nodes from S
 - root S_0
 - an edge from a node S to a node S' iff
 S' is a conclusion of the application of a rule of ℝ to S'
- A proof state S ∈ S is reducible (in P) if one or more proof rules of R applies to S It is irreducible (in P) otherwise
- A derivation tree is *reducible* (in ℙ) if at least one of its leaves is reducible It is *irreducible* (in ℙ) otherwise

- A *derivation tree* (in \mathbb{P}) from S_0 is a finite tree with
 - nodes from S
 - root S_0
 - an edge from a node S to a node S' iff
 S' is a conclusion of the application of a rule of ℝ to S'
- A proof state S ∈ S is *reducible* (in P) if one or more proof rules of R applies to S It is *irreducible* (in P) otherwise
- A derivation tree is *reducible* (in ℙ) if at least one of its leaves is reducible It is *irreducible* (in ℙ) otherwise

- A *derivation tree* (in \mathbb{P}) from \mathcal{S}_0 is a finite tree with
 - nodes from S
 - root S_0
 - an edge from a node S to a node S' iff
 S' is a conclusion of the application of a rule of ℝ to S'
- A proof state S ∈ S is *reducible* (in P) if one or more proof rules of R applies to S It is *irreducible* (in P) otherwise
- A derivation tree is *reducible* (in ℙ) if at least one of its leaves is reducible It is *irreducible* (in ℙ) otherwise

Derivation Tree Example

What could a derivation tree from $\{b \Rightarrow c, \neg b \Rightarrow c, \neg c\}$ look like?

$$\{b \Rightarrow c, \neg b \Rightarrow c, \neg c\}$$

$$\frac{\{b \Rightarrow c, \neg b \Rightarrow c, \neg c\}}{\{b \Rightarrow c, \neg c, b\}} \quad \text{Split}$$

$$\frac{\{b \Rightarrow c, \neg b \Rightarrow c, \neg c\}}{\{b \Rightarrow c, \neg b \Rightarrow c, \neg c, b\}} \text{ Split}$$

$$\frac{\{b \Rightarrow c, \neg b \Rightarrow c, \neg c, b, c\}}{\{b \Rightarrow c, \neg b \Rightarrow c, \neg c, b, c\}} \text{ MP }$$

$$\frac{\{b \Rightarrow c, \neg b \Rightarrow c, \neg c\}}{\{b \Rightarrow c, \neg b \Rightarrow c, \neg c, b\}} \text{ MP} \qquad \frac{\{b \Rightarrow c, \neg b \Rightarrow c, \neg c, \neg b\}}{(b \Rightarrow c, \neg b \Rightarrow c, \neg c, b, c)} \text{ Contr } -$$

$$\frac{\{b \Rightarrow c, \neg b \Rightarrow c, \neg c\}}{\left\{b \Rightarrow c, \neg b \Rightarrow c, \neg c, b\right\}} \text{ Split} \frac{\{b \Rightarrow c, \neg b \Rightarrow c, \neg c, \neg b\}}{\left\{b \Rightarrow c, \neg b \Rightarrow c, \neg c, \neg b, c\right\}} \text{ MP} \frac{\{b \Rightarrow c, \neg b \Rightarrow c, \neg c, \neg b\}}{\left\{b \Rightarrow c, \neg b \Rightarrow c, \neg c, \neg b, c\right\}} \text{ MP} \frac{\{b \Rightarrow c, \neg b \Rightarrow c, \neg c, \neg b, c\}}{\left\{b \Rightarrow c, \neg b \Rightarrow c, \neg c, \neg b, c\right\}} \text{ MP}$$

$$\frac{\{b \Rightarrow c, \neg b \Rightarrow c, \neg c\}}{\frac{\{b \Rightarrow c, \neg b \Rightarrow c, \neg c, b\}}{\{b \Rightarrow c, \neg b \Rightarrow c, \neg c, b, c\}}} MP \qquad \frac{\{b \Rightarrow c, \neg b \Rightarrow c, \neg c, \neg b\}}{\frac{\{b \Rightarrow c, \neg b \Rightarrow c, \neg c, \neg c, \neg b, c\}}{UNSAT}} MP \qquad CONTR$$

What could a derivation tree from $\{b \Rightarrow c, \neg b \Rightarrow c, \neg c\}$ look like?

$$\frac{\{b \Rightarrow c, \neg b \Rightarrow c, \neg c\}}{\frac{\{b \Rightarrow c, \neg b \Rightarrow c, \neg c, b\}}{\{b \Rightarrow c, \neg b \Rightarrow c, \neg c, b, c\}}} MP \qquad \frac{\{b \Rightarrow c, \neg b \Rightarrow c, \neg c, \neg b\}}{\{b \Rightarrow c, \neg b \Rightarrow c, \neg c, \neg b, c\}} MP \\ \frac{\{b \Rightarrow c, \neg b \Rightarrow c, \neg c, b, c\}}{UNSAT} CONTR} \qquad \frac{\{b \Rightarrow c, \neg b \Rightarrow c, \neg c, \neg b, c\}}{UNSAT} CONTR}{UNSAT}$$

This tree is irreducible

Derivations

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be an abstract proof system

A derivation (in P) from a derivation tree τ₀ is a (possibly infinite) sequence τ₀, τ₁,... of derivation trees where
 each τ₀₊₁ is derivable from τ₁ by applying a rule from R to a leaf of τ₁

• A derivation is saturated if it is finite and ends with an irreducible tree

Derivations

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be an abstract proof system

A *derivation* (in P) from a derivation tree τ₀ is a (possibly infinite) sequence τ₀, τ₁,... of derivation trees where each τ_{i+1} is derivable from τ_i by applying a rule from R to a leaf of τ_i

• A derivation is saturated if it is finite and ends with an irreducible tree

Derivations

- Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be an abstract proof system
 - A *derivation* (in \mathbb{P}) from a derivation tree τ_0 is a (possibly infinite) sequence τ_0, τ_1, \ldots of derivation trees where each τ_{i+1} is derivable from τ_i by applying a rule from \mathbb{R} to a leaf of τ_i
 - A derivation is *saturated* if it is finite and ends with an irreducible tree

