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Dynamical Systems
Part IV



Control Design Problem

Plant H
(continuous-time)

Uncontrolled inputs
Observable Outputs 

q Design a controller C so that the composed system C ||H is stable

q Reference inputs are high-level commands supplied by users (e.g. 
desired speed of the car, temperature in the room)

q Controller should satisfy additional safety/liveness requirements 
(e.g. car speed eventually comes close to desired cruising speed)

Controllable inputs 

Controller C
(continuous-time)Reference inputs 



Open Loop Controller

Uncontrolled inputs
Observable Outputs 

q Plant outputs not fed to the controller
§ Benefit: Sensors not needed (less expensive) 

q Controller simply maps reference inputs to controllable inputs 
§ Knowledge of plant dynamics hard-coded in this algorithm

q Human intervention typically necessary to maintain acceptable 
performance

Controllable inputs 

Reference inputs 

Plant H

Controller C



Feedback Controller

Uncontrolled inputs
Observable Outputs 

q Controller adjusts controllable inputs in response to outputs
§ Can respond better to variations in disturbances
§ Performance depends on how well outputs can be measured

q Two control design techniques:
1. Mathematical, based on theory of linear systems
2. PID controllers, widely used in practice

Controllable inputs 

Reference inputs Controller C

Plant H



Feedback Controller for Helicopter Model

Design controller so that composed system is stable

§ Error e = (r – s): difference in desired value r  and observed output s

§ Proportional controller: output T is proportional to error e

§ Proportional gain: Constant KP

Note: the direction of torque changes with sign of the error

ds = T / I
Spin s

Helicopter plant

T = KP (r – s)
Reference r

Controller

Torque T



Stabilizing Controller for Helicopter Model

q Dynamics of the composed system:  ds = KP (r – s) / I

q When is this system asymptotically stable? BIBO stable?

§ When the coefficient –KP / I is negative

Control design: choose a positive gain constant KP

§ Rate of convergence depends on magnitude of KP

ds = T / I
Torque T Spin s

Helicopter plant

T = KP (r – s)
Reference r

Controller



Feedback Controller for Linear Systems

q Assume controller observes complete state vector S

q Reference signal R has same dimension as state vector S

q State feedback controller: linear transformation

q Matrix F: gain matrix of dimensions m⨯n, with m = |I|, n = |S|

dS = A S + B I
Control I State S

Linear plant

I = F (R – S)
Reference R

Controller



Stabilization by Linear State Feedback

Composite system dynamics :   dS = (A – B F) S + B F R

Goal of control design: 
Define the gain matrix F so that the composed system is 
asymptotically, and so BIBO, stable

§ Given A and B, find F such that each eigenvalue of A – B F
has negative real part

Linear plant

I = F (R – S)

Controller

Control I State SReference R
dS = A S + B I



Design of Gain Matrix

System dynamics: dS = A S + B I with n state and m input vars

Design goal: given A and B, find F such that each eigenvalue 
of A – B F  has negative real part

q When is this possible ?

q Suppose we choose desired eigenvalues l1, …, ln and solve the  
equation

det(A – B F – lI)  =  (l – l1) (l – l2) … (l – ln)
where the m⨯n entries of matrix F are the unknowns

q When is this system guaranteed to be solvable?
q Does the existence of a solution depend on the choice of 

eigenvalues?



Controllability
Given an n⨯n matrix A and n⨯m matrix B, consider the 
controllability n⨯mn matrix

C[A,B]  =  ( B   AB   A2B   …   An-1B )

m columns of B followed by m columns of A B, then of A A B, …

Recall: the rank of a matrix is the maximum number of linearly 
independent columns/rows

Definition: The matrix pair (A, B) is controllable if C[A,B] has rank n

Theorem: The following are equivalent:
1. The matrix pair (A, B) is controllable
2. For any set 𝚲 = {l1, … , ln} of complex numbers such that a + bj

is in 𝚲 iff its conjugate a – bj is in 𝚲, there is a n⨯m gain matrix 
F such that the eigenvalues of A – B F are l1, … , ln



Example: Controllability test
Consider 2-dimensional system with one input u, with dynamics 
given by

d s1 =  4 s1 +  6 s2 + 2 u
d s2 =     s1 +  3 s2 +    u

§ What are the matrices A, B, C[A, B]?
§ What is the rank of C[A, B]?



