
CS:4980
Foundations of Embedded Systems

Copyright 2014-20 Rajeev Alur and Cesare Tinelli.
Created by Cesare Tinelli at the University of Iowa from notes originally developed by Rajeev Alur at the University of
Pennsylvania. These notes are copyrighted materials and may not be used in other course settings outside of the
University of Iowa in their current form or modified form without the express written permission of one of the copyright
holders. During this course, students are prohibited from selling notes to or being paid for taking notes by any person or
commercial firm without the express written permission of one of the copyright holders.

Hybrid Systems
Part II

Model-Based Design and Analysis

Requirements

Specify correctness
formally

Modeling

High-level design

Analysis

Debugging
Design-space
exploration

Implementation
and

Testing

Automated Guided Vehicle

q Autonomous vehicle on a flat surface,
following a visual track

q Goal of each robot:
§ Move along a track

(i.e., center line of a road)
§ Follow track as close as possible

q Cameras and vision processing algorithms allow vehicle to sense track
and measure (signed) distance d from center of the track

q Two degrees of freedom: move forward and rotate

q Two velocities: (regular) velocity (v, q) and angular velocity w

Automated Guided Vehicle Controller

Inputs: {start, stop} command c, distance d from center of track
Outputs: speed v, angular speed w
State: coordinates x, y; angle q
Modes: Stop, Straight, Left, Right

Simplifications: v ∊ {vc/2, vc} and w ∊ {-p, 0, p}

Automated Guided Vehicle Controller

Multi-Robot Coordination

q Autonomous mobile robots in a room

q Goal of each robot:
§ Reach a target at a known location
§ Avoid obstacles (positions of obstacles not known in

advance)
§ Minimize distance travelled

q Cameras and vision processing algorithms allow each robot to
estimate obstacle positions
§ Estimates are only approximate, and depend on relative

position of obstacles with respect to a robot’s position
§ How often should robot update these estimates ?

Multi-Robot Coordination

q Each robot can communicate with others using wireless links
§ How often and what information?
§ How does communication help?

q High-level motion control (path planning)
§ Decide on speed and direction

Path Planning with Obstacle Avoidance

X

Y

Robot R
(x, y)

Direction q Robot R2
(x2, y2)

q2

Target(xf, yf)

Obstacle O2

Obstacle O1

Assumptions:
§ Two-dimensional world
§ Point robots
§ Fixed speed v

Path Planning with Obstacle Avoidance

X

Y

(x, y)

q (x2, y2)

q2

Target(xf, yf)

O2O1

State variables: (x, y), (x2, y2)

Initialization:
(x, y) := (x0, y0)
(x2, y2) := (x20, y20)

Dynamics:
dx = v cos q dx2 = v cos q2
dy = v sin q dy2 = v sin q2

Safety requirement:
(x, y), (x2, y2) ∉ O1 ∪ O2

Liveness requirement:
Eventually (x, y) = (xf, yf) and
Eventually (x2, y2) = (xf, yf)

Performance requirement: Reduce distance travelled!

Abstractions

q For modeling and analysis for motion planning, we need to
simplify obstacle shapes and complexity of image processing
algorithms
§ Simplicity and abstraction: key to modeling

q Assume each robot is a point
§ Can be described by coordinates of point

q Assume each obstacle/estimate is a circle
§ Can be described by coordinates of center and radius
§ Assumption: real obstacle is always contained in estimated

circle
§ Alternative: ellipses (more accurate)

Modeling Obstacles

q Consider an obstacle with center (xo, yo) and radius r
§ Radius of smallest circle that envelopes the actual obstacle

q Estimate of the obstacle as computed by a robot using image
processing algorithms of a robot
§ A circle with center (xo, yo) and radius e > r
§ The closer the robot to the obstacle, the better the estimate
§ Estimate e decreases with distance of robot from obstacle,

and converges to r

Obstacle Estimation

Y

Estimated radius e1 = r + a (d1 – r)

a is a constant in (0,1)

xo,yo

r

Estimate from distance d1

(x1, y1)

Distance d1

e1

(x2, y2)

Distance d2

Estimate from distance d2

X

Rule for Obstacle Estimation

X

Y

(x, y)

q

Target(xf, yf)
Robot R maintains radii e1 and e2 that
are estimates of the obstacles

e1

(xo1, yo1)
e2

(xo2, yo2)