Let $\mathbb{P}=\langle \mathbb{S},\mathbb{R}\rangle$ be an abstract proof system

- A rule of ${\mathbb R}$ is a *refuting* rule if its only conclusion is UNSAT
- A rule of $\mathbb R$ is a *corroborating* rule if its only conclusion is SAT
- A refutation tree (from S in \mathbb{P}) is a derivation tree from S with only UNSAT leaves
- A *refutation* (of *S* in **P**) is a derivation from *S* ending with a refutation tree
- A corroboration tree (from S in P) is a derivation tree from S with at least one sAT leaf
- A corroboration (of S in P from) is a derivation from S ending with a corroborating tree

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be an abstract proof system

- A rule of \mathbb{R} is a *refuting* rule if its only conclusion is UNSAT
- A rule of R is a corroborating rule if its only conclusion is SAT
- A refutation tree (from S in \mathbb{P}) is a derivation tree from S with only UNSAT leaves
- A *refutation* (of *S* in **P**) is a derivation from *S* ending with a refutation tree
- A corroboration tree (from S in P) is a derivation tree from S with at least one sAT leaf
- A corroboration (of S in P from) is a derivation from S ending with a corroborating tree

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be an abstract proof system

- A rule of \mathbb{R} is a *refuting* rule if its only conclusion is UNSAT
- A rule of \mathbb{R} is a *corroborating* rule if its only conclusion is SAT
- A refutation tree (from S in \mathbb{P}) is a derivation tree from S with only UNSAT leaves
- A *refutation* (of *S* in **P**) is a derivation from *S* ending with a refutation tree
- A corroboration tree (from S in P) is a derivation tree from S with at least one sAT leaf
- A corroboration (of S in P from) is a derivation from S ending with a corroborating tree

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be an abstract proof system

- A rule of R is a refuting rule if its only conclusion is UNSAT
- A rule of $\mathbb R$ is a corroborating rule if its only conclusion is SAT
- A *refutation tree* (from S in \mathbb{P}) is a derivation tree from S with only UNSAT leaves
- A *refutation* (of *S* in **P**) is a derivation from *S* ending with a refutation tree
- A corroboration tree (from S in P) is a derivation tree from S with at least one sAT leaf
- A corroboration (of S in P from) is a derivation from S ending with a corroborating tree

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be an abstract proof system

- A rule of R is a refuting rule if its only conclusion is UNSAT
- A rule of $\mathbb R$ is a corroborating rule if its only conclusion is SAT
- A *refutation tree* (from S in \mathbb{P}) is a derivation tree from S with only UNSAT leaves
- A *refutation* (of S in \mathbb{P}) is a derivation from S ending with a refutation tree
- A corroboration tree (from S in P) is a derivation tree from S with at least one sAT leaf
- A corroboration (of S in P from) is a derivation from S ending with a corroborating tree

Let $\mathbb{P}=\langle \mathbb{S},\mathbb{R}\rangle$ be an abstract proof system

- A rule of ${\mathbb R}$ is a *refuting* rule if its only conclusion is UNSAT
- A rule of $\mathbb R$ is a *corroborating* rule if its only conclusion is SAT
- A refutation tree (from S in \mathbb{P}) is a derivation tree from S with only UNSAT leaves
- A refutation (of S in \mathbb{P}) is a derivation from S ending with a refutation tree
- A *corroboration tree* (from *S* in ℙ) is a derivation tree from *S* with at least one SAT leaf
- A corroboration (of S in P from) is a derivation from S ending with a corroborating tree

Let $\mathbb{P}=\langle \mathbb{S},\mathbb{R}\rangle$ be an abstract proof system

- A rule of ${\mathbb R}$ is a *refuting* rule if its only conclusion is UNSAT
- A rule of $\mathbb R$ is a *corroborating* rule if its only conclusion is SAT
- A refutation tree (from S in \mathbb{P}) is a derivation tree from S with only UNSAT leaves
- A *refutation* (of *S* in P) is a derivation from *S* ending with a refutation tree
- A *corroboration tree* (from *S* in ℙ) is a derivation tree from *S* with at least one SAT leaf
- A *corroboration* (of *S* in ℙ from) is a derivation from *S* ending with a corroborating tree

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be an abstract proof system

- A rule of ℝ is a *refuting* rule if its only conclusion is UNSAT
- A rule of \mathbb{R} is a *corroborating* rule if its only conclusion is SAT
- A *refutation tree* (from S in \mathbb{P}) is a derivation tree from S with only UNSAT leaves
- A *refutation* (of S in \mathbb{P}) is a derivation from S ending with a refutation tree
- A *corroboration tree* (from *S* in ℙ) is a derivation tree from *S* with at least one SAT leaf
- A *corroboration* (of *S* in ℙ from) is a derivation from *S* ending with a corroborating tree

Can we extend \mathbb{P}_{PL} to be a satisfiability proof system?

Yes, simply by adding SAT to S_{PL}

Rule **CONTR** is a refuting rule

Can we extend \mathbb{P}_{PL} to be a satisfiability proof system?

Yes, simply by adding sat to $\mathbb{S}_{\rm PL}$

Rule **CONTR** is a refuting rule

Can we extend \mathbb{P}_{PL} to be a satisfiability proof system?

Yes, simply by adding sat to \mathbb{S}_{PL}

Rule **CONTR** is a refuting rule

Can we extend \mathbb{P}_{PL} to be a satisfiability proof system?

Yes, simply by adding sat to \mathbb{S}_{PL}

Rule **CONTR** is a refuting rule

Can we extend \mathbb{P}_{PL} to be a satisfiability proof system?

