
CS:4980
Foundations of Embedded Systems

Copyright 2014-20,  Rajeev Alur and Cesare Tinelli. 
Created by Cesare Tinelli at the University of Iowa from notes originally developed by Rajeev Alur at the University of 
Pennsylvania. These notes are copyrighted materials and may not be used in other course settings outside of  the 
University of Iowa in their current form or modified form without the express written permission of one of the copyright 
holders. During this course, students are prohibited from selling notes to or being paid for taking notes by any person or 
commercial firm without the express written permission of one of the copyright holders.

Timed Model
Part I



Models of Reactive Computation
Synchronous model

§ Components execute in a sequence of discrete rounds in lock-step
§ Computation within a round: execute all tasks in an order 

consistent with task precedence constraints

Asynchronous model
§ Speeds at which different components execute are independent
§ Computation within a step: execute a single task that is enabled

Timed model (partially synchronous)
§ Like asynchronous for communication of information
§ But can rely on global time for coordination 

Continuous-time model (for dynamical system)
§ Synchronous, but now time evolves continuously
§ Execution of system: solution to differential equations



The timed model allows us to express phenomena such as:

q Task A is is executed every 5ms

q The delay between the reception of an input value and the 
corresponding output response is between 2ms to 4ms

q If an acknowledgment is not received within 5ms, the message is 
resent 

Timed Model



Timed Model Example

clock x := 0
off

press ? –>  x := 0
dim bright

press ?

(press  &  x ≥ 1) ?
(press  &  x ≤ 1) ?

Initial state: (mode = off, x = 0)
Timed transition: (off, 0)  –0.5–>  (off, 0.5)
Input transition: (off, 0.5)  –press?–> (dim, 0)
Timed transition: (dim, 0)  –0.8–> (dim, 0.8)
Input transition: (dim, 0.8)  –press?–> (bright,  0.8)
Timed transition: (dim, 0.8)  –1–> (dim, 1.8)
Input transition: (dim, 1.8)  –press?–> (off,  1.8)



Timed Model Example

Clock variables
§ Tests and updates in mode-switches like other variables
§ New: During a timed transition of duration d, the value of 

clock variables increases by an amount equal to d

Timing constraints
Update x := 0 in off –> dim and guard x ≤ 1 in dim –> bright
indicates that timing of these two transitions is ≤ 1 apart

clock x := 0
off

press ? –>  x := 0
dim bright

press ?

(press  &  x ≥ 1) ?
(press  &  x ≤ 1) ?



Timed Buffer Example

msg in msg out

Buffer with a bounded delay

Behavior:
Input received on channel in is transmitted on output channel 
out after a delay of d time units, with LB ≤ d ≤ UB 
(i.e. the delay has known lower and upper bounds)



Modeling Timed Buffer

clock y := 0

in ?  –>  x := in ; y := 0

in ?

§ Input channel: msg in                    Output channel: msg out
§ Mode indicates whether the buffer is full or not
§ State variable x remembers the last input value when buffer is full
§ Clock variable y tracks the time elapsed since buffer filled up
§ When buffer is full, input events are ignored
§ Guard y ≥ 1 ensures that at least 1 time unit elapses in mode Full

How to ensure that mode-switch from Full to Empty is executed before 
clock y exceeds the upper bound 2?

FullEmpty

y ≥ 1  –>  out := x



Clock Invariants

q The constraint y ≤ 2 associated with mode Full is a clock invariant

q A timed transition of duration d is allowed only if the clock invariant 
is satisfied for the entire duration of the transition
§ (Full, x, 0.8)  –0.7–> (Full, x, 1.5) allowed
§ (Full, x, 0.8)  –1.4–> (Full, x, 2.2) disallowed

q Clock invariants limit how long a process stays in a mode

clock y := 0

in ?  –>  x := in ; y := 0

in ?

