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Dynamical Systems
Part III



Control Design Problem

Plant model as 
Continuous-time 
Component H

Uncontrolled Inputs Observable Outputs 

q We want to design a controller C so that C ||H is stable
q Is there a mathematical way to check when a system is stable?
q Is there in fact a systematic way to design C so that C ||H is stable?
q Yes, if the plant model is linear

Controller C

Controllable Inputs



Linear Component
A linear expression over real variables x1, x2, …, xn has the form 

a1 x1 + a2 x2 + … + an xn

where a1, a2, … are rational constants

A continuous-time component H with state variables S, input 
variables I, and output variables O is linear if

1. for every state variable s, the dynamics is given by 
ds = fs(S, I), where fs is a linear expression

2. every output variable o is defined by o = ho(S, I), 
where ho is a linear expression

Examples
§ linear: heatflow, car, helicopter
§ nonlinear: pendulum



Continuous-time Component Car2

v

F

dx = v
dv = (F – k v – m g sin(q)) / m

real xL ≤ x ≤ xU
vL ≤ v ≤ vU

Problem: right-hand side of dv equation is not linear

Easy fix: replace disturbance q by another variable iq = sin q

real [–p/6, p/6]  q



Continuous-time Component Car2

v

F

dx = v
dv = (F – k v – m g iq) / m

real xL ≤ x ≤ xU
vL ≤ v ≤ vU

real [sin(–p/6), sin(p/6)] iq

Rewriting to normal form:
dx  =  0x +           1v +         0F +      0iq
dv =  0x + (–k/m)v + (1/m)F + (–g)iq
dv  =  0x +           1v +         0F +     0iq

Matrix-based representation:
S = (x  v)T I = (F  iq)T O = (v)

dS = A S + B I
dO = C S + D I

A = 0     1         B = 0        0
0  -k/m               1/m  -g

C  =  (0  1) D = (0  0)



(A,B,C,D) Representation of Linear Components

Suppose a linear continuous-time component has 
§ n state variables S = {x1, x2, …, xn } 
§ m input variables I = {u1, u2, …, um}
§ k output variables O = {y1, y2, …, yk } 

Then the dynamics is given by 
dS = A S + B I    and    O = C S + D I

where
A is an n ´ n matrix C is a k ´ n matrix

B is an n ´ m matrix D is a k ´ m matrix 

The rate of change of i-th state variable and the value of j-th
output are

dxi =  Ai,1 x1 + Ai,2 x2 + … + Ai,n xn + Bi,1 u1 + Bi,2 u2 + … + Bi,m um

dyj =  Cj,1 x1 + Cj,2 x2 + … + Cj,n xn + Dj,1 u1 + Dj,2 u2 + … + Dj,m um



Input-Output Linearity

Continuous-time 
Component H

Inputs I Outputs O

With a fixed initial state, a continuous-time component H maps 
input signals I(t) to output signals O(t)

Theorem: If H is linear, then both of the following hold.
1. Scaling: If the output response of H to the input signal I(t) is 

O(t), then for every constant a, the output response of H to the 
input signal aI(t) is aO(t)

2. Additivity: If the output responses of H to the input signals I1(t)
and I2(t) are O1(t) and O2(t), then the output response of H to 
the input signal (I1 + I2)(t) is (O1 + O2)(t)



Response of Linear Systems

Consider a one-dimensional linear system with no inputs:
dx = ax  ; initial state x0

Its execution is given by the signal 
x(t) = x0 eat

§ Recall that ea = 1 + ån>0 an/n!
§ Verify that solution x(t) satisfies the differential equation
§ See textbook on how solution is found



Response of Linear Systems

General Case with no inputs

q State set S

q Dynamics is given by
dS = A S
initial state s0

q Execution is described by the signal 
S(t) = eAt s0

§ At  = scalar product of A and t
§ eM =  I + M + M2/2 + M3/3! + M4/4! + …  =  I + ån>0 Mn/n! 
§ I = identity matrix  (Ii,j =  if (i = j) then 1 else 0)



General Case with inputs input signal I(t)

q State set S, input set I

q Dynamics is given by
dS = A S + B I
initial state s0

q Execution is described by the signal 

S(t) = eAt s0 + ò0t (eA(t – t) B I(t) dt)

Response of Linear Systems



Matrix Exponential

q Matrix exponential eA = I + A + A2/2 + A3/3! + A4/4! + … 

q Each term in the sum is an n ´ n matrix

q How do we compute eA?