Yes, simply by adding sat to \mathbb{S}_{PL}

Rule **CONTR** is a refuting rule

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be a satisfiability proof system

A set of *satisfiable proof states*, or *satisfiability predicate*, is a subset S^{sat} ⊆ S such that sat ∈ S^{sat} and UNSAT ∉ S^{sat}

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be a satisfiability proof system

- $\, \mathbb{P}$ is refutation sound (wrt $\mathbb{S}^{\mathsf{Sat}}$) if no state $\mathcal{S} \in \mathbb{S}$ that has a refutation in \mathbb{P} is in $\mathbb{S}^{\mathsf{Sat}}$
- ${\mathbb P}$ is solution sound (wrt ${\mathbb S}^{\operatorname{sat}}$) if every ${\mathcal S}\in {\mathbb S}$ that has a corroboration in ${\mathbb P}$ is in ${\mathbb S}^{\operatorname{sat}}$
- P is sound (wrt S^{Sat}) if it is both refutation and solution sound (wrt S^{Sat})

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be a satisfiability proof system

- \mathbb{P} is *refutation sound* (wrt \mathbb{S}^{Sat}) if **no** state $S \in \mathbb{S}$ that has a refutation in \mathbb{P} is in \mathbb{S}^{Sat}
- $\mathbb P$ is solution sound (wrt $\mathbb S^{\operatorname{sat}}$) if every $\mathcal S\in\mathbb S$ that has a corroboration in $\mathbb P$ is in $\mathbb S^{\operatorname{sa}}$
- P is sound (wrt S^{Sat}) if it is both refutation and solution sound (wrt S^{Sat})

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be a satisfiability proof system

- \mathbb{P} is *refutation sound* (wrt \mathbb{S}^{Sat}) if **no** state $S \in \mathbb{S}$ that has a refutation in \mathbb{P} is in \mathbb{S}^{Sat}
- \mathbb{P} is *solution sound* (wrt \mathbb{S}^{Sat}) if every $S \in \mathbb{S}$ that has a corroboration in \mathbb{P} is in \mathbb{S}^{Sat}
- P is sound (wrt S^{sat}) if it is both refutation and solution sound (wrt S^{sat})

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be a satisfiability proof system

- \mathbb{P} is *refutation sound* (wrt \mathbb{S}^{Sat}) if **no** state $S \in \mathbb{S}$ that has a refutation in \mathbb{P} is in \mathbb{S}^{Sat}
- \mathbb{P} is *solution sound* (wrt \mathbb{S}^{Sat}) if every $S \in \mathbb{S}$ that has a corroboration in \mathbb{P} is in \mathbb{S}^{Sat}
- \mathbb{P} is *sound* (wrt \mathbb{S}^{Sat}) if it is both refutation and solution sound (wrt \mathbb{S}^{Sat})

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be a satisfiability proof system and let \mathbb{S}^{Sat} be a satisfiability predicate

A proof rule $P \in \mathbb{R}$ is

- weakly satisfiability preserving whenever, for all states S ∈ S,
 S ∈ S^{sat} only if S' ∈ S^{sat} for some S' ∈ P(S)
- (strongly) satisfiability preserving whenever, for all states S ∈ S,
 S' ∈ S^{sat} for some S' ∈ P(S) if and only if S ∈ S^{sat}

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be a satisfiability proof system and let \mathbb{S}^{Sat} be a satisfiability predicate

A proof rule $P \in \mathbb{R}$ is

- weakly satisfiability preserving whenever, for all states $S \in S$, $S \in S^{Sat}$ only if $S' \in S^{Sat}$ for some $S' \in P(S)$
- (strongly) satisfiability preserving whenever, for all states S ∈ S,
 S' ∈ S^{sat} for some S' ∈ P(S) if and only if S ∈ S^{sat}

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be a satisfiability proof system and let \mathbb{S}^{Sat} be a satisfiability predicate

A proof rule $P \in \mathbb{R}$ is

• weakly satisfiability preserving whenever, for all states $S \in S$,

 $S \in \mathbb{S}^{Sat}$ only if $S' \in \mathbb{S}^{Sat}$ for some $S' \in P(S)$

• (strongly) satisfiability preserving whenever, for all states $S \in S$, $S' \in S^{Sat}$ for some $S' \in P(S)$ if and only if $S \in S^{Sat}$

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be a satisfiability proof system and let \mathbb{S}^{Sat} be a satisfiability predicate

A proof rule $P \in \mathbb{R}$ is

• weakly satisfiability preserving whenever, for all states $S \in S$,

 $S \in \mathbb{S}^{Sat}$ only if $S' \in \mathbb{S}^{Sat}$ for some $S' \in P(S)$

• (strongly) satisfiability preserving whenever, for all states $S \in S$, $S' \in S^{\text{Sat}}$ for some $S' \in P(S)$ if and only if $S \in S^{\text{Sat}}$

Note: We will say just "satisfiability preserving" to mean "strongly satisfiability preserving"

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be a satisfiability proof system and let \mathbb{S}^{Sat} be a satisfiability predicate

A proof rule $P \in \mathbb{R}$ is

• *weakly satisfiability preserving* whenever, for all states $S \in S$,

 $S \in \mathbb{S}^{\text{Sat}}$ only if $S' \in \mathbb{S}^{\text{Sat}}$ for some $S' \in P(S)$

• (strongly) satisfiability preserving whenever, for all states $S \in S$, $S' \in S^{\text{Sat}}$ for some $S' \in P(S)$ if and only if $S \in S^{\text{Sat}}$

Theorem 1

 \mathbb{P} is sound if each of its proof rules is satisfiability preserving

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be a satisfiability proof system and let \mathbb{S}^{Sat} be a satisfiability predicate

A proof rule $P \in \mathbb{R}$ is

• *weakly satisfiability preserving* whenever, for all states $S \in S$,

 $S \in \mathbb{S}^{\text{Sat}}$ only if $S' \in \mathbb{S}^{\text{Sat}}$ for some $S' \in P(S)$

• (strongly) satisfiability preserving whenever, for all states $S \in S$, $S' \in S^{\text{Sat}}$ for some $S' \in P(S)$ if and only if $S \in S^{\text{Sat}}$

Theorem 1

 $\mathbb P$ is sound if each of its proof rules is satisfiability preserving

The proof is by induction on the length of derivations

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be a satisfiability proof system and let \mathbb{S}^{Sat} be a satisfiability predicate

A proof rule $P \in \mathbb{R}$ is

• weakly satisfiability preserving whenever, for all states $S \in S$,

 $S \in \mathbb{S}^{Sat}$ only if $S' \in \mathbb{S}^{Sat}$ for some $S' \in P(S)$

• (strongly) satisfiability preserving whenever, for all states $S \in S$, $S' \in S^{\text{Sat}}$ for some $S' \in P(S)$ if and only if $S \in S^{\text{Sat}}$

Is \mathbb{P}_{PL} sound wrt \mathbb{S}^{Sat} ?