Full
y ≤ 2

Empty

y ≥ 1  –>  out := x



Example with Two Clocks

clock x, y := 0

in ?  –> x := 0

§ Input channel: event in Output channels: event out1, out2
§ Two clock variables: x, y
§ As time passes, both clocks increase (and at the same rate)

Sample timed transitions from state (mode, x, y) = (Wait2, 0.8, 0) :

(Wait2, 0.8, 0)  –0.3–>  (Wait2, 1.1, 0.3)  –0.72–>  (Wait2, 1.82, 1.02)

Wait1
x ≤ 1

Idle

y ≥ 1  –> out2!

out1! ; y := 0
Wait2
x ≤ 2



Two Clock Example

§ Clock x tracks time elapsed since the last input event
§ Clock y tracks time elapsed since the output event

What is the behavior of this model?
Suppose an input event occurs at time t, 

§ the process produces an output event on channel out1
at time t’ ∈ [t, t+1]

§ then on channel out2 at time t’’ ∈ [t’+1, t+2]

clock x, y := 0

in ?  –> x := 0
Wait1
x ≤ 1

Idle

y ≥ 1  –> out2!

out1! ; y := 0
Wait2
x ≤ 2



Example Specification

Consider a timed process with
Input: event x Output: event y, event z

Desired behavior:
§ For each input event, produce both output events
§ Time delay between x? and y! is in interval [2, 4]
§ Time delay between x? and z! is in interval [3, 5]
§ Ignore later inputs received in these intervals



Definition of Timed Process

Definition: A timed process TP consists of
1. An asynchronous process P, where some of the state 

variables can be of type clock (non-negative reals)
2. A clock invariant CI, a Boolean expression over P’s state 

variables

Note: Inputs, outputs, states, initial states, internal actions, input 
actions, and output actions are exactly as in the asynchronous
model



Definition of Timed Process

Notation: For a state s and time t, let s+t denote the state such that 
§ (s+t)(x) = s(x) + t for every clock variable x
§ (s+t)(y) = s(y) for every non-clock variable y

Definition: Given a state s and a time d > 0, timed action s –d–> 
s+d is a transition of duration d where state s+t satisfies invariant 
CI for all t ∈ [0, d]

Note: If CI is a convex constraint, it suffices that s and s+d satisfy CI



Definition of Parallel Composition

Let TP1 = (P1, CI1) and TP2 = (P2, CI2) be timed processes

The parallel composition TP1 | TP2 is defined iff P1 | P2 is defined 
(that is, iff the outputs of P1 and P2 are disjoint)

Composition: TP1 | TP2 =  (P1 | P2, CI1 ∧ CI2)
§ Asynchronous composition of P1 and P2 defines the internal, input 

and output actions of TP1 | TP2

§ Conjunction of CI1 and CI2 defines the clock-invariant of TP1 | TP2

Consequence: The composite process allows a timed action of 
duration d exactly when both TP1 and TP2 can wait for time d



Composition of Processes

msg in msg out1

q How to construct timed process corresponding to the composition of 
the two processes?

q What are the possible behaviors of the composite process?

msg out2

TimedBuf1

TimedBuf2



Composition of Timed Processes

clock y1 := 0

in ?  –> x1 := in ; y1 := 0

in ?

Full
y1 ≤ UB1Empty

y1 ≥ LB1  –> out1 := x1
TimedBuf1

clock y2 := 0

in ?  –> x2 := in ; y2 := 0

in ?

Full
y2 ≤ UB2Empty

y2 ≥ LB2  –> out2 := x2
TimedBuf2

The composite process has four modes: 
(Empty, Empty), (Empty, Full), (Full, Empty), (Full, Full)



Composition of Timed Processes

CI  =  (mode = EF ⇒ y2 ≤ UB2) ∧ (mode = FF ⇒ y1 ≤ UB1 ∧ y2 ≤ UB2) ∧ (mode = FE ⇒ y1 ≤ UB1)



Composition of Processes

q If UB1 < LB2 then out1 is guaranteed to occur before out2
§ Implicit coordination based on bounds on delays

q Is it possible to observe two out1 events without an intervening out2
event?
§ Depends on relative magnitudes of bounds (need timing analysis!)

bool in bool out1

bool out2

TimedBuf1

TimedBuf2



Block Diagrams

Components can be timed processes now

Operations: instantiation (I/O variable renaming), parallel composition, 
and variable hiding

Composite system step:
1. an internal step of one of the components,
2. a communication (I/O) step involving relevant sender and 

receivers, or
3. a timed step involving all the components



Credits

Notes based on Chapter 7 of

Principles of Cyber-Physical Systems
by Rajeev Alur
MIT Press, 2015


