
CS:4980
Foundations of Embedded Systems

Copyright 2014-20, Rajeev Alur and Cesare Tinelli.
Created by Cesare Tinelli at the University of Iowa from notes originally developed by Rajeev Alur at the University of
Pennsylvania. These notes are copyrighted materials and may not be used in other course settings outside of the
University of Iowa in their current form or modified form without the express written permission of one of the copyright
holders. During this course, students are prohibited from selling notes to or being paid for taking notes by any person or
commercial firm without the express written permission of one of the copyright holders.

Timed Model
Part II

Timed Model

Timed model is sometimes called the semi-synchronous model
(mix of asynchronous and synchronous)

Definitions/concepts that carry over naturally from those models:
§ Executions of a timed process
§ Transition system associated with a timed process
§ Safety/liveness requirements

Distributed coordination problems: how can we exploit the
knowledge of timing delays to design protocols?

Recall: Asynchronous Execution Model

nat x := 0 ; y := 0

Ax : x := x + 1

Ay : y := y + 1

q Tasks Ax and Ay execute in an arbitrary order

q For every possible choice of numbers m and n, the state (m, n) is
reachable

q Fairness assumptions can be used to rule out executions where one
of the tasks is ignored forever
(although this does not affect the set of reachable states)

What if we know how long each of these increments take?

(x, y)

Timed Increments

q Task Ax increments x, and this takes between 1 to 2 time units

q Task Ay increments y, and this also takes between 1 to 2 time units

q Tasks execute in parallel, asynchronously, but timing introduces loose
coordination (since all clocks advance in unison)

Which states are reachable? What is the relationship between m and n so
that the state (m, n) is reachable?

clock u := 0
nat x := 0

1 ≤ u –> x := x + 1 ; u := 0

u ≤ 2

clock v :=0
nat y :=0

1 ≤ v –> y := y + 1 ; v := 0

v ≤ 2

Recall: Shared Memory Asynchronous Processes

q Processes P1 and P2 communicate by reading/writing shared variables

q Each shared variable can be modeled as an asynchronous process
§ State of each such process is the value of corresponding variable
§ In implementation, shared memory can be a separate subsystem

q Read and write channel between each process and each shared variable
§ To write x, P1 synchronizes with x on x.write1 channel
§ To read x, P2 synchronizes with x on x.read2 channel

x.write1
P1 x P2x.read2

x.write2

x.read1

Shared Memory Programs with Atomic Registers

AtomicReg nat x := 0

Process P1

nat y1 := 0

y1 := x

x := y1 + 1

Process P2

nat y2 := 0

y2 := x

x := y2 + 1

Declaration of shared variables
+ code for each process

Key restriction: Each statement
either
§ changes local variables,
§ reads a single shared var, or
§ writes a single shared var

Execution model: execute one step
of one of the processes

What if we knew lower and upper bounds on how long a read or a write takes?
Could we solve coordination problems better?

Safety: processes should not both be in critical section simultaneously
(can be formalized using invariants)

Deadlock freedom: if any process is trying to enter, then some process
should be able to enter

Process P1

Entry Code

Critical Section

To be designed

Process P2

Entry Code

Critical Section

Mutual Exclusion Problem

Mutual Exclusion: Incorrect Solution
AtomicReg {0, 1, 2} Turn := 0

What was the problem?

Process P1

Idle Try1
Turn = 0 ?

Crit

else

Turn := 0

Try2
Turn := 1

Process P2

Idle Try1
Turn = 0 ?

Crit

else

Turn := 0

Try2
Turn := 2

Timing-based Mutual Exclusion

1. Before entering critical section, read the shared variable Turn
2. If Turn ≠ 0 then go to Step 1 and try again
3. If Turn = 0 then set Turn to your ID

Problem: Proceeding directly to critical section (the other process
may also have concurrently read Turn to be 0, and updated Turn)

Solution: Delay and wait till you are sure that concurrent writes
are finished

4. Read Turn again: if Turn equals your own ID then proceed to
critical section; otherwise, go to Step 1 and try again

5. When done with critical section, set Turn back to 0

Fisher’s Mutual Exclusion Protocol
AtomicReg nat Turn := 0 myID ∈ {1, 2, 3, …}

Idle
nat y, clock x

Test
y := Turn Set

Delay

y = 0 –> Turn := myID ;

y ≠ 0 ?

; x := 0

x ≤ D1

Timing assumption: writing
Turn takes at most D1

Check
x ≥ D2 –> y := Turn x := 0

Crit

y = myID ?

y ≠ myID ?Turn := 0

Does this work? Why?