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be a satisfiability proof system and let \mathbb{S}^{Sat} be a satisfiability predicate

A proof rule $P \in \mathbb{R}$ is

• weakly satisfiability preserving whenever, for all states $S \in S$,

 $S \in \mathbb{S}^{Sat}$ only if $S' \in \mathbb{S}^{Sat}$ for some $S' \in P(S)$

• (strongly) satisfiability preserving whenever, for all states $S \in S$, $S' \in S^{\text{Sat}}$ for some $S' \in P(S)$ if and only if $S \in S^{\text{Sat}}$

Is \mathbb{P}_{PL} sound wrt \mathbb{S}^{Sat} ? Yes!

Soundness Examples

Consider again $\mathbb{P}_{PL} = \langle \mathbb{S}_{PL}, \mathbb{R}_{PL} \rangle$

Let $\mathbb{S}^{Sat} = \{ sat \} \cup \{ S \in \mathbb{S}_{PL} \mid S \subseteq W \text{ and } S \text{ is propositionally satisfiable} \}$

Soundness Examples

Consider again $\mathbb{P}_{PL} = \langle \mathbb{S}_{PL}, \mathbb{R}_{PL} \rangle$ Let $\mathbb{S}^{Sat} = \{ \text{ sat } \} \cup \{ S \in \mathbb{S}_{PL} \mid S \subseteq W \text{ and } S \text{ is propositionally satisfiable} \}$

Exercise. Argue that each of these rules is strongly satisfiability preserving wrt \mathbb{S}^{Sat}

$$MP \xrightarrow{\alpha \in S \quad \alpha \Rightarrow \beta \in S \quad \beta \notin S}{S \cup \{\beta\}} \qquad CONTR \xrightarrow{\alpha \in V \quad \alpha \in S \quad \neg \alpha \in S}{UNSAT}$$

$$SPLIT \xrightarrow{\alpha \in V \quad \alpha \text{ occurs in some formula in } S \quad \alpha \notin S \quad \neg \alpha \notin S}{S \cup \{\alpha\} \quad S \cup \{\neg \alpha\}}$$

Exercise

Consider again $\mathbb{P}_{PL} = \langle \mathbb{S}_{PL}, \mathbb{R}_{PL} \rangle$

 $\text{Let } \mathbb{S}^{\mathrm{Sat}} = \{ \text{ sat } \} \cup \{ \mathcal{S} \in \mathbb{S}_{\mathrm{PL}} \ | \ \mathcal{S} \subseteq \mathcal{W} \text{ and } \mathcal{S} \text{ is propositionally satisfiable } \}$

Which of these new rules is weakly/strongly/non satisfiability preserving wrt S^{Sat} ?

$$\begin{array}{c} \operatorname{Add-Var1} & \frac{\alpha \in \mathcal{V} \quad \alpha \notin \mathcal{S} \quad \neg \alpha \notin \mathcal{S}}{\mathcal{S} \cup \{\alpha\}} & \operatorname{Add-Var2} & \frac{\alpha \in \mathcal{V} \quad \alpha \text{ occurs nowhere in } \mathcal{S}}{\mathcal{S} \cup \{\alpha\}} \\ \\ \operatorname{And1} & \frac{\alpha \land \beta \in \mathcal{S}}{\mathcal{S} \cup \{\alpha\}} & \operatorname{And2} & \frac{\alpha \land \beta \in \mathcal{S}}{\mathcal{S} \cup \{\alpha,\beta\}} & \operatorname{OR-SpLit} & \frac{\alpha \lor \beta \in \mathcal{S}}{\mathcal{S} \cup \{\alpha\}} \\ \\ \operatorname{And3} & \frac{\mathcal{S} = \mathcal{S}_1 \cup \{\alpha \land \beta\}}{\mathcal{S}_1 \cup \{\alpha\}} & \operatorname{And4} & \frac{\mathcal{S} = \mathcal{S}_1 \cup \{\alpha \land \beta\}}{\mathcal{S}_1 \cup \{\alpha,\beta\}} & \operatorname{Unsat} & \frac{\mathcal{S} = \operatorname{Unsat}}{\{\alpha\}} \end{array} \end{array}$$

Let \mathbb{P} be a satisfiability proof system with satisfiability predicate \mathbb{S}^{Sat}

- P is complete (wrt S^{Sat}) if for every S ∈ S,
 there exists either a corroboration or a refutation (wrt S^{Sat}) of S in P
- P is terminating if every derivation in P is finite

Recall

 \mathbb{P} is sound (wrt \mathbb{S}^{Sat}) if (i) no state $S \in \mathbb{S}$ that has a refutation in \mathbb{P} is in \mathbb{S}^{Sat} , and (i) every $S \in \mathbb{S}$ that has a corroboration in \mathbb{P} is in \mathbb{S}^{Sat}

Let \mathbb{P} be a satisfiability proof system with satisfiability predicate \mathbb{S}^{Sat}

- P is complete (wrt S^{sat}) if for every S ∈ S,
 there exists either a corroboration or a refutation (wrt S^{sat}) of S in P
- P is terminating if every derivation in P is finite

Recall

 \mathbb{P} is sound (wrt \mathbb{S}^{Sat}) if (i) no state $S \in \mathbb{S}$ that has a refutation in \mathbb{P} is in \mathbb{S}^{Sat} , and (ii) every $S \in \mathbb{S}$ that has a corroboration in \mathbb{P} is in \mathbb{S}^{Sat}

Let \mathbb{P} be a satisfiability proof system with satisfiability predicate \mathbb{S}^{Sat}

- P is complete (wrt S^{sat}) if for every S ∈ S,
 there exists either a corroboration or a refutation (wrt S^{sat}) of S in P
- \mathbb{P} is *terminating* if every derivation in \mathbb{P} is finite

