
Copyright 2014-20, Rajeev Alur and Cesare Tinelli.
Created by Cesare Tinelli at the University of Iowa from notes originally developed by Rajeev Alur at the University of
Pennsylvania. These notes are copyrighted materials and may not be used in other course settings outside of the
University of Iowa in their current form or modified form without the express written permission of one of the copyright
holders. During this course, students are prohibited from selling notes to or being paid for taking notes by any person or
commercial firm without the express written permission of one of the copyright holders.

CS:4980
Foundations of Embedded Systems

Liveness Requirements
Part II

LTL Recap
Syntax: Formulas built from

§ Base formulas: Boolean-valued expressions over typed variables
§ Logical connectives: ∧ , ∨ , ⇒ , ¬ , …
§ Temporal Operators: Always, Eventually, Next, Until

Semantics: defined by rules for the satisfaction relation
§ Formulas are evaluated w.r.t. a trace r (infinite sequence of

valuations)
§ A system satisfies spec j iff every infinite execution satisfies j

Derived operators: Repeatedly (Always Eventually)
Persistently (Eventually Always)

Sample requirement: Every request is eventually granted
Always [req = 1 ⇒ Eventually (grant = 1)]

Temporal Implications and Equivalences

Understanding subtle differences among different variants of LTL formulas
can be tricky

Definition: Let j, y be LTL formulas
1. j is stronger than y if every trace that satisfies j satisfies y too

§ i.e., every trace satisfies the implication j ⇒ y

2. j is equivalent to y if j and y are satisfied by exactly the same traces
§ i.e., each formula is stronger than the other
§ i.e., every trace satisfies the double implication j ⇔ y
§ i.e., the two formulas express exactly the same requirement

Knowing some standard equivalences is useful for simplifying formulas

Temporal Implications and Equivalences

§ Always j is stronger than j
§ Repeatedly j is equivalent to ¬Persistently ¬j
§ Persistently j is stronger than Repeatedly j
§ Always j is equivalent to j ∧ Next Always j
§ Always j is equivalent to ¬Eventually ¬j

Exercise: What is the mutual relationship between these formulas?
§ Always Eventually j
§ Next Always Eventually j
§ Eventually Always Eventually j

Logical Connectives and Temporal Operators
Are these two formulas equivalent?

Eventually (j ∨ y) and Eventually j ∨ Eventually y
Yes, they are.
Proof:
⇒) Suppose a trace r satisfies Eventually (j ∨ y)

§ There is a position j such that (r, j) ⊨ j ∨ y
§ Either (r, j) ⊨ j or (r, j) ⊨ y
§ Suppose (r, j) ⊨ j (the other case is similar)
§ Then r satisfies Eventually j
§ Hence it also satisfies Eventually j ∨ Eventually y

⇐) Suppose a trace r satisfies Eventually j ∨ Eventually y
§ Suppose r satisfies Eventually j (the other case is similar)
§ There is a position j such that (r, j) ⊨ j
§ Then, (r, j) ⊨ j ∨ y
§ It follows that r satisfies Eventually (j ∨ y)

Logical Connectives and Temporal Operators
Are these two formulas equivalent?

Eventually (j ∧ y) and Eventually j ∧ Eventually y
The first is stronger than the second but not vice versa
Proof:
⇒) Suppose a trace r satisfies Eventually (j ∧ y)

§ There exists a position j such that (r, j) ⊨ j ∧ y
§ It follows that both (r, j) ⊨ j and (r, j) ⊨ y
§ Since (r, j) ⊨ j then r satisfies Eventually j
§ Similarly, it also satisfies Eventually y
§ It follows that r satisfies Eventually j ∧ Eventually y

⇐) To disprove this, consider trace 0,1,0,1,0,1,… over a Boolean variable x
§ Trace satisfies Eventually (x = 0) ∧ Eventually (x = 1)
§ But does not satisfy Eventually (x = 0 ∧ x = 1)

Logical Connectives and Temporal Operators

Distributivity rules for logical connectives and temporal operators

Exercise: Are these equivalent?
§ Always (j ∧ y) and Always j ∧ Always y
§ Always (j ∨ y) and Always j ∨ Always y
§ Repeatedly (j ∧ y) and Repeatedly j ∧ Repeatedly y
§ Repeatedly (j ∨ y) and Repeatedly j ∨ Repeatedly y