Wait for at least D2 time units,
and read Turn again

Properties of Timed Fisher’s Protocol
q If D2 > D1, the algorithm satisfies:

1. Mutual exclusion (two processes cannot be in critical section
simultaneously)

2. Deadlock freedom (if a process wants to enter critical section
then some process will enter critical section)

q Protocol works for arbitrarily many processes, not just 2
In contrast, in the asynchronous model, mutual exclusion protocol
for N processes is lot more complex than Peterson’s algorithm

Exercise 1: Does the protocol satisfy the stronger property of
starvation freedom (if a process wants to enter critical section then it
eventually will)?

Exercise 2: If D2 ≤ D1 does mutual exclusion hold? How about
deadlock freedom?

Timed Communication

Suppose a sender wants to transmit a sequence of bits to a
receiver connected by a communication bus

Natural strategy: Divide time into slots, and in each slot transmit a
bit using low/high voltage values to encode 0/1

Manchester encoding: 0 encoded as a falling edge, and 1 encoded
as a rising edge

Timed Communication Challenges

Sender and receiver know the duration of each time slot, but …
1. When idle, the voltage is set to low.

So receiver doesn’t know when the communication begins
2. Receiver cannot reliably detect falling edges
3. Sender and receiver clocks are synchronized imperfectly due to

drift (when a clock x is 1, actual elapsed time is in interval [1 - e, 1 + e])

Addressing the challenges:
1. All messages start with 1 and end with 00
2. Processes use timing information to transmit 0s
3. We use constraints like x ≤ 1 + e instead of x ≤ 1, and 1 - e ≤ x

instead of 1 ≤ x

Audio Control Protocol

Protocol developed by Philips to reliably transmit messages in presence
of imperfect clocks

Design logic for receiver to map measured delays between successive
raising edges to sequence of bits

Verification: Prove that message transmission is reliable for a given drift
rate e

Optimization: Find the largest drift rate that the protocol tolerates

Audio Control System

Sender Process

Receiver Process

Execution Example

Timing Analysis

Timed Model

Requirement

yes/proof

no/bug
Model Checker

q How to adapt algorithms for searching through the state-space of a
model in presence of clock variables and timing constraints?

q Application: Formal analysis of timing-based coordination and
communication protocols

q Must handle the space of clock valuations symbolically!
q Popular model checker: Uppaal

Timing Analysis Example

y := 0
x ≤ 2

x > 1 ?

x = 3 ?
Infeasible Path !

clock x := 0

Timed Automata

Motivation: When is exact analysis of timing constraints feasible?

Definition: A timed process TP is a timed automaton if for every
clock variable x,

1. assignments to x in the description of TP are of the form x := 0

2. atomic expressions involving x (in clock-invariants or in guards)
are of the form

x ⋈ k
where k is a constant and ⋈ ∈ { =, ≤, >, <, ≥ }

(can express only constant lower/upper bounds on timing
delays)

Timed Automata

Properties: Closed under parallel composition: If TP1 and TP2 are
timed automata then TP1 | TP2 is also a timed automaton

A time automaton is finite-state if all its variables other than clocks
have finite types (e.g. Boolean, enumerated)

Note: State space is still infinite due to the clock variables, but
verification of safety properties is decidable

Timing Analysis Example

x ≥ 3 -> y := 0A
x ≤ 5

(y ≥ 6)?

(x = 7)?

Which of the modes D, E, F are reachable ?

clock x, y := 0 (y ≥ 2)?B
x ≤ 7

C
x ≤ 8

(x ≤ 4)?

D

E

F

Requires propagation of the reachable combinations of x and y symbolically

Timing Analysis Example

Ax1, x2:=0

Initial set of clock-valuations: x1 = 0 ∧ x2 = 0

Clock-zone: Uniform representation of constraints that arise during analysis

Constraints of two types:
1. Lower/upper bound on value of a clock variable
2. Lower/upper bound on difference of two clock variables

Clock-zone R0
0 ≤ x1 ≤ 0
0 ≤ x2 ≤ 0
0 ≤ x1-x2 ≤ 0

Timing Analysis Example

A
x1 ≤ 5

Starting from a state in R0, as time elapses, which clock-valuations are reachable ?

Clock-zone R0
0 ≤ x1 ≤ 0
0 ≤ x2 ≤ 0
0 ≤ x1-x2 ≤ 0

During a timed transition, values of all clocks increase.
How are the constraints impacted? What’s the effect of clock-invariant ?

Step 1: Compute effect of timed transitions ignoring clock-invariants
Constraints on individual clocks: Change upper bound to Infty
Constraints on differences between clock values: unchanged (why?)

