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Hybrid Systems
Part I



Models of Reactive Computation

q Continuous-time model for dynamical system
§ Synchronous, where time evolves continuously
§ Execution of system: Solution to algebraic / differential equations

q Timed model
§ Like asynchronous for communication of information
§ Clocks evolve continuously, and constraints on delays allow 

synchronous/global coordination

q Hybrid systems
§ Generalization of timed processes
§ During timed transitions, evolution of state/output variables 

specified using differential equations as in dynamical systems



Self-Regulating Switching Thermostat

off

State machine with two modes: on and off

State variable T of type cont (continuous), to model temperature

T can be tested and updated during mode-switches

Invariants (as in timed model) constrain how long can a timed transition be

cont 60 ≤ T ≤ 70 (T ≤ 62) ?

(T ≥ 68) ?

dT = -k2

T changes continuously during timed transitions given by differential equations

T ≥ 60

on

dT = k1(70 - T)

T ≤ 70



Executions of Thermostat

Initial state = (off, T0) with T0 in the interval [60,70]

While in off mode, T decreases continuously: T(t) = T0 - k2 t

Mode-switch to on enabled when T ≤ 62, and must happen before T passes 60 

While in on mode, T increases according to T(t) = 70 - (70 - T*) e –k1(t-t*)

t*, T* : time and temperature upon entry to mode on

Mode-switch to off enabled when T ≥ 68, and must happen before T passes 70 

off

cont 60 ≤ T ≤ 70 (T ≤ 62) ?

(T ≥ 68) ?

dT = -k2

T ≥ 60

on

dT = k1(70 - T)

T ≤ 70



Simulation Plot of an Execution



Modeling a Bouncing Ball

q Ball dropped from an initial height h0 with an initial velocity v0

q Velocity changes according to the differential equation dv/dt = -g

q When the ball hits the ground (height h = 0), velocity changes 
discretely: v := -a v,  where 0 < a < 1 is dampening constant

q Modeled as a hybrid system: mix of discrete and continuous 
behaviors



Hybrid Process for Bouncing Ball

Fall

cont h := h0, v := v0
dh = v;  dv = -g 

h ≥ 0

h = 0 –> bump ! ; v := -a v



Execution of the Bouncing Ball Process

h0 = 5
v0  = 0



Definition of Hybrid Process: Syntax
A hybrid process HP consists of

1. An asynchronous process P, with 
§ continuous (Ic)   and discrete (Id)   input variables    I
§ continuous (Sc)  and discrete (Sd)  state variables    S
§ continuous (Oc) and discrete (Od) output variables O

2. A continuous-time invariant CI, a Boolean expression over Sc

3. For every y ∈ Oc, a Lipschitz-continuous real-valued expression 
hy(Sc, Ic) defining y

4. For every x ∈ Sc, a Lipschitz-continuous real-valued expression 
fx(Sc, Ic) defining the rate of change of x

5. Input, output, internal and timed actions



Definition of Hybrid Process: Semantics

q Inputs, outputs, states, initial states, internal actions, input actions, 
output actions: Defined exactly as in the asynchronous model

q Timed actions: Given 
§ a state s0, a real-valued time d > 0 and 
§ a continuous input signal I(t) giving values for Ic over interval [0, d], 
signals S(t) and O(t) over [0, d] are uniquely defined so that
1. S(0) = s0

2. For each y ∈ Oc, Oy(t) = hy(S(t), I(t)) 
3. For each x ∈ Sc,   dSx(t)  = fx(S(t), I(t))
4. For all t ∈ [0, d], S(t) satisfies the invariant CI

Note: At all times t ∈ [0, d], discrete state variables stay unchanged



Executions of Hybrid Processes

Starting from an initial state, execute 
either 
§ a timed step of some duration d > 0 

(only continuous variables change) or
§ a discrete, instantaneous step: input, 

output, or internal action 

Concepts based on transition systems such as reachable states, safety and 
liveness requirements, all apply to hybrid systems 

