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Foundations of Embedded Systems

Liveness Requirements
Part II



LTL Recap
Syntax: Formulas built from

§ Base formulas: Boolean-valued expressions over typed variables
§ Logical connectives: ∧ , ∨ , ⇒ , ¬ , …
§ Temporal Operators: Always, Eventually, Next, Until

Semantics: defined by rules for the satisfaction relation
§ Formulas are evaluated w.r.t. a trace r (infinite sequence of 

valuations)
§ A system satisfies spec j iff every infinite execution satisfies j

Derived operators: Repeatedly (Always Eventually)
Persistently (Eventually Always)

Sample requirement: Every request is eventually granted
Always [ req = 1 ⇒ Eventually (grant = 1) ]



Temporal Implications and Equivalences

Understanding subtle differences among different variants of LTL formulas 
can be tricky

Definition: Let j, y be LTL formulas
1. j is stronger than y if every trace that satisfies j satisfies y too

§ i.e., every trace satisfies the implication j ⇒ y

2. j is equivalent to y if j and y are satisfied by exactly the same traces
§ i.e., each formula is stronger than the other
§ i.e., every trace satisfies the double implication j ⇔ y
§ i.e., the two formulas express exactly the same requirement

Knowing some standard equivalences is useful for simplifying formulas



Temporal Implications and Equivalences

§ Always j is stronger than j
§ Repeatedly j is equivalent to ¬Persistently ¬j
§ Persistently j is stronger than Repeatedly j
§ Always j is equivalent to j ∧ Next Always j
§ Always j is equivalent to ¬Eventually ¬j

Exercise: What is the mutual relationship between these formulas?
§ Always Eventually j
§ Next Always Eventually j
§ Eventually Always Eventually j



Logical Connectives and Temporal Operators
Are these two formulas equivalent?

Eventually (j ∨ y)   and  Eventually j ∨ Eventually y
Yes, they are.
Proof:
⇒) Suppose a trace r satisfies Eventually (j ∨ y) 

§ There is a position j such that (r, j) ⊨ j ∨ y
§ Either (r, j) ⊨ j or (r, j) ⊨ y
§ Suppose (r, j) ⊨ j (the other case is similar)
§ Then r satisfies Eventually j
§ Hence it also satisfies Eventually j ∨ Eventually y

⇐) Suppose a trace r satisfies Eventually j ∨ Eventually y
§ Suppose r satisfies Eventually j (the other case is similar)
§ There is a position j such that (r, j) ⊨ j
§ Then, (r, j) ⊨ j ∨ y
§ It follows that r satisfies Eventually (j ∨ y) 



Logical Connectives and Temporal Operators
Are these two formulas equivalent?

Eventually (j ∧ y)   and  Eventually j ∧ Eventually y
The first is stronger than the second but not vice versa
Proof:
⇒) Suppose a trace r satisfies Eventually (j ∧ y) 

§ There exists a position j such that (r, j) ⊨ j ∧ y
§ It follows that both (r, j) ⊨ j and (r, j) ⊨ y
§ Since (r, j) ⊨ j then r satisfies Eventually j
§ Similarly, it also satisfies Eventually y
§ It follows that r satisfies Eventually j ∧ Eventually y

⇐) To disprove this, consider trace 0,1,0,1,0,1,… over a Boolean variable x
§ Trace satisfies Eventually (x = 0) ∧ Eventually (x = 1)
§ But does not satisfy Eventually (x = 0 ∧ x = 1)



Logical Connectives and Temporal Operators

Distributivity rules for logical connectives and temporal operators

Exercise: Are these equivalent?
§ Always (j ∧ y)  and Always j ∧ Always y
§ Always (j ∨ y)  and Always j ∨ Always y  
§ Repeatedly (j ∧ y)  and Repeatedly j ∧ Repeatedly y
§ Repeatedly (j ∨ y)  and Repeatedly j ∨ Repeatedly y



Back to Fairness

Weak fairness: An infinite execution is fair to a task A if, repeatedly, 
either A is executed or is disabled

If task is enabled, then it is eventually executed or disabled

Strong fairness: An infinite execution is fair to a task A, if task A is 
either executed repeatedly or disabled continuously from a certain 
step onwards