Obstacle estimation in reality is done periodically
as it is computationally expensive

Every te seconds, robot model executes discrete
updates:

e1 := min (e1, r1 + a (dist((x, y), (xo1, yo1)) – r1) ;
e2 := min (e2, r2 + a (dist((x, y), (xo2, yo2)) – r2)

Computation for robot R2 is similar

Path Planning

X

Y

(x, y)

q0

(xf, yf)
Shortest path: straight line to target
Preferred direction: q0

q2
q1

If estimate of obstacle O1 intersects straight path,
calculate two paths that are tangents to obstacle

q4

If estimate of obstacle O2 intersects straight path,
or obstacle O1, calculate tangent paths

Path P4
Path P1

Plausible paths: P1 and P4

Calculate which one is shorter:
Planning algorithm returns either q1 or q4

O2O1

Path Planning
q Function plan with inputs:

§ current position of robot Ri

§ target position
§ obstacle O1 position (center and radius estimate)
§ obstacle O2 position (center and radius estimate)

q Output: Direction for motion
§ Best possible path to target while avoiding obstacles and

assuming estimates are correct

q Function plan written in C code (can be embedded in model)

q Does it help to rerun planning algorithm again as robot moves?
§ Yes! Estimates may improve, suggesting shorter paths
§ Invoke planning algorithm every tp seconds

Communication

q Each robot has its own estimate of each obstacle

q Robot R2’s estimates may be better than R1’s own estimates

q Strategy: Every tc seconds, send your own estimates to the
other robot, and receive estimates from it

q If your own estimates are ei1 and ei2, and you receive estimates
ej1 and ej2, set

ei1 := min (ei1, ej1)
ei2 := min (ei2, ej2)

Effect of Coordination

X

Y

(x, y)

(xf, yf) Suppose Path P1 was preferredPath P4
Path P1

Communication with other robot gives
a better estimate of obstacle O2, but
not for obstacle O1

P2

Path P2 is now viable.
Running planner again could choose path P2

O1 O2

System of Robots

(real × real) in (real × real) out

Hybrid process Robot

(real × real)

(real × real)

R2R1

Robot Model

clock zp, ze, zc := 0
cont x := x0, y := y0

real e1, e2 := e0 ; q := q0

dx = v cos q

dy = v sin q

zp ≤ tp ∧ zc ≤ tc ∧ ze ≤ te

∧ (x ≠ xf ∨ y ≠ yf)

x = xf ∧ y = yf dx = 0
dy = 0

zc = tc –> out := (e1, e2) ; zc := 0 zp = tp –> q := plan(x, y, e1, e2) ; zp := 0

ze = te –>
ze := 0 ;
e1 := min(e1, r1 + a(dist((x, y), (xo1, yo1)) – r1) ;
e2 := min(e2, r2 + a(dist((x, y), (xo2, yo2)) – r2)

in = (e1’, e2’) –>
e1 := min(e1, e1’) ; e2 := min(e2, e2’)

Analysis

q Key system parameters
§ How often should a robot communicate?
§ How often should a robot execute planning algorithm
§ How often should a robot execute image processing

algorithm to update obstacle estimates?

q Design-space exploration: Choose values of tc, tp, te

§ Reduce distance travelled, but also account for costs of

communication/computation

q Symbolic analysis beyond the scope of current tools, so need to
run multiple simulations

Illustrative Execution

§ Speed v : 0.5 u/s
§ Planning rate tp : 2 s
§ Obstacle estimation rate tp : 2 s
§ Communication rate tc : 4 s
§ Distance travelled by R’ : 9.15 u
§ Distance travelled by R : 8.65 u

(4.5, 2) (10, 2)

(3.7, 7.5)

(7, 7)

r = 0.9
r = 1.25

§ Speed v : 0.5 u/s
§ Planning rate tp : 2 s
§ Obstacle estimation rate tp : 2 s
§ Communication rate tc : >> 4 s
§ Distance travelled by R’ : 9.15 u
§ Distance travelled by R : 8.81 u

Credits

Notes based on Chapter 9 of

Principles of Cyber-Physical Systems
by Rajeev Alur
MIT Press, 2015