Back to Fairness

Weak fairness: An infinite execution is fair to a task A if, repeatedly,
either A is executed or is disabled

If task is enabled, then it is eventually executed or disabled

Strong fairness: An infinite execution is fair to a task A, if task A is
either executed repeatedly or disabled continuously from a certain
step onwards

If task is repeatedly enabled, then it is repeatedly executed

Back to Fairness

What fairness assumptions are needed so that P satisfies the spec
§ Eventually (x ≥ 10) : weak fairness for A
§ Eventually (y = 1) : strong fairness for B

nat x := 0; bool y := 0

A: x := x + 1

B: even(x) –> y := 1 - y

Process P

Back to Fairness

q Fairness can be encoded directly in LTL!

q Instead of checking if the system satisfies an LTL formula j, check
if it satisfies the formula

FairnessAssumption ⇒ j

q FairnessAssumption is an LTL formula encoding what it means for
an execution to be weakly/strongly fair with respect to a task

nat x := 0; bool y := 0

A: x := x + 1

B: even(x) –> y := 1 - y

Process P

Encoding Weak Fairness in LTL

q We add a variable called executed whose values are task names
q Whenever a task executes, executed is assigned the name of the task

Weak fairness for a task T: An infinite execution is weakly fair to task T if it
satisfies the formula

WF(T): Persistently (T is enabled) ⇒ Repeatedly (T is executed)

Examples:
WF(A): Repeatedly (executed = A)
WF(B): Persistently (even(x)) ⇒ Repeatedly (executed = B)

nat x := 0; bool y := 0;

A: x := x + 1;

B: even(x) –> y := 1 - y;

Process P

{A,B} executed

executed := A

executed := B

Checking Requirements under Weak Fairness

Does P satisfy
1. Eventually (x ≥ 10) ?
2. WF(A) ⇒ Eventually (x ≥ 10) ?
3. WF(B) ⇒ Eventually (y = 1) ?
4. (WF(A) ∧ WF(B)) ⇒ Eventually (y = 1) ?

What have we achieved?
§ Checking if an LTL spec is satisfied under fairness assumptions is

reduced to checking a modified LTL spec
§ Then the verifier does not have to handle fairness explicitly

nat x := 0; bool y := 0;

A: x := x + 1;

B: even(x) –> y := 1 - y;

Process P

{A,B} executed

executed := A

executed := B

Encoding Strong Fairness

Strong fairness for a task T: An infinite execution is strongly fair to task T if
it satisfies the formula

SF(T): Repeatedly (T is enabled) ⇒ Repeatedly (T is executed)

Example:
SF(B): Repeatedly (even(x)) ⇒ Repeatedly(executed = B)

Note: if a spec is satisfied assuming weak fairness, it also satisfied
assuming strong fairness

nat x := 0; bool y := 0;

A: x := x + 1;

B: even(x) –> y := 1 - y;

Process P

{A,B} executed

executed := A

executed := B

Encoding Strong Fairness

Strong fairness for a task T: An infinite execution is strongly fair to task T if
it satisfies the formula

SF(T): Repeatedly (T is enabled) ⇒ Repeatedly (T is executed)

Example:
SF(B): Repeatedly (even(x)) ⇒ Repeatedly(executed = B)

Exercise: Which of the following specs are satisfied by P?
1. SF(B) ⇒ Eventually (y = 1)
2. SF(B) ⇒ Repeatedly (y = 1)
3. SF(B) ⇒ Persistently (y = 1)

nat x := 0; bool y := 0;

A: x := x + 1;

B: even(x) –> y := 1 - y;

Process P

{A,B} executed

executed := A

executed := B

Model Checking

System Model

LTL Requirement

yes

no/bug
Model Checker

q Performed using enumerative or symbolic search through the state-
space of the program

q Success story for transitioning academic research to industrial
practice

q 2007 Turing Award to Ed Clarke, Alan Emerson, and Joseph Sifakis
q Used to debug multi-core protocols, pipelined processors, device

driver code, distributed algorithms in Intel, Microsoft, IBM …

Büchi Automata

A safety monitor M classifies finite executions into good and bad

Verification of safety requirements for a component C reduces to
analyzing reachable states of the composition of C and M

An error execution is an execution that leads the monitor into an error
state

How can a monitor (aka, an automaton) classify infinite executions into
good and bad?