If task is repeatedly enabled, then it is repeatedly executed



Back to Fairness

What fairness assumptions are needed so that P satisfies the spec
§ Eventually (x ≥ 10) : weak fairness for A
§ Eventually (y = 1) : strong fairness for B

nat x := 0;  bool y := 0

A:  x := x + 1

B:  even(x) –> y := 1 - y

Process P



Back to Fairness

q Fairness can be encoded directly in LTL!

q Instead of checking if the system satisfies an LTL formula j, check 
if it satisfies the formula 

FairnessAssumption ⇒ j

q FairnessAssumption is an LTL formula encoding what it means for 
an execution to be weakly/strongly fair with respect to a task

nat x := 0;  bool y := 0

A:  x := x + 1

B:  even(x) –> y := 1 - y

Process P



Encoding Weak Fairness in LTL 

q We add a variable called executed whose values are task names
q Whenever a task executes, executed is assigned the name of the task

Weak fairness for a task T: An infinite execution is weakly fair to task T if it 
satisfies the formula

WF(T):  Persistently (T is enabled) ⇒ Repeatedly (T is executed)

Examples:
WF(A):  Repeatedly (executed = A)
WF(B):  Persistently (even(x)) ⇒ Repeatedly (executed = B)

nat x := 0;  bool y := 0;

A:  x := x + 1;

B:  even(x) –> y := 1 - y;

Process P

{A,B} executed

executed := A

executed := B



Checking Requirements under Weak Fairness 

Does P satisfy 
1. Eventually (x ≥ 10) ?
2. WF(A) ⇒ Eventually (x ≥ 10) ?
3. WF(B) ⇒ Eventually (y = 1) ?
4. (WF(A) ∧ WF(B)) ⇒ Eventually (y = 1) ?

What have we achieved? 
§ Checking if an LTL spec is satisfied under fairness assumptions is 

reduced to checking a modified LTL spec
§ Then the verifier does not have to handle fairness explicitly

nat x := 0;  bool y := 0;

A:  x := x + 1;

B:  even(x) –> y := 1 - y;

Process P

{A,B} executed

executed := A

executed := B



Encoding Strong Fairness

Strong fairness for a task T: An infinite execution is strongly fair to task T if 
it satisfies the formula

SF(T): Repeatedly (T is enabled) ⇒ Repeatedly (T is executed)

Example:
SF(B): Repeatedly (even(x)) ⇒ Repeatedly(executed = B)

Note: if a spec is satisfied assuming weak fairness, it also satisfied 
assuming strong fairness

nat x := 0;  bool y := 0;

A:  x := x + 1;

B:  even(x) –> y := 1 - y;

Process P

{A,B} executed

executed := A

executed := B



Encoding Strong Fairness

Strong fairness for a task T: An infinite execution is strongly fair to task T if 
it satisfies the formula

SF(T): Repeatedly (T is enabled) ⇒ Repeatedly (T is executed)

Example:
SF(B): Repeatedly (even(x)) ⇒ Repeatedly(executed = B)

Exercise: Which of the following specs are satisfied by P?
1. SF(B) ⇒ Eventually (y = 1)
2. SF(B) ⇒ Repeatedly (y = 1)
3. SF(B) ⇒ Persistently (y = 1)

nat x := 0;  bool y := 0;

A:  x := x + 1;

B:  even(x) –> y := 1 - y;

Process P

{A,B} executed

executed := A

executed := B



Model Checking

System Model

LTL Requirement

yes

no/bug
Model Checker

q Performed using enumerative or symbolic search through the state-
space of the program

q Success story for transitioning academic research to industrial 
practice

q 2007 Turing Award to Ed Clarke, Alan Emerson, and Joseph Sifakis
q Used to debug multi-core protocols, pipelined processors, device 

driver code, distributed algorithms in Intel, Microsoft, IBM …



Büchi Automata

A safety monitor M classifies finite executions into good and bad

Verification of safety requirements for a component C reduces to 
analyzing reachable states of the composition of C and M

An error execution is an execution that leads the monitor into an error 
state

How can a monitor (aka, an automaton) classify infinite executions into 
good and bad?