Recall

P is sound (wrt \mathbb{S}^{sat}) if (i) no state $S \in \mathbb{S}$ that has a refutation in \mathbb{P} is in \mathbb{S}^{sat} , and (ii) every $S \in \mathbb{S}$ that has a corroboration in \mathbb{P} is in \mathbb{S}^{sat}

Let \mathbb{P} be a satisfiability proof system with satisfiability predicate \mathbb{S}^{Sat}

- P is complete (wrt S^{sat}) if for every S ∈ S,
 there exists either a corroboration or a refutation (wrt S^{sat}) of S in P
- \mathbb{P} is *terminating* if every derivation in \mathbb{P} is finite

Recall

 \mathbb{P} is sound (wrt \mathbb{S}^{Sat}) if (*i*) no state $S \in \mathbb{S}$ that has a refutation in \mathbb{P} is in \mathbb{S}^{Sat} , and (*ii*) every $S \in \mathbb{S}$ that has a corroboration in \mathbb{P} is in \mathbb{S}^{Sat}

 $\mathbb{P}_{\rm PL}$ proof rules:

$$MP \xrightarrow{\alpha \in S \quad \alpha \Rightarrow \beta \in S \quad \beta \notin S}{S \cup \{\beta\}} CONTR \xrightarrow{\alpha \in V \quad \alpha \in S \quad \neg \alpha \in S}{UNSAT}$$

$$SPLIT \xrightarrow{\alpha \in V \quad \alpha \text{ occurs in some formula in } S \quad \alpha \notin S \quad \neg \alpha \notin S}{S \cup \{\alpha\} \quad S \cup \{\neg \alpha\}}$$

 $\mathbb{P}_{\rm PL}$ proof rules:

$$MP \xrightarrow{\alpha \in S \quad \alpha \Rightarrow \beta \in S \quad \beta \notin S}{S \cup \{\beta\}} CONTR \xrightarrow{\alpha \in V \quad \alpha \in S \quad \neg \alpha \in S}{UNSAT}$$

$$SPLIT \xrightarrow{\alpha \in V \quad \alpha \text{ occurs in some formula in } S \quad \alpha \notin S \quad \neg \alpha \notin S}{S \cup \{\alpha\} \quad S \cup \{\neg \alpha\}}$$

Is \mathbb{P}_{PL} terminating?

 $\mathbb{P}_{\rm PL}$ proof rules:

$$MP \xrightarrow{\alpha \in S \quad \alpha \Rightarrow \beta \in S \quad \beta \notin S}{S \cup \{\beta\}} CONTR \xrightarrow{\alpha \in V \quad \alpha \in S \quad \neg \alpha \in S}{UNSAT}$$

$$SPLIT \xrightarrow{\alpha \in V \quad \alpha \text{ occurs in some formula in } S \quad \alpha \notin S \quad \neg \alpha \notin S}{S \cup \{\alpha\} \quad S \cup \{\neg \alpha\}}$$

Is \mathbb{P}_{PL} terminating? Yes!

 $\mathbb{P}_{\rm PL}$ proof rules:

$$MP \xrightarrow{\alpha \in S \quad \alpha \Rightarrow \beta \in S \quad \beta \notin S}{S \cup \{\beta\}} CONTR \xrightarrow{\alpha \in V \quad \alpha \in S \quad \neg \alpha \in S}{UNSAT}$$

$$SPLIT \xrightarrow{\alpha \in V \quad \alpha \text{ occurs in some formula in } S \quad \alpha \notin S \quad \neg \alpha \notin S}{S \cup \{\alpha\} \quad S \cup \{\neg \alpha\}}$$

Is \mathbb{P}_{PL} terminating? Yes!

How would you prove it?

 $\mathbb{P}_{\rm PL}$ proof rules:

$$MP \xrightarrow{\alpha \in S \quad \alpha \Rightarrow \beta \in S \quad \beta \notin S}{S \cup \{\beta\}} CONTR \xrightarrow{\alpha \in V \quad \alpha \in S \quad \neg \alpha \in S}{UNSAT}$$

$$SPLIT \xrightarrow{\alpha \in V \quad \alpha \text{ occurs in some formula in } S \quad \alpha \notin S \quad \neg \alpha \notin S}{S \cup \{\alpha\} \quad S \cup \{\neg \alpha\}}$$

Is \mathbb{P}_{PL} complete?

 $\mathbb{P}_{\rm PL}$ proof rules:

$$MP \xrightarrow{\alpha \in S \quad \alpha \Rightarrow \beta \in S \quad \beta \notin S}{S \cup \{\beta\}} CONTR \xrightarrow{\alpha \in V \quad \alpha \in S \quad \neg \alpha \in S}{UNSAT}$$

$$SPLIT \xrightarrow{\alpha \in V \quad \alpha \text{ occurs in some formula in } S \quad \alpha \notin S \quad \neg \alpha \notin S}{S \cup \{\alpha\} \quad S \cup \{\neg \alpha\}}$$

Is \mathbb{P}_{PL} complete? No!

Can you find a satisfiable state other than SAT and UNSAT that is irreducible?

 $\mathbb{P}_{\rm PL}$ proof rules:

$$MP \xrightarrow{\alpha \in S \quad \alpha \Rightarrow \beta \in S \quad \beta \notin S}{S \cup \{\beta\}} CONTR \xrightarrow{\alpha \in V \quad \alpha \in S \quad \neg \alpha \in S}{UNSAT}$$

$$SPLIT \xrightarrow{\alpha \in V \quad \alpha \text{ occurs in some formula in } S \quad \alpha \notin S \quad \neg \alpha \notin S}{S \cup \{\alpha\} \quad S \cup \{\neg \alpha\}}$$

Is \mathbb{P}_{PL} complete? No!

Can you find a satisfiable state other than SAT and UNSAT that is irreducible? How about $\{b\}$?