Büchi Automata

q Theoretical model of Büchi automata proposed by Richard Büchi
(1960)

q Model checking application (1990s) using Büchi automata:
§ Automatically translate LTL formula j to a Büchi monitor M
§ Consider the composition of system C and monitor M
§ Reachable cycles in this composite correspond to counter-

examples; if no such cycle is found, system satisfies spec
§ Implemented in many model checkers (notably, SPIN)

Büchi Automaton: Example 1

a

¬e

e

§ Inputs: Boolean variable e
§ Of two states a and b, a is initial and b is accepting
§ Given a trace r over e (i.e. infinite sequence of 0/1 values to e),

there is a corresponding execution of M
§ The trace r is accepted if accepting state appears repeatedly
§ Language of M = { traces in which e is satisfied repeatedly }
§ M accepts r iff r ⊨ Repeatedly e

¬e

e

b

M

Büchi Automaton: Example 2

a

§ Automaton is nondeterministic
§ On a given input trace, many possible executions
§ An execution is accepting if it visits accepting state repeatedly
§ M accepts an input trace if there exists some accepting execution on

that input
§ M accepts r iff r ⊨ Persistently e

e

b

M

Büchi Automaton: Example 3

§ Design a Büchi automaton M such that
M accepts r iff r ⊨ Always (e ⇒ Eventually f)

§ Inputs: Boolean values for e and f
§ In an accepting execution, every e must be followed by f

b

¬e ∨ f

e ∧ ¬f

f
a

¬f

Büchi Automaton: Example 4

a
e

cb
f

Which traces does this accept? Express it in LTL

M accepts r iff r ⊨ Repeatedly e ∧ Repeatedly f

Büchi Automaton M Definition

§ Set of Boolean V of input variables
§ Finite set Q of states
§ Set Init of initial states
§ Set F of accepting states
§ Set of edges/transitions of the form q –G–> q’

where G is a Boolean-valued condition over V
§ Given an input trace r = v1, v2, v3, … over V, an accepting execution of

M over r is an infinite sequence of states q0, q1, q2, … where
§ q0 is initial
§ For each i, there is an edge qi –G–> qi+1 such that input vi

satisfies G
§ There are infinitely many positions i such that state qi is in F

§ M accepts input trace r if there is an accepting execution of M over r

Büchi Automata: More Examples

e

Eventually e

¬e

a b

Büchi Automata Examples

a
e

cb
f

Eventually [e ∧ Next Eventually f]

Eventually e ∨ Eventually f

a
e

c

f

b

Nondeterministic Büchi Automaton

e

Persistently e

Can we construct an equivalent deterministic Büchi automaton?

No! Non-determinism is sometimes necessary!

System S

Safety Monitors

Monitor M

Is there an execution of S that makes M
enters an error state?

M is designed so that such an execution
indicates a bug!

Verification reduces to reachability

Check if an error state is reachable in
composition of S and M

Büchi Monitors

Is there an infinite execution of S which is
accepted by M? (i.e., an execution in which
some error state of M appears repeatedly?)

M is designed so that such an execution
indicates a bug!

Verification reduces to search for cycles

Check if there is a reachable cycle containing
an error state in the composition of S and M

Büchi Monitor M

System S

RailRoadController

Example Büchi Monitor

Correctness requirement:
Always [(West train is waiting) ⇒

Eventually (West signal is green)]

Büchi Monitor M

signalWmodeW

Requirement violation:
Infinite execution where, at some step, west
train is waiting and in all subsequent times
west signal is redsignalW = red

modeW = wait

Verification:
Search for reachable cycle containing red
monitor state in the combined system

From LTL to Büchi Automata

LTL Formula j Büchi Automaton MjTableau
Construction

Automaton Mj accepts exactly those traces that satisfy formula j

To check if a system C satisfies the LTL requirement j
§ construct the Büchi automaton Mj corresponding to j
§ search for cycles in composition of C and Mj

Tableau Construction Example

A e ∧ E f

Consider Always e ∧ Eventually f: A e ∧ E f

A state is a collection of formulas that must be satisfied

Initial state contains given formula

A e E f

Formulas in a state must be consistent with rules of logical connectives:
for example, if a state has j ∧ y, then it must have both j and y

Omega-Regular Languages

§ The language of a Büchi automaton is the set of traces it accepts
§ Such languages are called ω-regular

§ There is a well-developed theory of ω -regular languages

§ It is analogous the classical theory of regular languages
(i.e., languages of finite strings of input characters accepted
by finite automata)