Büchi Automata

q Theoretical model of Büchi automata proposed by Richard Büchi
(1960)

q Model checking application (1990s) using Büchi automata:
§ Automatically translate LTL formula j to a Büchi monitor M
§ Consider the composition of system C and monitor M
§ Reachable cycles in this composite correspond to counter-

examples; if no such cycle is found, system satisfies spec
§ Implemented in many model checkers (notably, SPIN)



Büchi Automaton: Example 1

a

¬e

e 

§ Inputs: Boolean variable e
§ Of two states a and b, a is initial and b is accepting
§ Given a trace r over e (i.e. infinite sequence of 0/1 values to e), 

there is a corresponding execution of M
§ The trace r is accepted if accepting state appears repeatedly
§ Language of M =  { traces in which e is satisfied repeatedly }
§ M accepts r iff r ⊨ Repeatedly e

¬e 

e

b

M



Büchi Automaton: Example 2

a

§ Automaton is nondeterministic
§ On a given input trace, many possible executions
§ An execution is accepting if it visits accepting state repeatedly
§ M accepts an input trace if there exists some accepting execution on 

that input
§ M accepts r iff r ⊨ Persistently e

e

b

M



Büchi Automaton: Example 3

§ Design a Büchi automaton M such that  
M accepts r iff r ⊨ Always (e ⇒ Eventually f)

§ Inputs: Boolean values for e and f
§ In an accepting execution, every e must be followed by f

b

¬e ∨ f

e ∧ ¬f 

f 
a

¬f 



Büchi Automaton: Example 4

a
e

cb
f 

Which traces does this accept? Express it in LTL

M accepts r iff r ⊨ Repeatedly e ∧ Repeatedly f 



Büchi Automaton M Definition

§ Set of Boolean V of input variables
§ Finite set Q of states
§ Set Init of initial states
§ Set F of accepting states
§ Set of edges/transitions of the form q –G–>  q’

where G is a Boolean-valued condition over V
§ Given an input trace r = v1, v2, v3, … over V, an accepting execution of 

M over r is an infinite sequence of states  q0, q1, q2, … where
§ q0 is initial
§ For each i, there is an edge qi –G–> qi+1 such that input vi 

satisfies G
§ There are infinitely many positions i such that state qi is in F

§ M accepts input trace r if there is an accepting execution of M over r



Büchi Automata: More Examples

e 

Eventually e

¬e 

a b



Büchi Automata Examples

a
e

cb
f

Eventually [e ∧ Next Eventually f] 

Eventually e ∨ Eventually f 

a
e

c

f

b



Nondeterministic Büchi Automaton

e

Persistently e

Can we construct an equivalent deterministic Büchi automaton? 

No! Non-determinism is sometimes necessary! 



System S

Safety Monitors

Monitor M

Is there an execution of S that makes M
enters an error state?

M is designed so that such an execution 
indicates a bug! 

Verification reduces to reachability

Check if an error state is reachable in 
composition of S and M



Büchi Monitors

Is there an infinite execution of S which is 
accepted by M? (i.e., an execution in which 
some error state of M appears repeatedly?)

M is designed so that such an execution 
indicates a bug! 

Verification reduces to search for cycles

Check if there is a reachable cycle containing 
an error state in the composition of S and M

Büchi Monitor M

System S



RailRoadController

Example Büchi Monitor

Correctness requirement: 
Always [ (West train is waiting) ⇒

Eventually (West signal is green) ]

Büchi Monitor M

signalWmodeW

Requirement violation:
Infinite execution where, at some step, west 
train is waiting and in all subsequent  times 
west signal is redsignalW = red

modeW = wait

Verification:
Search for reachable cycle containing red 
monitor state in the combined system



From LTL to Büchi Automata

LTL Formula j Büchi Automaton MjTableau 
Construction

Automaton Mj accepts exactly those traces that satisfy formula j

To check if a system C satisfies the LTL requirement j
§ construct the Büchi automaton Mj corresponding to j
§ search for cycles in composition of C and Mj



Tableau Construction Example

A e ∧ E f

Consider Always e ∧ Eventually f:  A e ∧ E f

A state is a collection of formulas that must be satisfied  

Initial state contains given formula 

A e E f

Formulas in a state must be consistent with rules of logical connectives: 
for example, if a state has j ∧ y, then it must have both j and y



Omega-Regular Languages

§ The language of a Büchi automaton is the set of traces it accepts
§ Such languages are called ω-regular

§ There is a well-developed theory of ω -regular languages

§ It is analogous the classical theory of regular languages 
(i.e., languages of finite strings of input characters accepted 
by finite automata)

§ Relevance to us: 
Given an LTL formula j, there is an algorithm to construct a Büchi
automaton Mj that accepts exactly the traces that satisfy j