§ If Ak = 0 for some k, the sum is finite and can be computed directly

§ If A is a diagonal matrix D(a1, a2, …, an) (Aij = if (i = j) then ai else 0), then eA = 
D(ea1, ea2 , …, ean )

§ In general, the sum of the first k terms will give an approximation (whose 
quality is proportional to k)

§ Otherwise, we can use analytical methods based on eigenvalues and 
similarity transformations



Eigenvalues and Eigenvectors

Let A be an n ´ n matrix, l a scalar value and x an n-dimensional 
non-zero vector.
If A x = l x, then x is an eigenvector of A, and

l is the corresponding eigenvalue

q How to compute eigenvalues and eigenvectors?

q We solve the characteristic equation of A:
det(A – lI ) = 0

Recall: the determinant det(M) of a 2 ´ 2 matrix M is                
M1,1M2,2 – M1,2M2,1



The eigenvalues of an n ´ n matrix A are the roots of the 
characteristic polynomial p = det(A – l I)

Note:

§ The multiplicity of an eigenvalue (as a root of p) can be > 1
§ An eigenvalue can be a complex number
§ If A is a diagonal matrix then its eigenvalues are exactly its  

diagonal elements
§ For a given eigenvalue l, we can compute the corresponding 

eigenvector(s) by solving the linear system A x = l x, with vector 
x of unknowns

§ If all eigenvalues of are A distinct, then the set of corresponding 
eigenvectors is linearly independent

Eigenvalues and Eigenvectors



Similarity Transformation

Where P is an invertible n ´ n matrix of reals, consider the systems

1. H w/o inputs and with dynamics dS = A S ; s0 (initial state)

2. H’ w/o inputs and with dynamics dS’ = J S’ ; s’0

where    S’ = P-1 S,      J = P-1 A P,      s’0 = P-1 s0

Then,                   S’(t) = eJt s’0 and S(t) = P eJt P-1 s0

Note:
§ H’ is called the transformed system (since S’ = P-1 S)

§ Matrix J = P-1 A P is said to be similar to A
§ dS’ =  d(P-1 S)  =  P-1 dS =  P-1 A S =  P-1 A P P-1 S =  P-1 A P S’ =  J S’
§ When is this useful? When can choose P so that J is diagonal



Similarity Transformation using Eigenvectors

Consider system H with dynamics given by: 
dS = A S ; initial state s0

1. Calculate eigenvalues l1, …, ln and suppose they are all distinct

2. Calculate corresponding eigenvectors x1, …, xn (which must be 
linearly independent, vertical vectors of size n)

3. Consider the n ´ n matrix P = (x1   x2 …  xn)

4. Find its inverse P-1 (which must exist in this case)

Claim: The matrix J = P-1 A P is the diagonal matrix D(l1, …, ln)

Then, execution of H is given by:
S(t) = P D(e l1 t, …, eln t ) P-1 s0



Example: Response of Linear Systems
Consider 2-dimensional system with dynamics given by

ds1 =  4 s1 + 6 s2 initial state (s1, s2) = (1, 1)T

ds2 =     s1 + 3 s2

1. Compute eigenvalues l1 and l2 of A = ((4  1)T (6  3)T)
§ l1 = 6  and  l2 = 1

2. Compute eigenvectors x1 and x2 

§ x1 = (3  1)T and x2 = (2  -1)T

3. Choose the similarity transformation matrix P = (x1 x2) = ((3  1)T (2  -1)T) 
4. Compute the inverse P-1 of P

§ P-1   =  ((-1  -1)T (-2  3)T) / (-3-2)  =  ((1/5  1/5)T (2/5  -3/5)T) 

5. Verify that J = P-1 A P  is diagonal matrix D(l1, l2) = ((6  0)T (0  1)T)
§ J  =  P-1 A P  =  ((6/5  1/5)T (12/5  -3/5)T) ((3  1)T (2  -1)T)  =  ((6  0)T (0  1)T)

6. Desired solution is S(t) = P D(el1 t, el2 t ) P-1 (1, 1)T

§ S(t)  =  ((3  1)T (2  -1)T) ((e6t 0)T (0  et)T) ((1/5  1/5)T (2/5  -3/5)T) (1, 1)T = …



Back to Equilibria and Stability

Consider a closed linear system H with dynamics given by:
dS = A S

Recall: a state s is an equilibrium state of H if A s = 0
How to compute equilibria: solve system of linear equations

