CS:4980
 Foundations of Embedded Systems

Dynamical Systems

Part I

Copyright 2014-20, Rajeev Alur and Cesare Tinelli.
Created by Cesare Tinelli at the University of Iowa from notes originally developed by Rajeev Alur at the University of Pennsy/vania. These notes are copyrighted materials and may not be used in other course settings outside of the University of lowa in their current form or modified form without the express written permission of one of the copyright holders. During this course, students are prohibited from selling notes to or being paid for taking notes by any person or commercial firm without the express written permission of one of the copyright holders.

Dynamical Systems

\square Controller interacting with the physical world via sensors and actuators

- Thermostat controlling temperature
- Cruise controller regulating speed of a car
\square System variables: (measures of) physical quantities evolving continuously over time
- Temperature, pressure, velocity ...
\square Continuous-time models using differential equations

Model-Based Design

Block Diagrams

- Widely used in industrial design
- Tools: Simulink, Modelica, RationalRose...

Key question: what is the execution semantics?

- Similar to synchronous model but continuous-time instead of discrete-time

Traditional Feedback Control Loop

Example: Heat Flow

Input variables: $h_{\text {in }}$ and $h_{\text {out }}$ of type real
Output variable: $h_{\text {net }}$ of type real
State variables: none

- Signal: assignment of values to variables as function of time t
- At each time t, value of output signal $h_{\text {net }}(t)$ equals $h_{\text {in }}(t)-h_{\text {out }}(t)$
- Output as a function of inputs/state, specified using algebraic equations (as opposed to assignments)

Car Model

\longrightarrow Velocity v

$\longleftarrow \quad$ Friction k v

- v, x, F and v are all functions of time $t ; k$ is a friction constant
- Newton's law of motion gives:

$$
\mathbf{F}-\mathrm{k} \mathbf{v}=m d^{2} \mathbf{x} / \mathrm{dt}
$$

Notation

First derivative of function $f(t)$ with respect to t :

- $\mathrm{df}(\mathrm{t}) / \mathrm{dt}$ (full notation)
- $\mathrm{df} / \mathrm{dt}$ (with the understanding that f is a function of t)
- df (dimension t is implicit)
- f' (same as df)
- \dot{f}
(same as df)

Second derivative of function $f(t)$ with respect to t :

- $\mathrm{d}^{2} \mathrm{f}(\mathrm{t}) / \mathrm{dt}^{2} \quad$ (full notation)
- $d^{2} f / d t^{2}$ (with the understanding that f is a function of t)
- $d^{2} f \quad$ (dimension t is implicit)
- f" (same as d²f)
- $\ddot{f} \quad$ (same as $d^{2} f$)

Continuous-time Component Car

\square The value of output variables is defined in terms of input and state variables
\square For each state variable s, its rate of change $\mathrm{ds} / \mathrm{dt}$ is defined in terms of input and state variables

Executions of Car

Input signal: function F : real $_{>=0} \rightarrow$ real that gives value of force over time

- should be continuous or piecewise-continuous

Given an initial state ($\mathrm{x}_{0}, \mathrm{v}_{0}$) and input signal F , the execution of the system is defined by state-signals (ie, functions)

$$
\mathbf{x} \text { : real }\left.\right|_{>=0} \rightarrow \text { real and } \quad \text { v: real } l_{>=0} \rightarrow \text { real }
$$

that satisfy the initial-value problem:

1. $\mathrm{x}(0)=\mathrm{x}_{0}$
2. $v(0)=v_{0}$
3. $\quad d x(t) / d t=v(t)$
4. $d v(t) / d t=d^{2} \mathbf{x}(\mathrm{t}) / \mathrm{dt}^{2}=(F(\mathrm{t})-\mathrm{k} \mathbf{v}(\mathrm{t})) / \mathrm{m}$

Executions of Car: Example 1

Suppose force $F(t)$ is always 0 , and initial position is 0 .
We need to solve:

- $x(0)=0$
- $v(0)=v_{0}$
- $\mathrm{dx} / \mathrm{dt}=\mathrm{v}$
- $\mathrm{dv} / \mathrm{dt}=-\mathrm{k} v / \mathrm{m}$

Solution:

- Velocity decreases exponentially fast, converging to 0

$$
v(t)=v_{0} e^{-k t / m}
$$

- Position converges exponentially fast to $m v_{0} / k$

$$
\mathbf{x}(\mathrm{t})=\left(\mathrm{m} v_{0} / k\right)\left(1-e^{-k t / m}\right)
$$

Executions of Car: Example 2

Suppose initial position is 0 , initial velocity is 0 , and force is constant F_{0}. Then, to get executions, we need to solve:

- $\mathbf{x}(0)=0$
- $\mathbf{v}(0)=0$
- $d x / d t=v$
- $\mathrm{dv} / \mathrm{dt}=\left(\mathrm{F}_{0}-\mathrm{k} v\right) / \mathrm{m}_{\mathrm{c}}$

Compute the solution using MATLAB

- Mass $m_{c}=1000 \mathrm{~kg}$
- Coefficient of friction $\mathrm{k}=50$
- Force $F_{0}=500$ Newton
- Velocity converges to $10 \mathrm{~m} / \mathrm{s}$

Traditional Feedback Control Loop

Continuous-Time Component Definition

- Set I of real-valued input variables; type is either real or interval of real, real[L, U]
- Set O of real-valued output variables
- Set S of real-valued state variables
- Initialization Init specifying set [Init] of initial states
- For each output var y, a real-valued expression hy over IUS
- For each state variable x, a real-valued expression f_{x} over I U S