Tableau Construction Example

A e ∧ E f

Consider Always e ∧ Eventually f:  A e ∧ E f

If a state has Always j, it must have both j and Next Always j

A e E fe, N A e

If a state has Eventually j, it must have either j or Next Eventually j or both
This leads to 3 cases 

f
A e ∧ E f

A e, e, N A e, E f, N E f

A e ∧ E f
A e, e, N A e, E f, N E f, f



Tableau Construction Example

Consider Always e ∧ Eventually f:  A e ∧ E f

Transition Rules:
1. If a state contains Next j then add transition to each state containing j
2. If  a state contains base formula j, then j must hold on outgoing 

transitions

A e ∧ E f
A e, e, E f, N A e, N E f

A e ∧ E f
A e, e, E f, N A e, N E f, f

A e ∧ E f
A e, e, E f, N A e,  f

A e, e, N A e

e ∧ f 

e 

e

e ∧ f 

e 
e ∧ f 

e ∧ f 

e



Tableau Construction Example

Consider Always e ∧ Eventually f:  A e ∧ E f

Acceptance condition: Satisfaction of eventuality should not be postponed 
forever

Accepting states: States that either contain f or do not contain E f

A e ∧ E f
A e, e, E f, N A e, N E f

A e ∧ E f
A e, e, E f, N A e, N E f, f

A e ∧ E f
A e, e, E f, N A e,  f

A e, e, N A e

e ∧ f 

e

e

e ∧ f 

e
e ∧ f 

e ∧ f 

e



Tableau Construction Example

Consider Always e ∧ Eventually f

Indeed this is a correct Büchi automaton for the given formula!

e ∧ f 

e 

e

e ∧ f 

e 
e ∧ f 

e ∧ f 

e 



Tableau Construction Overview

e ∧ ¬f e ∧ ¬f 
j, y, N y, N c , e, ¬f, …

c, y, N j, f,  … c, y, e,  …

Automaton/tableau state: Collection of relevant LTL formulas 

Intended meaning: All the formulas in a state must hold on every infinite 
path starting at a state

Local consistency rules ensure that for every non-atomic formula j, the 
state contains additional formulas ensuring that j holds

Transition rules ensure that 
1. every atomic formula holds at current time, and 
2. all Next formulas are propagated to next state



Formal Construction

Given an LTL-formula j, define set Sub(j), the closure of j
Sub(j) consists of formulas that are relevant to evaluation of j:

§ It contains all the subformulas of j
§ If it contains Always y, it also contains Next Always y
§ If it contains Eventually y, it also contains Next Eventually y
§ If it contains j1 U j2, it also contains Next (j1 U j2)

Example: 
Sub( Always Eventually e ∧ Next f ) =

{ Always Eventually e ∧ Next f,  
Always Eventually e, Eventually e, e
Next f, f, 
Next Eventually e, Next Always Eventually e }

Note: Size of Sub(j) is linear in the size of j



Tableau States

A state of the desired automaton is a subset of Sub(j) that satisfies some 
consistency rules:

§ Does not contain both a formula y and its negation ¬y
§ Contains j1 ∧ j2 exactly when it contains both j1 and j2
§ Contains j1 ∨ j2 exactly when it contains at least one of j1 and j2
§ If it contains Always y then it contains both y and Next Always y
§ If it contains Eventually y then it contains at least one of y and 

Next Eventually  y
§ If it contains j1 U j2, it contains j1 or both j2 and Next (j2 U j2)

Note: Number of possible states is exponential in the size of j



Example Construction

Formula j =  Eventually e ∧ Next ¬e
Sub(j) = { E e ∧ N ¬e, E e, e, N ¬e, ¬e, N E e }

Tableau states:

q0 = { e, N ¬e, N E e, E e, E e ∧ N ¬e }
q1 = { e, N E e, E e }
q2 = { e, N ¬e, E e, E e ∧ N ¬e }
q3 = { e, E e }
q4 = { ¬e, N ¬e, N E e, E e, E e ∧ N ¬e }
q5 = { ¬e, N E e, E e }
q6 = { ¬e, N ¬e }
q7 = { ¬e }



Tableau Construction Continued

Input variables V: base formulas appearing in j

States: Consistent subsets of Sub(j)