§ Relevance to us:
Given an LTL formula j, there is an algorithm to construct a Büchi
automaton Mj that accepts exactly the traces that satisfy j

Tableau Construction Example

A e ∧ E f

Consider Always e ∧ Eventually f: A e ∧ E f

If a state has Always j, it must have both j and Next Always j

A e E fe, N A e

If a state has Eventually j, it must have either j or Next Eventually j or both
This leads to 3 cases

f
A e ∧ E f

A e, e, N A e, E f, N E f

A e ∧ E f
A e, e, N A e, E f, N E f, f

Tableau Construction Example

Consider Always e ∧ Eventually f: A e ∧ E f

Transition Rules:
1. If a state contains Next j then add transition to each state containing j
2. If a state contains base formula j, then j must hold on outgoing

transitions

A e ∧ E f
A e, e, E f, N A e, N E f

A e ∧ E f
A e, e, E f, N A e, N E f, f

A e ∧ E f
A e, e, E f, N A e, f

A e, e, N A e

e ∧ f

e

e

e ∧ f

e
e ∧ f

e ∧ f

e

Tableau Construction Example

Consider Always e ∧ Eventually f: A e ∧ E f

Acceptance condition: Satisfaction of eventuality should not be postponed
forever

Accepting states: States that either contain f or do not contain E f

A e ∧ E f
A e, e, E f, N A e, N E f

A e ∧ E f
A e, e, E f, N A e, N E f, f

A e ∧ E f
A e, e, E f, N A e, f

A e, e, N A e

e ∧ f

e

e

e ∧ f

e
e ∧ f

e ∧ f

e

Tableau Construction Example

Consider Always e ∧ Eventually f

Indeed this is a correct Büchi automaton for the given formula!

e ∧ f

e

e

e ∧ f

e
e ∧ f

e ∧ f

e

Tableau Construction Overview

e ∧ ¬f e ∧ ¬f
j, y, N y, N c , e, ¬f, …

c, y, N j, f, … c, y, e, …

Automaton/tableau state: Collection of relevant LTL formulas

Intended meaning: All the formulas in a state must hold on every infinite
path starting at a state

Local consistency rules ensure that for every non-atomic formula j, the
state contains additional formulas ensuring that j holds

Transition rules ensure that
1. every atomic formula holds at current time, and
2. all Next formulas are propagated to next state

Formal Construction

Given an LTL-formula j, define set Sub(j), the closure of j
Sub(j) consists of formulas that are relevant to evaluation of j:

§ It contains all the subformulas of j
§ If it contains Always y, it also contains Next Always y
§ If it contains Eventually y, it also contains Next Eventually y
§ If it contains j1 U j2, it also contains Next (j1 U j2)

Example:
Sub(Always Eventually e ∧ Next f) =

{ Always Eventually e ∧ Next f,
Always Eventually e, Eventually e, e
Next f, f,
Next Eventually e, Next Always Eventually e }

Note: Size of Sub(j) is linear in the size of j

Tableau States

A state of the desired automaton is a subset of Sub(j) that satisfies some
consistency rules:

§ Does not contain both a formula y and its negation ¬y
§ Contains j1 ∧ j2 exactly when it contains both j1 and j2
§ Contains j1 ∨ j2 exactly when it contains at least one of j1 and j2
§ If it contains Always y then it contains both y and Next Always y
§ If it contains Eventually y then it contains at least one of y and

Next Eventually y
§ If it contains j1 U j2, it contains j1 or both j2 and Next (j2 U j2)

Note: Number of possible states is exponential in the size of j

Example Construction

Formula j = Eventually e ∧ Next ¬e
Sub(j) = { E e ∧ N ¬e, E e, e, N ¬e, ¬e, N E e }

Tableau states:

q0 = { e, N ¬e, N E e, E e, E e ∧ N ¬e }
q1 = { e, N E e, E e }
q2 = { e, N ¬e, E e, E e ∧ N ¬e }
q3 = { e, E e }
q4 = { ¬e, N ¬e, N E e, E e, E e ∧ N ¬e }
q5 = { ¬e, N E e, E e }
q6 = { ¬e, N ¬e }
q7 = { ¬e }

Tableau Construction Continued

Input variables V: base formulas appearing in j

States: Consistent subsets of Sub(j)

