CS:4980 Foundations of Embedded Systems

Timed Model Part I

Copyright 2014-20, Rajeev Alur and Cesare Tinelli.

Created by Cesare Tinelli at the University of Iowa from notes originally developed by Rajeev Alur at the University of Pennsylvania. These notes are copyrighted materials and may not be used in other course settings outside of the University of Iowa in their current form or modified form without the express written permission of one of the copyright holders. During this course, students are prohibited from selling notes to or being paid for taking notes by any person or commercial firm without the express written permission of one of the copyright holders.

Models of Reactive Computation

Synchronous model

- Components execute in a sequence of discrete rounds in lock-step
- Computation within a round: execute all tasks in an order consistent with task precedence constraints

Asynchronous model

- Speeds at which different components execute are independent
- Computation within a step: execute a single task that is enabled

Timed model (partially synchronous)

- Like asynchronous for communication of information
- But can rely on global time for coordination

Continuous-time model (for dynamical system)

- Synchronous, but now time evolves continuously
- Execution of system: solution to differential equations

Timed Model

The timed model allows us to express phenomena such as:

Task A is is executed every 5ms

□ The delay between the reception of an input value and the corresponding output response is between 2ms to 4ms

If an acknowledgment is not received within 5ms, the message is resent

Timed Model Example

Initial state: (mode = off, x = 0)Timed transition: $(off, 0) -0.5 \rightarrow (off, 0.5)$ Input transition: $(off, 0.5) - press? \rightarrow (dim, 0)$ Timed transition: $(dim, 0) -0.8 \rightarrow (dim, 0.8)$ Input transition: $(dim, 0.8) - press? \rightarrow (bright, 0.8)$ Timed transition: $(dim, 0.8) -1 \rightarrow (dim, 1.8)$ Input transition: $(dim, 1.8) - press? \rightarrow (off, 1.8)$

Timed Model Example

Clock variables

- Tests and updates in mode-switches like other variables
- New: During a timed transition of duration d, the value of clock variables increases by an amount equal to d

Timing constraints

Update x := 0 in off -> dim and guard $x \le 1$ in dim -> bright indicates that timing of these two transitions is ≤ 1 apart

Timed Buffer Example

Buffer with a bounded delay

Behavior:

Input received on channel in is transmitted on output channel out after a delay of d time units, with $LB \le d \le UB$ (i.e. the delay has known lower and upper bounds)

Modeling Timed Buffer

- Input channel: msg in
 Output channel: msg out
- Mode indicates whether the buffer is full or not
- State variable x remembers the last input value when buffer is full
- Clock variable y tracks the time elapsed since buffer filled up
- When buffer is full, input events are ignored
- Guard $y \ge 1$ ensures that at least 1 time unit elapses in mode Full

How to ensure that mode-switch from Full to Empty is executed before clock y exceeds the upper bound 2?

Clock Invariants

The constraint $y \le 2$ associated with mode Full is a *clock invariant*

- A timed transition of duration d is allowed only if the clock invariant is satisfied for the entire duration of the transition
 - (Full, x, 0.8) -0.7-> (Full, x, 1.5) allowed
 - (Full, x, 0.8) -1.4-> (Full, x, 2.2) disallowed

Clock invariants limit how long a process stays in a mode

Example with Two Clocks

 $y \ge 1 \rightarrow out2!$

- Input channel: event in
 Output channels: event out1, out2
- Two clock variables: x, y
- As time passes, both clocks increase (and at the same rate)

Sample timed transitions from state (mode, x, y) = (Wait2, 0.8, 0) :

(Wait2, 0.8, 0) -0.3-> (Wait2, 1.1, 0.3) -0.72-> (Wait2, 1.82, 1.02)

Two Clock Example

- Clock x tracks time elapsed since the last input event
- Clock y tracks time elapsed since the output event

What is the behavior of this model?

Suppose an input event occurs at time t,

- the process produces an output event on channel out1 at time t' ∈ [t, t+1]
- then on channel out2 at time $t'' \in [t'+1, t+2]$

Example Specification

Consider a timed process with

Input: event x Output: event y, event z

Desired behavior:

- For each input event, produce both output events
- Time delay between x? and y! is in interval [2, 4]
- Time delay between x? and z! is in interval [3, 5]
- Ignore later inputs received in these intervals

Definition of Timed Process

Definition: A *timed process* TP consists of

- 1. An asynchronous process P, where some of the state variables can be of type *clock* (non-negative reals)
- A *clock invariant* CI, a Boolean expression over P's state variables

Note: Inputs, outputs, states, initial states, internal actions, input actions, and output actions are exactly as in the asynchronous model

Definition of Timed Process

Notation: For a state s and time t, let s+t denote the state such that

- (s+t)(x) = s(x) + t for every clock variable x
- (s+t)(y) = s(y) for every non-clock variable y

Definition: Given a state s and a time d > 0, *timed action* $s -d \rightarrow s+d$ is a transition of duration d where state s+t satisfies invariant CI for all $t \in [0, d]$

Note: If CI is a convex constraint, it suffices that s and s+d satisfy CI

Definition of Parallel Composition

Let $TP_1 = (P_1, CI_1)$ and $TP_2 = (P_2, CI_2)$ be timed processes

The parallel composition $TP_1 | TP_2$ is defined iff $P_1 | P_2$ is defined (that is, iff the outputs of P_1 and P_2 are disjoint)

Composition: $TP_1 | TP_2 = (P_1 | P_2, CI_1 \land CI_2)$

- Asynchronous composition of P₁ and P₂ defines the internal, input and output actions of TP₁ | TP₂
- Conjunction of Cl₁ and Cl₂ defines the clock-invariant of TP₁ | TP₂

Consequence: The composite process allows a timed action of duration d exactly when both TP_1 and TP_2 can wait for time d

Composition of Processes

- How to construct timed process corresponding to the composition of the two processes?
- What are the possible behaviors of the composite process?

Composition of Timed Processes

The composite process has four modes:

(Empty, Empty), (Empty, Full), (Full, Empty), (Full, Full)

Composition of Timed Processes

 $CI = (mode = EF \Rightarrow y_2 \le UB_2) \land (mode = FF \Rightarrow y_1 \le UB_1 \land y_2 \le UB_2) \land (mode = FE \Rightarrow y_1 \le UB_1)$

Composition of Processes

□ If UB1 < LB2 then out1 is guaranteed to occur before out2

- Implicit coordination based on bounds on delays
- Is it possible to observe two out1 events without an intervening out2 event?
 - Depends on relative magnitudes of bounds (need timing analysis!)

Block Diagrams

Components can be timed processes now

Operations: instantiation (I/O variable renaming), parallel composition, and variable hiding

Composite system step:

- 1. an internal step of one of the components,
- 2. a communication (I/O) step involving relevant sender and receivers, or
- 3. a timed step involving all the components

Credits

Notes based on Chapter 7 of

Principles of Cyber-Physical Systems

by Rajeev Alur MIT Press, 2015