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Hybrid Systems
Part II



Model-Based Design and Analysis
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Automated Guided Vehicle

q Autonomous vehicle on a flat surface,
following a visual track

q Goal of each robot:
§ Move along a track 

(i.e., center line of a road)
§ Follow track as close as possible

q Cameras and vision processing algorithms allow vehicle to sense track 
and measure (signed) distance d from center of the track

q Two degrees of freedom: move forward and rotate

q Two velocities: (regular) velocity (v, q) and angular velocity w



Automated Guided Vehicle Controller

Inputs: {start, stop} command c, distance d from center of track 
Outputs: speed v, angular speed w
State: coordinates x, y; angle q
Modes: Stop, Straight, Left, Right

Simplifications: v ∊ {vc/2, vc}  and  w ∊ {-p, 0, p}



Automated Guided Vehicle Controller



Multi-Robot Coordination

q Autonomous mobile robots in a room

q Goal of each robot:
§ Reach a target at a known location
§ Avoid obstacles (positions of obstacles not known in 

advance)
§ Minimize distance travelled

q Cameras and vision processing algorithms allow each robot to 
estimate obstacle positions
§ Estimates are only approximate, and depend on relative 

position of obstacles with respect to a robot’s position
§ How often should robot update these estimates ?



Multi-Robot Coordination

q Each robot can communicate with others using wireless links
§ How often and what information?
§ How does communication help?

q High-level motion control (path planning)
§ Decide on speed and direction



Path Planning with Obstacle Avoidance

X

Y

Robot R
(x, y)

Direction q Robot R2
(x2, y2)

q2

Target(xf, yf)

Obstacle O2

Obstacle O1

Assumptions:
§ Two-dimensional world
§ Point robots
§ Fixed speed v



Path Planning with Obstacle Avoidance
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(x, y)
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Target(xf, yf)
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State variables: (x, y), (x2, y2)

Initialization:
(x, y) := (x0, y0)
(x2, y2) := (x20, y20)

Dynamics:
dx = v cos q dx2 = v cos q2
dy = v sin q dy2 = v sin q2

Safety requirement:
(x, y), (x2, y2) ∉ O1 ∪ O2

Liveness requirement:
Eventually (x, y) = (xf, yf) and
Eventually (x2, y2) = (xf, yf) 

Performance requirement: Reduce distance travelled!



Abstractions

q For modeling and analysis for motion planning, we need to 
simplify obstacle shapes and complexity of image processing 
algorithms
§ Simplicity and abstraction: key to modeling 

q Assume each robot is a point
§ Can be described by coordinates of point

q Assume each obstacle/estimate is a circle
§ Can be described by coordinates of center and radius
§ Assumption: real obstacle is always contained in estimated 

circle
§ Alternative: ellipses (more accurate)



Modeling Obstacles

q Consider an obstacle with center (xo, yo) and radius r
§ Radius of smallest circle that envelopes the actual obstacle

q Estimate of the obstacle as computed by a robot using image 
processing algorithms of a robot 
§ A circle with center (xo, yo) and radius e > r
§ The closer the robot to the obstacle, the better the estimate
§ Estimate e decreases with distance of robot from obstacle, 

and converges to r 



Obstacle Estimation

Y

Estimated radius e1 = r + a (d1 – r)

a is a constant in (0,1)
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Rule for Obstacle Estimation

X
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(x, y)

q

Target(xf, yf)
Robot R maintains radii e1 and e2 that
are estimates of the obstacles

e1

(xo1, yo1)
e2

(xo2, yo2)

Obstacle estimation in reality is done periodically
as it is computationally expensive

Every te seconds, robot model executes discrete 
updates:

e1 := min (e1, r1 + a (dist((x, y), (xo1, yo1)) – r1) ;
e2 := min (e2, r2 + a (dist((x, y), (xo2, yo2)) – r2)

Computation for robot R2 is similar



Path Planning

X

Y

(x, y)

q0

(xf, yf)
Shortest path: straight line to target
Preferred direction: q0

q2
q1

If estimate of obstacle O1 intersects straight path,
calculate two paths that are tangents to obstacle 

q4

If estimate of obstacle O2 intersects straight path,
or obstacle O1, calculate tangent paths 

Path P4
Path P1

Plausible paths: P1 and P4 

Calculate which one is shorter:
Planning algorithm returns either q1 or q4

O2O1



Path Planning
q Function plan with inputs:

§ current position of robot Ri

§ target position
§ obstacle O1 position (center and radius estimate)
§ obstacle O2 position (center and radius estimate) 

q Output: Direction for motion
§ Best possible path to target while avoiding obstacles and 

assuming estimates are correct

q Function plan written in C code (can be embedded in model)

q Does it help to rerun planning algorithm again as robot moves?
§ Yes! Estimates may improve, suggesting shorter paths
§ Invoke planning algorithm every tp seconds



Communication

q Each robot has its own estimate of each obstacle

q Robot R2’s estimates may be better than R1’s own estimates

q Strategy: Every tc seconds, send your own estimates to the 
other robot, and receive estimates from it

q If your own estimates are ei1 and ei2, and you receive estimates 
ej1 and ej2, set

ei1 := min (ei1, ej1)
ei2 := min (ei2, ej2)



Effect of Coordination

X
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(x, y)

(xf, yf) Suppose Path P1 was preferredPath P4
Path P1

Communication with other robot gives
a better estimate of obstacle O2, but
not for obstacle O1

P2

Path P2 is now viable.
Running planner again could choose path P2  

O1 O2



System of Robots

(real × real) in (real × real) out

Hybrid process Robot

(real × real)

(real × real)

R2R1



Robot Model

clock zp, ze, zc := 0
cont x := x0, y := y0

real e1, e2 := e0 ; q := q0

dx = v cos q

dy = v sin q

zp ≤ tp ∧ zc ≤ tc ∧ ze ≤ te

∧ (x ≠ xf ∨ y ≠ yf ) 

x = xf ∧ y = yf dx = 0
dy = 0

zc = tc –>  out := (e1, e2) ; zc := 0 zp = tp –>  q := plan(x, y, e1, e2) ; zp := 0

ze = te –>  
ze := 0 ;
e1 := min(e1, r1 + a(dist((x, y), (xo1, yo1)) – r1) ;
e2 := min(e2, r2 + a(dist((x, y), (xo2, yo2)) – r2)

in = (e1’, e2’)  –>
e1 := min(e1, e1’) ; e2 := min(e2, e2’)



Analysis

q Key system parameters
§ How often should a robot communicate?
§ How often should a robot execute planning algorithm
§ How often should a robot execute image processing 

algorithm to update obstacle estimates?

q Design-space exploration: Choose values of tc, tp, te

§ Reduce distance travelled, but also account for costs of 

communication/computation

q Symbolic analysis beyond the scope of current tools, so need to 
run multiple simulations



Illustrative Execution

§ Speed v : 0.5 u/s
§ Planning rate tp : 2 s
§ Obstacle estimation rate tp : 2 s
§ Communication rate tc : 4 s
§ Distance travelled by R’ : 9.15 u
§ Distance travelled by R : 8.65 u 

(4.5, 2) (10, 2)

(3.7, 7.5)

(7, 7)

r = 0.9
r = 1.25

§ Speed v : 0.5 u/s
§ Planning rate tp : 2 s
§ Obstacle estimation rate tp : 2 s
§ Communication rate tc : >> 4 s
§ Distance travelled by R’ : 9.15 u
§ Distance travelled by R : 8.81 u 
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