Proof Systems and Decision Procedures

If \mathbb{P} is sound and complete wrt \mathbb{S}^{Sat} and terminating, it induces a decision procedure for checking whether a S is in \mathbb{S}^{Sat} :

- Simply start with S and produce any derivation
- It must eventually terminate
- If the final tree is a refutation tree, then $\mathcal{S} \notin \mathbb{S}^{\mathsf{sat}}$
- Otherwise, $S \in \mathbb{S}^{Sat}$

Proof Systems and Decision Procedures

If \mathbb{P} is sound and complete wrt \mathbb{S}^{Sat} and terminating, it induces a decision procedure for checking whether a S is in \mathbb{S}^{Sat} :

- Simply start with \mathcal{S} and produce any derivation
- It must eventually terminate
- If the final tree is a refutation tree, then $S \notin \mathbb{S}^{Sat}$
- Otherwise, $S \in \mathbb{S}^{Sat}$

Recall: A variable assignment v is a partial mapping from \mathcal{V} to {true, false}, and $v \models S$ means that each formula in S evaluates to true under v

Let S be a set of propositional formulas

The variable assignment v induced by S is defined as follows:

 $v(p) = \begin{cases} \text{true} & \text{if } p \in S \\ \text{false} & \text{if } \neg p \in S \\ undefined & \text{otherwise} \end{cases}$

- 1. v is the variable assignment induced by S and
- 2. for each variable p occurring in S, either $p \in S$ or $\neg p \in S$

Recall: A variable assignment v is a partial mapping from \mathcal{V} to {true, false}, and $v \models S$ means that each formula in S evaluates to true under v

Let S be a set of propositional formulas

The variable assignment v induced by S is defined as follows:

 $v(p) = \begin{cases} \text{true} & \text{if } p \in S \\ \text{false} & \text{if } \neg p \in S \\ undefined & \text{otherwise} \end{cases}$

- 1. v is the variable assignment induced by S and
- 2. for each variable p occurring in S, either $p \in S$ or $\neg p \in S$

Recall: A variable assignment v is a partial mapping from \mathcal{V} to {true, false}, and $v \models S$ means that each formula in S evaluates to true under v

Let \mathcal{S} be a set of propositional formulas

The *variable assignment v induced by S* is defined as follows:

$$v(p) = \begin{cases} \text{true} & \text{if } p \in S \\ \text{false} & \text{if } \neg p \in S \\ undefined & \text{otherwise} \end{cases}$$

- 1. v is the variable assignment induced by S and
- 2. for each variable p occurring in S, either $p \in S$ or $\neg p \in S$

Recall: A variable assignment v is a partial mapping from \mathcal{V} to {true, false}, and $v \models S$ means that each formula in S evaluates to true under v

Let \mathcal{S} be a set of propositional formulas

The *variable assignment v induced by S* is defined as follows:

$$v(p) = \begin{cases} \text{true} & \text{if } p \in S \\ \text{false} & \text{if } \neg p \in S \\ undefined & \text{otherwise} \end{cases}$$

- 1. v is the variable assignment induced by S and
- 2. for each variable *p* occurring in *S*, either $p \in S$ or $\neg p \in S$

Let \mathbb{P}_{E} = $\langle \mathbb{S}_{\mathrm{E}}, \mathbb{R}_{\mathrm{E}} \rangle$ where

- \mathbb{S}_{E} consists of all sets of wffs plus the distinguished states sat and UNSAT
- \mathbb{R}_{E} consists of the following proof rules:

 $\frac{p \in \mathcal{V} \quad p \text{ occurs in some formula in } S \quad p \notin S \quad \neg p \notin S}{S \cup \{p\}} \quad S \cup \{\neg p\}}$ $Sat \quad \frac{S \text{ fully defines } v \quad v \models S}{Sat}$ $UNSAT \quad \frac{S \text{ fully defines } v \quad v \notin \alpha \text{ for some } \alpha \in S}{UNSAT}$

Let \mathbb{P}_{E} = $\langle \mathbb{S}_{\mathrm{E}}, \mathbb{R}_{\mathrm{E}} \rangle$ where

- S_E consists of all sets of wffs plus the distinguished states SAT and UNSAT
- \mathbb{R}_{E} consists of the following proof rules:

 SPLIT
 $p \in \mathcal{V}$ p occurs in some formula in \mathcal{S} $p \notin \mathcal{S}$ $\neg p \notin \mathcal{S}$
 $\mathcal{S} \cup \{p\}$ $\mathcal{S} \cup \{p\}$ $\mathcal{S} \cup \{\neg p\}$

 SAT

 UNSAT

 \mathcal{S} fully defines v $v \models \mathcal{S}$

 UNSAT

Let $\mathbb{S}^{\operatorname{Sat}}$ consist of sat and all satisfiable sets of wffs

Theorem 1 Each rule in \mathbb{P}_{E} is satisfiability preserving wrt $\mathbb{S}^{\mathrm{Sat}}$

Corollary 2 \mathbb{P}_{E} is sound wrt \mathbb{S}^{Sat}

Theorem 3 \mathbb{P}_{E} is terminating

Theorem 4 \mathbb{P}_{E} is complete

Therefore, \mathbb{P}_{E} can be used as a decision procedure for the SAT problem

$$\{a, \neg a \lor b, a \Rightarrow \neg b\}$$

$$\frac{\{a, \neg a \lor b, a \Rightarrow \neg b\}}{\{a, \neg a \lor b, a \Rightarrow \neg b, b\}} \quad \text{Split}$$

$$\frac{\{a, \neg a \lor b, a \Rightarrow \neg b\}}{\{a, \neg a \lor b, a \Rightarrow \neg b, b\}} \quad \text{Split}$$

$$\frac{\{a, \neg a \lor b, a \Rightarrow \neg b\}}{\frac{\{a, \neg a \lor b, a \Rightarrow \neg b, b\}}{\text{UNSAT}}} \text{UNSAT} \quad \frac{\{a, \neg a \lor b, a \Rightarrow \neg b, \neg b\}}{\frac{\{a, \neg a \lor b, a \Rightarrow \neg b, \neg b\}}{\text{UNSAT}}} \text{Split}$$

$$\frac{\{a, \neg a \lor b, a \Rightarrow \neg b\}}{\frac{\{a, \neg a \lor b, a \Rightarrow \neg b, b\}}{\text{UNSAT}}} \text{UNSAT} \qquad \frac{\{a, \neg a \lor b, a \Rightarrow \neg b, \neg b\}}{\frac{\{a, \neg a \lor b, a \Rightarrow \neg b, \neg b\}}{\text{UNSAT}}} \text{Split}$$

