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Timed Model
Part I



Models of Reactive Computation
Synchronous model

§ Components execute in a sequence of discrete rounds in lock-step
§ Computation within a round: execute all tasks in an order 

consistent with task precedence constraints

Asynchronous model
§ Speeds at which different components execute are independent
§ Computation within a step: execute a single task that is enabled

Timed model (partially synchronous)
§ Like asynchronous for communication of information
§ But can rely on global time for coordination 

Continuous-time model (for dynamical system)
§ Synchronous, but now time evolves continuously
§ Execution of system: solution to differential equations



The timed model allows us to express phenomena such as:

q Task A is is executed every 5ms

q The delay between the reception of an input value and the 
corresponding output response is between 2ms to 4ms

q If an acknowledgment is not received within 5ms, the message is 
resent 

Timed Model



Timed Model Example

clock x := 0
off

press ? –>  x := 0
dim bright

press ?

(press  &  x ≥ 1) ?
(press  &  x ≤ 1) ?

Initial state: (mode = off, x = 0)
Timed transition: (off, 0)  –0.5–>  (off, 0.5)
Input transition: (off, 0.5)  –press?–> (dim, 0)
Timed transition: (dim, 0)  –0.8–> (dim, 0.8)
Input transition: (dim, 0.8)  –press?–> (bright,  0.8)
Timed transition: (dim, 0.8)  –1–> (dim, 1.8)
Input transition: (dim, 1.8)  –press?–> (off,  1.8)



Timed Model Example

Clock variables
§ Tests and updates in mode-switches like other variables
§ New: During a timed transition of duration d, the value of 

clock variables increases by an amount equal to d

Timing constraints
Update x := 0 in off –> dim and guard x ≤ 1 in dim –> bright
indicates that timing of these two transitions is ≤ 1 apart

clock x := 0
off

press ? –>  x := 0
dim bright

press ?

(press  &  x ≥ 1) ?
(press  &  x ≤ 1) ?



Timed Buffer Example

msg in msg out

Buffer with a bounded delay

Behavior:
Input received on channel in is transmitted on output channel 
out after a delay of d time units, with LB ≤ d ≤ UB 
(i.e. the delay has known lower and upper bounds)



Modeling Timed Buffer

clock y := 0

in ?  –>  x := in ; y := 0

in ?

§ Input channel: msg in                    Output channel: msg out
§ Mode indicates whether the buffer is full or not
§ State variable x remembers the last input value when buffer is full
§ Clock variable y tracks the time elapsed since buffer filled up
§ When buffer is full, input events are ignored
§ Guard y ≥ 1 ensures that at least 1 time unit elapses in mode Full

How to ensure that mode-switch from Full to Empty is executed before 
clock y exceeds the upper bound 2?

FullEmpty

y ≥ 1  –>  out := x



Clock Invariants

q The constraint y ≤ 2 associated with mode Full is a clock invariant

q A timed transition of duration d is allowed only if the clock invariant 
is satisfied for the entire duration of the transition
§ (Full, x, 0.8)  –0.7–> (Full, x, 1.5) allowed
§ (Full, x, 0.8)  –1.4–> (Full, x, 2.2) disallowed

q Clock invariants limit how long a process stays in a mode

clock y := 0

in ?  –>  x := in ; y := 0

in ?

Full
y ≤ 2

Empty

y ≥ 1  –>  out := x



Example with Two Clocks

clock x, y := 0

in ?  –> x := 0

§ Input channel: event in Output channels: event out1, out2
§ Two clock variables: x, y
§ As time passes, both clocks increase (and at the same rate)

Sample timed transitions from state (mode, x, y) = (Wait2, 0.8, 0) :

(Wait2, 0.8, 0)  –0.3–>  (Wait2, 1.1, 0.3)  –0.72–>  (Wait2, 1.82, 1.02)

Wait1
x ≤ 1

Idle

y ≥ 1  –> out2!