Prop. 1: State 0 is an equilibrium
Prop. 2: If A is invertible, then 0 is the sole equilibrium

If state s is a non-zero equilibrium of H, consider the transformed 
system H’ with state S’ = S – s

The equilibria 0 of H’ and s of H have the same properties



Back to Equilibria and Stability

Henceforth, we will focus on closed linear systems H and their 
equilibrium state 0

Definition:
1. H is stable if state 0 is stable
2. H is asymptotically stable if state 0 is asymptotically stable



Stability: One-Dimensional System
Consider a one-dimensional linear system H with dynamics given 
by:   dx = a x  ; s0

Recall: H is asymptotically stable  iff 0 is asymptotically stable  iff
1. (Stable) For every e > 0, there is a d > 0 such that for all initial 

states s with || s||< d and for all times t, || eat s||< e
2. (Asymptotically) There is a d > 0 such that for all initial states s

with || s||< d, || eat s|| goes to 0 as t goes to ¥

A. Case a < 0:  eat s converges exponentially to 0 as t goes to ¥, 
regardless of s. Asymptotically stable

B. Case a = 0: dynamics is dx = 0. The state stays equal to initial 
state s0. Stable but not asymptotically stable (unless s0 = 0)

C. Case a > 0: eat s grows exponentially as t increases, and thus, 
state diverges away from 0. Unstable!



Stability: Diagonal State Dynamics
Consider n-dimensional linear system H with dynamics given 
by: dS = A S; s with A = D(a1, …, an)

Each dimension evolves independently: the i-th component of 
S(t) is eai t si

A. All coefficients ai < 0: State converges to the equilibrium 0
regardless of s. Asymptotically stable

B. All coefficients ai ≤ 0: Stable but not asymptotically stable if 
some coefficient aj = 0 (j-th state component stays unchanged)

C. Some coefficient ai > 0: Some state component grows 
unboundedly away from equilibrium 0. Unstable!



Similarity Transformations and Stability
Consider system H with dynamics given by: dS = A S ; s0

Let P be an invertible n ´ n matrix, and J = P-1 A P
Consider system H’ with state S’ = P-1 S (and note that S = P S’)

Response signal of transformed system H’: S’(t) = eJt P-1 s0

Response signal of original          system H: S(t) = P eJt P-1 s0

Note: Response S’(t) is a linear transformation of S(t) and vice 
versa. Hence:

§ If S(t) is bounded iff S’(t) is bounded
§ If S(t) converges to 0 iff S’(t) converges to 0 

Prop. 1: H is stable iff H’ is stable
Prop. 2: H is asymptotically stable iff H’ is asymptotically stable



Eigenvalues and Stability
Consider system H with dynamics given by: dS = A S
Suppose all eigenvalues l1, …, ln of A are real and distinct
§ Then the set of eigenvectors, x1, …, xn is guaranteed to be linearly 

independent
§ Choose n ´ n matrix P = (x1   x2 …  xn) for similarity transformation
§ The matrix J = P-1 A P is the diagonal matrix D(l1,…, ln)

§ If all eigenvalues are negative, then the transformed system H’ is 
asymptotically stable, and so is H

§ If all eigenvalues are non-positive, then H’ is stable, and so is H

Theorem: A system H with dynamics dS = A S is asymptotically stable 
iff each eigenvalue of A has a negative real part



Continuous-time Component Car

vF dx = v

dv = (F – k v) / m

§ Let S = (x  v)T

§ The matrix A is  ( (0  0)T (1  -k/m)T )
§ Eigenvalues: 0 and -k/m
§ Stable but not asymptotically stable
§ If we consider only the dimension v, then asymptotically stable

Exercise: Set F(t) = 0 for all t, and analyze what happens if we 
perturb the system from the equilibrium (0  0)T



Lyapunov Stability vs BIBO Stability

Consider linear component H with dynamics given by
dS = A S + B I       O = C S + D I

BIBO stability: Starting from initial state 0, if the input is a 
bounded signal, output must be a bounded signal

Theorem: For linear components, asymptotic stability implies BIBO 
stability

Proof of the theorem relies of analysis of dynamical systems using 
transfer functions

Note: Asymptotic stability depends only on the properties of 
matrix A



Credits

Notes based on Chapter 6 of

Principles of Cyber-Physical Systems
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MIT Press, 2015