Initial states: States that contain the formula j

Transitions: q –G–> q’ is a transition provided
§ Next y is in q exactly when y is in q’
§ If a base formula e is in q, then e is a conjunct in G, else ¬e is a

conjunct in G

Example Construction Continued

Formula j = Eventually e ∧ Next ¬e

Tableau states:
q0 = { e, N ¬e, N E e, E e, E e ∧ N ¬e }
q1 = { e, N E e, E e }
q2 = { e, N ¬e, E e, E e ∧ N ¬e }
q3 = { e, E e }
q4 = { ¬e, N ¬e, N E e, E e, E e ∧ N ¬e }
q5 = { ¬e, N E e, E e }
q6 = { ¬e, N ¬e }
q7 = { ¬e }

Transitions from q0:
q0 –e–> q4

q0 –e–> q5

Transitions from q1:
q1 –e–> q0

q1 –e–> q1

q1 –e–> q2

q1 –e–> q3

Transitions from q6:
q6 –(¬e)–> q6

q6 –(¬e)–> q7

Tableau Construction: Acceptance

For a subformula Eventually y, need to ensure that satisfaction of y is not
postponed forever.
Whenever Eventually y appears is in a state either y or Next Eventually y,
or both, are included

Define F to be the set of tableau states that either include y or exclude
Eventually y

Accepting condition: Repeatedly F

Similarly, for a subformula Always y,
1. Define F’ to be the set of states that either include Always y or

exclude y
2. A state in F’ is required to appear repeatedly on an accepting run

Example Construction Continued

Formula j = Eventually e ∧ Next ¬e

Tableau states:
q0 = { e, N ¬e, N E e, E e, E e ∧ N ¬e }
q1 = { e, N E e, E e }
q2 = { e, N ¬e, E e, E e ∧ N ¬e }
q3 = { e, E e }
q4 = { ¬e, N ¬e, N E e, E e, E e ∧ N ¬e }
q5 = { ¬e, N E e, E e }
q6 = { ¬e, N ¬e }
q7 = { ¬e }

Accepting states: { q0, q1, q2, q3, q6, q7 }

Initial states: { q0, q2, q4 }

Transitions from q0:
q0 –e–> q4

q0 –e–> q5

Transitions from q1:
q1 –e–> q0

q1 –e–> q1

q1 –e–> q2

q1 –e–> q3

Transitions from q6:
q6 –(¬e)–> q6

q6 –(¬e)–> q7

q1

Handling Acceptance

In general, if there are multiple temporal formulas, the acceptance condition
should ensure that each is satisfied

Generalized Büchi Automaton: Modest syntactic generalization
Automaton M has k accepting sets F1, F2, … Fk

An execution is accepting if for each j, some state in Fj appears repeatedly
Repeatedly F1 ∧ Repeatedly F2 ∧ … ∧ Repeatedly Fk

It is possible to compile a generalized Büchi automaton to a standard Büchi
automaton
It is also possible to adapt cycle-detection algorithms to handle multiple
accepting sets

Tableau Construction: Summary

Correctness: A trace over V satisfies a given LTL formula j iff it is accepted
by the Generalized Büchi Automaton Mj

Complexity: Size of Mj is 2n, where n is the size of j (such a blow-up is
unavoidable)

Practical implementations with a number of optimizations exist

Reachability Problem for Transition Systems

Transition System T

Property j

Yes/Counter-
example

no
Verifier

Is j reachable?

q Is there a (finite) execution from an initial state to a state satisfying j
q Checking whether j is an invariant of T reduces to hecking if ¬j is reachable
q Verification techniques

1. Proof-based: Inductive invariants
2. Enumerative on-the-fly search (see notes)
3. Symbolic search based on iterative image computation

Repeatable Property for Transition Systems

Transition System = (States, Initial states, Transitions)

Property j : Subset of states

Property j is repeatable if there
exists an infinite execution that
satisfies Repeatedly j

Is there a state s such that
1. s is reachable
2. s satisfies j
3. there is a cycle containing s

Repeatability Problem for Transition Systems

Transition System T

Property j

Yes/Counter-
example

no
Verifier

Is j repeatable?

Is there an infinite execution along which states satisfying j appear
repeatedly?
To check whether a system C satisfies an LTL formula j, check if property
Mode is accepting is repeatable in composition of C and Büchi monitor
M¬j

Verification techniques (not covered, see Chap 5)
1. Proof-based: Ranking functions
2. Enumerative: Nested Depth-first Search
3. Symbolic search