out1! ; y := 0
Wait2
x ≤ 2



Two Clock Example

§ Clock x tracks time elapsed since the last input event
§ Clock y tracks time elapsed since the output event

What is the behavior of this model?
Suppose an input event occurs at time t, 

§ the process produces an output event on channel out1
at time t’ ∈ [t, t+1]

§ then on channel out2 at time t’’ ∈ [t’+1, t+2]

clock x, y := 0

in ?  –> x := 0
Wait1
x ≤ 1

Idle

y ≥ 1  –> out2!

out1! ; y := 0
Wait2
x ≤ 2



Example Specification

Consider a timed process with
Input: event x Output: event y, event z

Desired behavior:
§ For each input event, produce both output events
§ Time delay between x? and y! is in interval [2, 4]
§ Time delay between x? and z! is in interval [3, 5]
§ Ignore later inputs received in these intervals



Definition of Timed Process

Definition: A timed process TP consists of
1. An asynchronous process P, where some of the state 

variables can be of type clock (non-negative reals)
2. A clock invariant CI, a Boolean expression over P’s state 

variables

Note: Inputs, outputs, states, initial states, internal actions, input 
actions, and output actions are exactly as in the asynchronous
model



Definition of Timed Process

Notation: For a state s and time t, let s+t denote the state such that 
§ (s+t)(x) = s(x) + t for every clock variable x
§ (s+t)(y) = s(y) for every non-clock variable y

Definition: Given a state s and a time d > 0, timed action s –d–> 
s+d is a transition of duration d where state s+t satisfies invariant 
CI for all t ∈ [0, d]

Note: If CI is a convex constraint, it suffices that s and s+d satisfy CI



Definition of Parallel Composition

Let TP1 = (P1, CI1) and TP2 = (P2, CI2) be timed processes

The parallel composition TP1 | TP2 is defined iff P1 | P2 is defined 
(that is, iff the outputs of P1 and P2 are disjoint)

Composition: TP1 | TP2 =  (P1 | P2, CI1 ∧ CI2)
§ Asynchronous composition of P1 and P2 defines the internal, input 

and output actions of TP1 | TP2

§ Conjunction of CI1 and CI2 defines the clock-invariant of TP1 | TP2

Consequence: The composite process allows a timed action of 
duration d exactly when both TP1 and TP2 can wait for time d



Composition of Processes

msg in msg out1

q How to construct timed process corresponding to the composition of 
the two processes?

q What are the possible behaviors of the composite process?

msg out2

TimedBuf1

TimedBuf2



Composition of Timed Processes

clock y1 := 0

in ?  –> x1 := in ; y1 := 0

in ?

Full
y1 ≤ UB1Empty

y1 ≥ LB1  –> out1 := x1
TimedBuf1

clock y2 := 0

in ?  –> x2 := in ; y2 := 0

in ?

Full
y2 ≤ UB2Empty

y2 ≥ LB2  –> out2 := x2
TimedBuf2

The composite process has four modes: 
(Empty, Empty), (Empty, Full), (Full, Empty), (Full, Full)



Composition of Timed Processes

CI  =  (mode = EF ⇒ y2 ≤ UB2) ∧ (mode = FF ⇒ y1 ≤ UB1 ∧ y2 ≤ UB2) ∧ (mode = FE ⇒ y1 ≤ UB1)



Composition of Processes

q If UB1 < LB2 then out1 is guaranteed to occur before out2
§ Implicit coordination based on bounds on delays

q Is it possible to observe two out1 events without an intervening out2
event?
§ Depends on relative magnitudes of bounds (need timing analysis!)

bool in bool out1

bool out2

TimedBuf1

TimedBuf2



Block Diagrams

Components can be timed processes now

Operations: instantiation (I/O variable renaming), parallel composition, 
and variable hiding

Composite system step:
1. an internal step of one of the components,
2. a communication (I/O) step involving relevant sender and 

receivers, or
3. a timed step involving all the components
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