Initial states: States that contain the formula j

Transitions: q –G–> q’ is a transition provided
§ Next y is in q exactly when y is in q’
§ If a base formula e is in q, then e is a conjunct in G, else ¬e is a 

conjunct in G



Example Construction Continued

Formula j =  Eventually e ∧ Next ¬e

Tableau states:
q0 = { e, N ¬e, N E e, E e, E e ∧ N ¬e }
q1 = { e, N E e, E e }
q2 = { e, N ¬e, E e, E e ∧ N ¬e }
q3 = { e, E e }
q4 = { ¬e, N ¬e, N E e, E e, E e ∧ N ¬e }
q5 = { ¬e, N E e, E e }
q6 = { ¬e, N ¬e }
q7 = { ¬e }

Transitions from q0:
q0 –e–> q4

q0 –e–> q5

Transitions from q1:
q1 –e–> q0

q1 –e–> q1

q1 –e–> q2

q1 –e–> q3

Transitions from q6:
q6 –(¬e)–> q6

q6 –(¬e)–> q7



Tableau Construction: Acceptance

For a subformula Eventually y, need to ensure that satisfaction of y is not 
postponed forever. 
Whenever Eventually y appears is in a state either y or Next Eventually y,
or both, are included

Define F to be the set of tableau states that either include y or exclude 
Eventually y

Accepting condition: Repeatedly F

Similarly, for a subformula Always y, 
1. Define F’ to be the set of states that either include Always y or 

exclude y
2. A state in F’ is required to appear repeatedly on an accepting run



Example Construction Continued

Formula j =  Eventually e ∧ Next ¬e

Tableau states:
q0 = { e, N ¬e, N E e, E e, E e ∧ N ¬e }
q1 = { e, N E e, E e }
q2 = { e, N ¬e, E e, E e ∧ N ¬e }
q3 = { e, E e }
q4 = { ¬e, N ¬e, N E e, E e, E e ∧ N ¬e }
q5 = { ¬e, N E e, E e }
q6 = { ¬e, N ¬e }
q7 = { ¬e }

Accepting states: { q0, q1, q2, q3, q6, q7 }

Initial states: { q0, q2, q4 } 

Transitions from q0:
q0 –e–> q4

q0 –e–> q5

Transitions from q1:
q1 –e–> q0

q1 –e–> q1

q1 –e–> q2

q1 –e–> q3

Transitions from q6:
q6 –(¬e)–> q6

q6 –(¬e)–> q7

q1



Handling Acceptance

In general, if there are multiple temporal formulas, the acceptance condition 
should ensure that each is satisfied

Generalized Büchi Automaton: Modest syntactic generalization
Automaton M has k accepting sets F1, F2, … Fk

An execution is accepting if for each j, some state in Fj appears repeatedly 
Repeatedly F1 ∧ Repeatedly F2 ∧ … ∧ Repeatedly Fk

It is possible to compile a generalized Büchi automaton to a standard Büchi
automaton
It is also possible to adapt cycle-detection algorithms to handle multiple 
accepting sets



Tableau Construction: Summary

Correctness: A trace over V satisfies a given LTL formula j iff it is accepted 
by the Generalized Büchi Automaton Mj

Complexity: Size of Mj is 2n, where n is the size of j (such a blow-up is 
unavoidable)

Practical implementations with a number of optimizations exist



Reachability Problem for Transition Systems

Transition System T

Property j

Yes/Counter-
example

no
Verifier

Is j reachable?

q Is there a (finite) execution from an initial state to a state satisfying j
q Checking whether j is an invariant of T reduces to hecking if ¬j is reachable
q Verification techniques

1. Proof-based: Inductive invariants
2. Enumerative on-the-fly search (see notes)
3. Symbolic search based on iterative image computation



Repeatable Property for Transition Systems

Transition System = (States, Initial states, Transitions)

Property j : Subset of states

Property j is repeatable if there
exists an infinite execution that
satisfies Repeatedly j

Is there a state s such that
1. s is reachable
2. s satisfies j
3. there is a cycle containing s



Repeatability Problem for Transition Systems

Transition System T

Property j

Yes/Counter-
example

no
Verifier

Is j repeatable?

Is there an infinite execution along which states satisfying j appear 
repeatedly?
To check whether a system C satisfies an LTL formula j, check if property  
Mode is accepting is repeatable in composition of C and Büchi monitor 
M¬j

Verification techniques (not covered, see Chap 5)
1. Proof-based: Ranking functions
2. Enumerative: Nested Depth-first Search 
3. Symbolic search 