$$\frac{\{a, \neg a \lor b, a \Rightarrow \neg b\}}{\{a, \neg a \lor b, a \Rightarrow \neg b, b\}} \text{ Split}$$

$$\frac{\{a, \neg a \lor b, a \Rightarrow \neg b, b\}}{\text{UNSAT}} \text{ Unsat} \frac{\{a, \neg a \lor b, a \Rightarrow \neg b, \neg b\}}{\text{UNSAT}} \text{ UNSAT}$$

$$\{a, \neg a \lor \neg b, a \land \neg b\}$$

$$\frac{\{a, \neg a \lor \neg b, a \land \neg b\}}{\{a, \neg a \lor \neg b, a \land \neg b, b\}} \quad \text{Split}$$

$$\frac{\{a, \neg a \lor \neg b, a \land \neg b\}}{\{a, \neg a \lor \neg b, a \land \neg b, b\}} \quad \text{Split}$$

$$\frac{\{a, \neg a \lor \neg b, a \land \neg b\}}{\{a, \neg a \lor \neg b, a \land \neg b, b\}} \text{ Split} \frac{\{a, \neg a \lor \neg b, a \land \neg b, \neg b\}}{\text{UNSAT}} \text{ Unsat } \frac{\{a, \neg a \lor \neg b, a \land \neg b, \neg b\}}{\{a, \neg a \lor \neg b, a \land \neg b, \neg b\}} \text{ Split}$$

$$\frac{\{a, \neg a \lor \neg b, a \land \neg b\}}{\{a, \neg a \lor \neg b, a \land \neg b, b\}} \operatorname{Split}_{\mathsf{SAT}} \operatorname{Split}_{\mathsf{Split}} \operatorname{Split}$$

Sometimes, a proof system had some desirable properties only if the rules are applied in a specific way

We capture those specific ways with rule application strategies

Sometimes, a proof system had some desirable properties only if the rules are applied in a specific way

We capture those specific ways with rule application strategies

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be a proof system

- A (derivation) strategy for P is a partial function that, when defined, takes a derivation tree τ in P and returns a new derivation tree τ' such that (τ, τ') is a derivation in P
- A derivation D in $\mathbb P$ follows a strategy π for $\mathbb P$
 - 1. if each non-initial derivation tree in D is the result of applying π to the previous derivation tree, and
 - 2. if D is finite, π is not defined for the final derivation tree

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be a proof system

- A (derivation) strategy for P is a partial function that, when defined, takes a derivation tree τ in P and returns a new derivation tree τ' such that (τ, τ') is a derivation in P
- A derivation D in ${\mathbb P}$ follows a strategy π for ${\mathbb P}$
 - if each non-initial derivation tree in D is the result of applying π to the previous derivation tree, and
 - 2. if D is finite, π is not defined for the final derivation tree

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be a proof system

- A (derivation) strategy for P is a partial function that, when defined, takes a derivation tree τ in P and returns a new derivation tree τ' such that (τ, τ') is a derivation in P
- A derivation *D* in \mathbb{P} follows a strategy π for \mathbb{P}
 - 1. if each non-initial derivation tree in ${\it D}$ is the result of applying π to the previous derivation tree, and
 - 2. if *D* is finite, π is not defined for the final derivation tree

Let < be a total order on literals in \mathcal{L} defined as alphabetical by variable name, with variables smaller than their negations (e.g., $a < \neg a < b < \neg b < \cdots$)

Let < be a total order on literals in \mathcal{L} defined as alphabetical by variable name, with variables smaller than their negations (e.g., $a < \neg a < b < \neg b < \cdots$)

- 1. Find the first reducible leaf in a left-to-right depth-first traversal of the tree; if none, then stop (π_{PL} is undefined in that case)
- if MP applies, apply it to the formulas l₁ and l₁ ⇒ l₂ where l₁ is minimal according to <, breaking ties by choosing a minimal l₂
- Otherwise, if SPLIT applies, apply it to the smallest variable p among those occurring in the state
- 4. Otherwise, apply **CONTR** if possible

Let < be a total order on literals in \mathcal{L} defined as alphabetical by variable name, with variables smaller than their negations (e.g., $a < \neg a < b < \neg b < \cdots$)

- 1. Find the first reducible leaf in a left-to-right depth-first traversal of the tree; if none, then stop (π_{PL} is undefined in that case)
- if MP applies, apply it to the formulas l₁ and l₁ ⇒ l₂ where l₁ is minimal according to <, breaking ties by choosing a minimal l₂
- Otherwise, if SPLIT applies, apply it to the smallest variable p among those occurring in the state
- 4. Otherwise, apply CONTR if possible

Let < be a total order on literals in \mathcal{L} defined as alphabetical by variable name, with variables smaller than their negations (e.g., $a < \neg a < b < \neg b < \cdots$)

- 1. Find the first reducible leaf in a left-to-right depth-first traversal of the tree; if none, then stop (π_{PL} is undefined in that case)
- if MP applies, apply it to the formulas l₁ and l₁ ⇒ l₂ where l₁ is minimal according to <, breaking ties by choosing a minimal l₂
- Otherwise, if SPLIT applies, apply it to the smallest variable p among those occurring in the state
- 4. Otherwise, apply CONTR if possible

Let < be a total order on literals in \mathcal{L} defined as alphabetical by variable name, with variables smaller than their negations (e.g., $a < \neg a < b < \neg b < \cdots$)

- 1. Find the first reducible leaf in a left-to-right depth-first traversal of the tree; if none, then stop (π_{PL} is undefined in that case)
- if MP applies, apply it to the formulas l₁ and l₁ ⇒ l₂ where l₁ is minimal according to <, breaking ties by choosing a minimal l₂
- 3. Otherwise, if **SPLIT** applies, apply it to the smallest variable *p* among those occurring in the state

Let < be a total order on literals in \mathcal{L} defined as alphabetical by variable name, with variables smaller than their negations (e.g., $a < \neg a < b < \neg b < \cdots$)