(mode, temp) 
(off, 66) –2.5–> (off, 61) –> (on, 61) –3.7–> (on,69.02) –> (off, 69.02) 

–4.4–> (off, 60.22) –> (on, 60.22) –7.6–> (on, 69.9) –> (off, 69.9)
–4.1–> (off, 61.7) –> (on, 61.7) –> …



Block Diagrams

q Component processes can now be hybrid processes
§ Need to define instantiation, composition, output hiding

q Channels connecting processes of two types
1. Sender/receiver communication during discrete steps,

as in the asynchronous model
2. Continuously evolving signals during timed steps,

as in the model of continuous-time dynamical systems



Composition of Hybrid Processes
Instantiation, variable renaming and output hiding:

§ Defined as usual

Composition:
§ Compose discrete parts together as in the asynchronous 

model
§ Compose continuous parts of internal actions together as in 

dynamical systems 
§ Generate continuous-time invariants of as conjunction of 

invariants of component processes

Compatibility of two hybrid processes:
§ State variables are disjoint and output variables are disjoint
§ No cyclic await dependencies among shared input/output 

variables



Nuclear Reactor Example

ReactorPlant ReactorControl

cont T

{add1, add2, rem1, rem2} u



Reactor Plant

PlantNoRod

dT = T/10 - 50

T := 510

(u = add1) ?

PlantRod2

dT = T/10 - 60

PlantRod1

dT = T/10 - 56

(u = add2) ?

(u = rem1) ?

(u = rem2) ?



Reactor Controller

ConNoRod

dy1 = dy2 = 1
T ≤ 550

y1 := c
y2 := c

(550 ≤ T  ∧ c ≤ y1  ∧ y2 < c)  –>  u := add1

550 ≤ T  ∧ c ≤ y2  –>  u := add2

T ≤ 510  –>  u := rem1 ; y1 := 0 

T ≤ 550  –>  u := rem2 ; y2 := 0

ConRod1

dy1 = dy2 = 1
510 ≤ T

ConRod2

dy1 = dy2 = 1
510 ≤ T



Summary of the Model
✚ Generalizes timed model

Variables evolving continuously during a timed action can have 
complex dynamics, clocks being a very special case

✚ Generalizes continuous-time dynamical systems
Discontinuous changes to system state now can be modeled

✚ Generalizes asynchronous model
Distributed/multi-agent systems can be modeled

✚ Suitable for modeling of cyber-physical systems in full generality

✚ Commercial tool support: Modelica, Stateflow/Simulink

− Analysis is challenging
Even if dynamics in individual modes is linear, due to discrete 
changes it is not possible to obtain closed-form solutions, or 
general theorems about stability



Analysis of Bouncing Ball Model

Fall

cont h := h0, v := 0 dh = v ;  dv = -g 

h ≥ 0

h = 0  –> bump ! ; v := -a v

Evolution in height during first bounce: h(t)  =  h0 - g t2 / 2 

Time at which first bump occurs: t1 = Sqrtr (2 h0 / g) 

Speed just before first bump occurs: v1 = Sqrt (2 g h0)
Speed just after first bump : v2 =  a v1

Evolution of height during second bounce: h(t)  =  v2 t - g t2 / 2
Time between first and second bump: t2 =  2 v2 / g

Speed just before second bump occurs:   v2 and after 2nd bump  v3 =  a v2



Modeling a Bouncing Ball

q Speed after k bumps: ak v1

q Duration between kth and following bump:  ak v1 / g

q Sum of durations between successive bumps converges to         
v1 (1 + a) / (1 - a)

q Infinitely many discrete actions in finite time: Zeno behavior!