Execution

Given an input signal \|(t) : real $l_{>=0} \rightarrow$ real ${ }^{|l|}$, an execution consists of a differentiable state signal $\mathrm{S}(\mathrm{t})$ and output signal $\mathrm{O}(\mathrm{t})$ such that

1. $\mathrm{S}(0)$ is in [Init]
2. For each output var y and time $t, y(t)=h_{y}(I(t), S(t))$
3. For each state var $x, d x(t) / d t=f_{x}(I(t), S(t))$

Continuous-time Component Car

\square The value of output variables is defined in terms of input and state variables
\square For each state variable s, its rate of change ds is defined in terms of input and state variables

Existence and Uniqueness

\square Given an input signal $\|(t)$, when are we guaranteed that the system has at least/exactly one execution?
\square The input signal should be continuous (or at least piecewise continuous), but answer also depends on right-hand-sides of equations defining state and output dynamics

Related to classical theory of Ordinary Differential Equations (ODEs)
\square Consider the initial value problem

$$
\mathrm{dx} / \mathrm{dt}=\mathrm{F}(\mathrm{x}) ; \quad \mathrm{x}(0)=\mathrm{x}_{0}, \quad \mathrm{x}(\mathrm{t}) \text { is } \mathrm{n} \text {-dimensional vector }
$$

\square When do we have a unique differentiable function as a solution for x ?

Solution Existence

Initial value problem:

$$
\mathrm{dx} / \mathrm{dt}=\mathrm{F}(\mathrm{x}) ; \mathrm{x}(0)=\mathrm{x}_{0}, \mathrm{x}(\mathrm{t}) \text { is } \mathrm{n} \text {-dimensional vector }
$$

The problem has a solution $x(t)$ if function F is continuous
\square Example when solution does not exist:

$$
d x / d t=i f(x=0) \text { then } 1 \text { else } 0
$$

\square It is natural to require all right-hand-side expressions h_{y} and f_{x} in definition of a continuous-time component to be continuous

- Discontinuous case -> Hybrid Systems (Chap. 9)

Continuous Function

Definition of continuity relies on a given notion of distance ||_|| between points (e.g., Euclidean distance)

A function $f:$ real $^{m} \rightarrow$ real ${ }^{n}$ is (uniformly) continuous if for all $\varepsilon>0$, there is a $\delta>0$ such that

$$
\text { for all } u, v \in \text { Real }{ }^{m} \text {, }
$$

$$
\text { if }\|u-v\|<\delta \text { then }\|f(u)-f(v)\|<\varepsilon
$$

Solution Uniqueness

Initial value problem:

$$
\mathrm{dx} / \mathrm{dt}=\mathrm{G}(\mathrm{x}) ; \quad \mathrm{x}(0)=\mathrm{x}_{0}, \quad \mathrm{x}(\mathrm{t}) \text { is } \mathrm{n} \text {-dimensional vector }
$$

Theorem: There exists a unique solution $x(t)$ if the function G is Lipschitz-continuous

Examples:

- A linear function such as $(F-k v) / m$ is Lip-continuous
- Quadratic function x^{2} is Lip-continuous if domain of x is bounded

Counterexamples:

- $x^{1 / 3}$ is not Lip-continuous: $\mathrm{dx} / \mathrm{dt}=\mathrm{x}^{1 / 3} ; \mathrm{x}(0)=0$ has multiple solutions:

1. $x(t)=0$
2. $x(t)=(2 t / 3)^{3 / 2}$

Lipschitz-Continuous Function

Informally, Lipschitz-continuous means that there is a constant upper bound on how much a function's output changes

A function f : real ${ }^{\mathrm{m}} \rightarrow$ real ${ }^{\mathrm{n}}$ is Lipschitz-continuous if there exists a constant c such that for all u, v in real ${ }^{m}$,

$$
\|f(u)-f(v)\| \leq c\|u-v\|
$$

Lipschitz-Continuous Component

Definition: A continuous-time component has Lipschitz-continuous dynamics if

- each expression h_{y} corresponding to output variable y is a Lipschitz-continuous function of I U S
- each expression f_{x} corresponding to state variable x is a Lipschitz-continuous function over I U S

Theorem: Given a continuous input signal I(t), a component with Lipschitz-continuous dynamics has unique and continuous response signals $\mathrm{S}(\mathrm{t})$ and $\mathrm{O}(\mathrm{t})$

Note: Continuity of output signals means they can be fed to other components in a block diagram

Henceforth, we will consider only Lipschitz-continuous components

Car on a non-level road

Newton's law of motion gives

$$
F-k v-m g \sin (\theta)=m d^{2} x / d t
$$

Continuous-time Component Car 2

The road's slope, denoted by θ, models disturbance, or an uncontrolled input

Design problem: Find a controller with v as input and F as output such that the composed system works correctly for all continuous input signals $q(t)$ for θ, with $q(t)$ always in $[-\pi / 6, \pi / 6)$

Simple Pendulum

External torque applied by the motor at the pivot: u
Dynamics captured by second-order non-linear differential equation:

$$
\mathrm{ml}^{2}\left(\mathrm{~d}^{2} \varphi / \mathrm{dt}^{2}\right)=\mathrm{u}-\mathrm{mg} \mathrm{I} \sin (\varphi)
$$

Pendulum Model

Angular Displacement

\square External torque $=0$; Initial displacement $=\pi / 4$

- Oscillatory motion plotted by MATLAB

What are the equilibria of this pendulum ?

Credits

Notes based on Chapter 6 of
Principles of Cyber-Physical Systems
by Rajeev Alur
MIT Press, 2015