Clock-zone R’0
0 ≤ x1 ≤ Infty
0 ≤ x2 ≤ Infty
0 ≤ x1 – x2 ≤ 0

Timing Analysis Example

A
x1 ≤ 5

Desired clock-zone R1: Set of clock-valuations reachable while in mode A
Intersection of constraints in R’0 and the clock-invariant

Canonicalization: Tighten all bounds to reflect implied constraints
Each lower bound should be as high as possible
Each upper bound should be as low as possible

Clock-zone R’0
0 ≤ x1 ≤ Infty
0 ≤ x2 ≤ Infty
0 ≤ x1-x2 ≤ 0

Clock-zone R”0
0 ≤ x1 ≤ 5
0 ≤ x2 ≤ Infty
0 ≤ x1-x2 ≤ 0

Clock-zone R1
0 ≤ x1 ≤ 5
0 ≤ x2 ≤ 5
0 ≤ x1-x2 ≤ 0

Timing Analysis Example

A
x1 ≤ 5

Desired clock-zone R2: What are set of clock-valuations upon entry to B ?

Step 1: Intersect guard 3 ≤ x1 with the clock-zone R1

Clock-zone R1
0 ≤ x1 ≤ 5
0 ≤ x2 ≤ 5
0 ≤ x1-x2 ≤ 0

x1 ≥ 3 -> x2 := 0 B

3 ≤ x1 ≤ 5
0 ≤ x2 ≤ 5
0 ≤ x1-x2 ≤ 0

Step 2: Canonicalize by tightening constraints

3 ≤ x1 ≤ 5
3 ≤ x2 ≤ 5
0 ≤ x1-x2 ≤ 0

Step 3: Capture the effect of assignment x2 := 0
Bounds on x2 change, and so do bounds on x1-x2

Clock-zone R2
3 ≤ x1 ≤ 5
0 ≤ x2 ≤ 0
3 ≤ x1-x2 ≤ 5

Step 4: Canonicalize. In this case, constraints are already as tight as possible

Timing Analysis Example

B
x1 ≤ 7

Starting from a state in R2, as time elapses, which clock-valuations are reachable ?

Clock-zone R2
3 ≤ x1 ≤ 5
0 ≤ x2 ≤ 0
3 ≤ x1-x2 ≤ 5

Step 1: Set upper bounds on individual clock values to Infty

3 ≤ x1 ≤ Infty
0 ≤ x2 ≤ Infty
3 ≤ x1-x2 ≤ 5

Step 2: Intersect with the clock-invariant x1 ≤ 7

3 ≤ x1 ≤ 7
0 ≤ x2 ≤ Infty
3 ≤ x1-x2 ≤ 5

Step 3: Canonicalize by tightening all the bounds

What is a good data structure to represent clock-zones?
What are algorithms for operations such as intersection, canonicalization?

Clock-zone R3
3 ≤ x1 ≤ 7
0 ≤ x2 ≤ 4
3 ≤ x1-x2 ≤ 5

DBM Representation of Constraints

3 ≤ x1 ≤ 7
0 ≤ x2 ≤ Infty
3 ≤ x1 - x2 ≤ 5

3 ≤ x1 - x0 ≤ 7
0 ≤ x2 – x0 ≤ Infty
3 ≤ x1 - x2 ≤ 5

x1 - x0 ≤ 7
x0 – x1 ≤ -3
x2 - x0 ≤ Infty
x0 – x2 ≤ 0
x1 - x2 ≤ 5
x2 – x1 ≤ -3

X0 X1 X2

X0 0 -3 0

X1 7 0 5

X2 Infty -3 0

Difference Bounds Matrix
q Data structure for representing constraints, where each constraint

expresses a bound on difference of values of two variables
q Suppose clocks are named x1, x2 , … xm

q Let us introduce a dummy clock x0 that is always 0. Then instead of
the constraint L ≤ xi ≤ U, we have L ≤ xi – x0 ≤ U

q Lower bound constraint L ≤ xi – xj can be rewritten as upper bound
constraint xj – xi ≤ -L

q DBM R is (m+1) x (m+1) matrix representing
for 0 ≤ i ≤ m, for 0 ≤ j ≤ m, xi – xj ≤ R[i,j]

q Diagonal entries should be 0: xi – xj ≤ 0
q There is a one-to-one correspondence between DBMs and clock-

zones
q Entries of DBM: Integers plus a special symbol Infty (to represent

absence of a bound)

Timing Analysis Example

x1 ≥ 3 -> x2 := 0A
x1 ≤ 5

x2 ≥ 6

x1 = 7

x1, x2:=0 x2 ≥ 2B
x1 ≤ 7

C
x1 ≤ 8

x1 ≤ 4

D

E

FDBM R5 = Reachable states (x1, x2,mode=C)

Intersection of R5 and x2 ≥ 6 unsatisfiable; means mode D not reachable

Intersection of R5 and x1 ≤ 4 unsatisfiable; means mode E not reachable

Intersection of R5 and x1 = 7 satisfiable; means mode F is reachable

Clock-zone R5
5 ≤ x1 ≤ 8
2 ≤ x2 ≤ 5
3 ≤ x1 - x2 ≤ 5

Credits

Notes based on Chapter 7 of

Principles of Cyber-Physical Systems
by Rajeev Alur
MIT Press, 2015