Zeno’s Paradox
q Described by Greek philosopher Zeno in context 

of a race between Achilles and a tortoise
q Tortoise has a head start over Achilles, but is 

much slower
q In each discrete round, suppose Achilles is d

meters behind at the beginning of the round

q During the round, Achilles runs d meters, but by then, tortoise has 
moved a little bit further

q At the beginning of the next round, Achilles is still behind, by a distance 
of a d meters, with 0 < a < 1

q By induction, if we repeat this for infinitely many rounds, Achilles will 
never catch up!

q If the sum of durations between successive discrete actions converges 
to a constant K, then an execution with infinitely many discrete actions 
describes behavior only up to time K (and does not tell us the state of 
the system at time K and beyond)



Formalization

q An infinite execution of a hybrid process HP is of the form 
s0 –t1–> s1 –t2–> s2 –t3–> s3 …, where ti is the duration of ith step 
§ Input/output/internal actions are instantaneous (duration 0)

q An infinite execution is called 
§ Zeno if the infinite sum of all the durations is bounded above 

by a constant, (e.g., ∑n>0 1/(n2+n) = 1) and 
§ non-Zeno if the sum diverges (e.g., ∑n>0 1/n) 

q A state s of the process HP is called 
§ Zeno if every execution starting in state s is Zeno
§ Non-Zeno if there is some non-Zeno execution starting in s



Formalization

q A hybrid process HP is called non-Zeno if every reachable state 
of HP is non-Zeno
§ At every point during an execution it is possible for time to 

diverge

q A Zeno system could end up in a state from which duration 
between successive steps must get smaller and smaller

q Examples
§ Thermostat: non-Zeno
§ Bouncing ball: Zeno



Zeno vs Non-Zeno
clock x := 0 ; 
real d := 1 

x ≤ d x = d  –>  m ! ; d := d/2 ; x := 0

Zeno!  Every possible execution is Zeno 

clock x := 0 
x ≤ 1 x > 0  –>  m ! ; x := 0

Non-Zeno!  Some executions are Zeno and some are non-Zeno 

Zeno!  System may end up in a state from which only Zeno executions are possible 

clock x := 0 ; 
real d := 1 

x ≤ d x = d  –>
a! ; d := d/2 ; x := 0

x ≤ 1 x > 0  –>  a! ; x := 0



Zeno Processes and Reachability

How does existence of Zeno processes influence analysis?

Recall:
§ A state s of a system H is reachable if there exists a finite 

execution starting in an initial state and ending in state s
§ A property P is invariant for H all reachable states satisfy P

clock x := 0 
x ≤ 3

x = 3 ?
A B

Is mode B reachable ? 



Zeno Processes and Reachability

clock x := 0 
x ≤ 3

x = 3 ?
A B

Is mode B reachable ? 

clock y := 0 ; 
real d := 1 

y ≤ d

y = d  –> 
d := d/2 ; y := 0

clock x, y := 0
real d := 1 

x ≤ 3  ∧
y ≤ d

x = 3 ?
A B

y = d  –> 
d := d/2; y := 0

Presence of a Zeno process in 
the system can stop time from 
advancing and make states of 
other processes unreachable! 

composition



Making  Bouncing Ball Non-Zeno

cont h := h0, v := v0

Fall

dh = v  
dv = -g 

h ≥ 0

h = 0  –>  bump ! ; v := -a v

Stop

dh = 0
dv = 0 

h = 0  ∧ v < e –>  bump ! ; v := 0

If velocity is too small, stop modeling dynamics precisely 

In this model, there is a lower bound on duration between 
successive bumps 



Stability of Hybrid Systems

Is the dynamics in mode A stable?

(s2 = -0.2s1) ?

(s2 = 5s1) ?

A

ds1 = -s1 - 100s2

S2 ≥ -0.2s1

ds2 = 10s1 - s2

B

ds1 = -s1 + 10s2

S2 ≥ 5s1

ds2 = -100s1 - s2

Is the dynamics in mode B stable?

Each mode has stable dynamics but switching causes instability!



Stability of Hybrid Systems
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