Advantages of Controllability

Consider a linear system with dynamics: 
dS = A S + B I ; initial state s0

Suppose (A, B) is controllable

Then, for every system state s there is an input signal I and a time tg
such that  

S(tg) = s
where S is the unique response signal for I and s0



PID Controllers

q Strategy for designing controllers that is widely used in practice
q Error = Reference Inputs – Observable Outputs
q Controller’s output is sum of 3 terms:

1. Term proportional to error 
2. Integral term to handle cumulative error
3. Derivative term in response to error change rate

Uncontrolled inputs
Observable Outputs 

Controllable inputs 

Reference inputs 

Plant H

Controller C



DC Motor

Resistance R Inductance L

Current  ι+ 

-

Voltage Vs
Back EMF k n

Torque k ι

Displacement q

Damping 
resistance b nInertial 

resistance I dn/dt Laws of electrical circuits:
n = dq/dt 
Vs = L dι/dt + R ι + k n Laws of motion for the shaft:

I dn/dt + b n = k ι



Proportional Controller for DC Motor

q DC Motor modeled as a linear system with
§ 2 state variables, 
§ 1 input variable, and 
§ 1 output variable

q Feedback controller observes rotational velocity n, and adjusts 
voltage to make n equal to desired velocity r

q First attempt: proportional controller (P controller)

Vs = KP (r - n)
Reference velocity r

Controller

dn = (k ι - b n) / IVoltage Vs

Rotational
velocity n

DC Motor

dι = (Vs - k n - R ι) / L



Step Response of P Controller

q Step response: How will system 
output change if at time 0, with n = 0, 
we change reference input r to 1?

q Plotted using MATLAB (see notes for 
values of various parameters)

q Beyond stability and convergence, 
what are desired characteristics of the 
response?



Characteristics of the Step Response

1. Overshoot: Difference between 
maximum output value and 
reference value (12% in this plot)

2. Rise Time: Time at which the output 
value crosses reference value 
(0.15sec in this plot)

3. Settling Time: Time at which output 
value reaches steady-state value 
(0.8sec in this plot)

4. Steady State Error: Difference 
between steady-state output value 
and reference (10% in this plot)



Improving the Step Response

q Performance of the P-controller 
depends on the value of the 
proportional gain constant KP

q What happens if we increase it?

q Rise time decreases, but 
overshoot increases

q Steady-state error remains!

q Solution: Use integral and 
derivative gains



Generic PID Controller

Reference r

uP = KP e

Proportional

Output y
Plant

uI = KI xI

Integral
dxI = e

uD = KD de

Derivative

Error e
S

S
Control u

uP

uI

uD

–

e = r – y



If e(t) is the error signal, then the output u(t) of the PID controller is 
sum of 3 terms:

§ Proportional term: KP e(t),  where KP is the proportional gain
(response to current error)

§ Integral term: KI ∫0
t e(t) dt,  where KI is the integral gain

(response to error accumulated so far)

§ Derivative term: KD (d/dt)e(t), where KD is the derivative gain
(response to current rate of change of error)

Controller special cases: P, PD, PI

PID Controller



PI and PD Controllers for DC Motor

q PI Controller: adding integral 
term to proportional controller 
gets rid of steady state error
§ Overshoot, rise time, 

setting time increase 
(why?)

q PD controller: adding derivative 
term to proportional controller 
gets rid of overshoot
§ Steady state error remains



PID Controller for DC Motor

Excellent performance on all metrics: KP = 100, KD = 10, KI = 200
Small rise time, settling time, negligible steady state error, no overshoot



Designing PID Controllers

q What are the effects of changing the gain constants KP, KD, KI ?

q Broad co-relationships well understood

q Control toolboxes allow automatic tuning of parameters

q PID controllers seem to work well even when the actual system 
differs significantly from the plant model
§ Computation of control output depends only on the measured 

error, and not on the model! 



PI Cruise Controller

q Desired change in velocity: 10 m/s

q PI controller: KP = 600, KI = 40

q Settling time: 7s, with negligible 
overshoot and steady-state error

q Works in a real car!
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