- 1. Find the first reducible leaf in a left-to-right depth-first traversal of the tree; if none, then stop (π_{PL} is undefined in that case)
- if MP applies, apply it to the formulas l₁ and l₁ ⇒ l₂ where l₁ is minimal according to <, breaking ties by choosing a minimal l₂
- 3. Otherwise, if **SPLIT** applies, apply it to the smallest variable *p* among those occurring in the state
- 4. Otherwise, apply **CONTR** if possible

Exercise

Apply π_{PL} to

$$\mathcal{S} = \{a \Rightarrow c, a \Rightarrow \neg b, \neg b \Rightarrow \neg a\}$$

Let \mathbb{S}^{Sat} be a satisfiability predicate for \mathbb{P}

Let $\mathbb{S}^{\mathsf{Sat}}$ be a satisfiability predicate for $\mathbb P$

- solution sound wrt to S^{sat} if S ∈ S^{sat} whenever there exists a corroboration in P from S following π
- refutation sound wrt to \mathbb{S}^{sat} if $S \notin \mathbb{S}^{\text{sat}}$ whenever there exists a refutation in \mathbb{P} from S following π
- sound wrt $\mathbb{S}^{\mathsf{Sat}}$ if it is both refutation sound and solution sound wrt $\mathbb{S}^{\mathsf{Sat}}$
- *terminating* if every derivation in \mathbb{P} following π is finite
- *progressive* if it is defined for every derivation tree that is not a refutation tree or a saturated tree

Let $\mathbb{S}^{\mathsf{Sat}}$ be a satisfiability predicate for $\mathbb P$

- solution sound wrt to \mathbb{S}^{sat} if $S \in \mathbb{S}^{\text{sat}}$ whenever there exists a corroboration in \mathbb{P} from S following π
- refutation sound wrt to \mathbb{S}^{sat} if $S \notin \mathbb{S}^{sat}$ whenever there exists a refutation in \mathbb{P} from S following π
- sound wrt $\mathbb{S}^{\mathsf{Sat}}$ if it is both refutation sound and solution sound wrt $\mathbb{S}^{\mathsf{Sat}}$
- *terminating* if every derivation in \mathbb{P} following π is finite
- *progressive* if it is defined for every derivation tree that is not a refutation tree or a saturated tree

Let $\mathbb{S}^{\mathsf{Sat}}$ be a satisfiability predicate for $\mathbb P$

- solution sound wrt to \mathbb{S}^{sat} if $\mathcal{S} \in \mathbb{S}^{\text{sat}}$ whenever there exists a corroboration in \mathbb{P} from \mathcal{S} following π
- *refutation sound* wrt to S^{Sat} if $S \notin S^{\text{Sat}}$ whenever there exists a refutation in \mathbb{P} from S following π
- sound wrt $\mathbb{S}^{\mathsf{Sat}}$ if it is both refutation sound and solution sound wrt $\mathbb{S}^{\mathsf{Sat}}$
- *terminating* if every derivation in \mathbb{P} following π is finite
- *progressive* if it is defined for every derivation tree that is not a refutation tree or a saturated tree

Let $\mathbb{S}^{\mathsf{Sat}}$ be a satisfiability predicate for $\mathbb P$

- solution sound wrt to \mathbb{S}^{Sat} if $\mathcal{S} \in \mathbb{S}^{\text{Sat}}$ whenever there exists a corroboration in \mathbb{P} from \mathcal{S} following π
- *refutation sound* wrt to S^{Sat} if $S \notin S^{\text{Sat}}$ whenever there exists a refutation in \mathbb{P} from S following π
- sound wrt S^{Sat} if it is both refutation sound and solution sound wrt S^{Sat}
- *terminating* if every derivation in \mathbb{P} following π is finite
- *progressive* if it is defined for every derivation tree that is not a refutation tree or a saturated tree

Let $\mathbb{S}^{\mathsf{Sat}}$ be a satisfiability predicate for $\mathbb P$

- solution sound wrt to \mathbb{S}^{Sat} if $\mathcal{S} \in \mathbb{S}^{\text{Sat}}$ whenever there exists a corroboration in \mathbb{P} from \mathcal{S} following π
- *refutation sound* wrt to S^{Sat} if $S \notin S^{\text{Sat}}$ whenever there exists a refutation in \mathbb{P} from S following π
- sound wrt S^{Sat} if it is both refutation sound and solution sound wrt S^{Sat}
- *terminating* if every derivation in \mathbb{P} following π is finite
- *progressive* if it is defined for every derivation tree that is not a refutation tree or a saturated tree

Let $\mathbb{S}^{\mathsf{Sat}}$ be a satisfiability predicate for $\mathbb P$

- solution sound wrt to \mathbb{S}^{Sat} if $\mathcal{S} \in \mathbb{S}^{\text{Sat}}$ whenever there exists a corroboration in \mathbb{P} from \mathcal{S} following π
- *refutation sound* wrt to S^{Sat} if $S \notin S^{\text{Sat}}$ whenever there exists a refutation in \mathbb{P} from S following π
- sound wrt S^{Sat} if it is both refutation sound and solution sound wrt S^{Sat}
- *terminating* if every derivation in \mathbb{P} following π is finite
- *progressive* if it is defined for every derivation tree that is not a refutation tree or a saturated tree

Let $\mathbb{S}^{\mathsf{Sat}}$ be a satisfiability predicate for $\mathbb P$

Note:

- If \mathbb{P} is sound wrt \mathbb{S}^{Sat} , then every strategy for \mathbb{P} is also sound wrt \mathbb{S}^{Sat}
- If $\mathbb P$ is terminating, then every strategy for $\mathbb P$ is also terminating

Theorem 5 I[®] is complete iff there exists a progressive and terminating strategy for it

Let $\mathbb{S}^{\mathsf{Sat}}$ be a satisfiability predicate for $\mathbb P$

Note:

- If \mathbb{P} is sound wrt \mathbb{S}^{Sat} , then every strategy for \mathbb{P} is also sound wrt \mathbb{S}^{Sat}
- If $\mathbb P$ is terminating, then every strategy for $\mathbb P$ is also terminating

Theorem 5

 \mathbb{P} is complete iff there exists a progressive and terminating strategy for it