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Foundations of Embedded Systems

Liveness Requirements
Part I



From Desktops to Cyber-Physical Systems

Traditional computers: Stand-alone devices running software 
applications

– e.g., data processing

Traditional controllers: Devices interacting with physical world 
via sensors and actuators

– e.g., thermostat

Embedded (aka Cyber-physical) Systems: Special-purpose 
system with integrated microcontroller/software

– e.g., cameras, watches, washing machines, …



Formal Verification

Model/Program

Requirement

yes/proof

no/bug
Verifier

How to formalize requirements?

1. Safety requirements: Invariants, monitors
2. Liveness requirements: Temporal logic 



Recap: Safety Requirements

Nothing bad ever happens
§ Trains should not be on bridge simultaneously
§ If the east train is waiting, the west train should not be 

allowed on the bridge twice in succession

Violation of a safety property is demonstrated by a (finite) 
execution



Recap: Safety Requirements

Formalization:
§ Identify a property j over state variables, and check if 
j is an invariant of the system 

§ Construct a monitor M and check that “monitor mode 
is not error” is an invariant of the composite system C 
|| M

Analysis:
§ Proof based on inductive invariants
§ Algorithms for exploring the reachable states of the 

system



Liveness Requirements

Something good eventually happens
§ A waiting train is eventually allowed to enter the bridge
§ Each process eventually decides to be a leader / 

follower

No finite execution demonstrates violation of such properties
§ Counterexample should show a cycle where the system 

may get stuck without achieving the goal



Formalization:
§ Need to consider infinite executions (w-executions) 
§ Need a logic to state properties of infinite executions

Liveness Requirements



Temporal Logic

q Logics proposed to reason about time
§ Origins in philosophy
§ Tense logic: Prior (1920)

q Linear temporal logic (LTL) proposed for reasoning about executions of 
reactive systems
§ Pnueli (1977), later selected for Turing award (1996)

q Industrial adoption
§ Property Specification Language (PSL) IEEE standard
§ LTL enriched with many additional constructs for usability
§ Supported by CAD tools for simulation/analysis of Verilog/VHDL



Valuations and Base Formulas

V: set of typed variables
§ Example: nat x,  bool y

Valuation: type-consistent assignment of values to variables in V
§ q0 : (x = 26, y = 0)
§ q1 : (x = 11, y = 1)

Base formula: Boolean-valued expression over V
§ even(x)
§ (y = 0) ⇒ even(x)

Satisfiability: valuation q satisfies formula j, written q ⊨ j, if q(j)
evaluates to 1

§ q0 ⊨ even(x)
§ q0 ⊨ (y = 0) ⇒ even(x) 
§ q1 ⊭ even(x)
§ q1 ⊨ (y = 0) ⇒ even(x)



Traces

A base formula expresses a property of a single valuation

Trace: Infinite sequence of valuations
§ r : (0,0), (1,1), (2,0), (3,1), (4,0), (5,1), …
§ r’ : (0,0), (21,1), (13,1), (43,0), …

In system specification and verification:
§ V can be set of state variables

(a trace is a possible infinite execution of the system)
§ V can be set of input and output variables

(a trace is an observed input/output behavior of system)
§ V can include all of state, input, and output variables



LTL Basics

A base formula expresses a property of a single valuation

Trace: Infinite sequence of valuations

LTL formulas are built from Boolean-valued expressions using 
§ Logical connectives:  _ ∧ _ , _ ∨ _ , _ ⇒ _ ,  ¬ _
§ Temporal operators:  Always _ ,   Eventually _ ,   Next _ ,   _ Until _

□ _ ,                  ◇ _ ,         ○ _ ,      _ U _

LTL formulas are evaluated with respect to a trace

A trace r = q1, q2, q3, … satisfies a base formula j if q1 ⊨ j



Always Operator

Always j intuitively means  j holds at all times

For a base formula j, a trace r = q1, q2, q3, … satisfies Always j
if qj ⊨ j for all j > 0

Example: trace
x:  0  1  2  3  4  5  …
y:  0  1  0  1  0  1  …

§ falsifies (i.e., does not satisfy)  Always even(x)

§ satisfies  Always (y = 0 ⇒ even(x))

Note: a state property j is invariant for a transition system T iff every 
infinite execution of T satisfies Always j



Eventually Operator

Eventually j intuitively means  j holds at some point (at least once)

For a base formula j, a trace r = q1, q2, q3, … satisfies Eventually j
if qj ⊨ j for some j > 0

Example: trace
x:  0  1  2  3  4  5  …
y:  0  1  0  1  0  1  …
§ satisfies  Eventually (y = 1)
§ satisfies  Eventually (x = 45)
§ falsifies Eventually (x = 4 ∧ y = 1)

Note: Eventually is the logical dual of Always: a trace
r satisfies Eventually j iff r satisfies ¬Always ¬j iff
r falsifies Always ¬j



Next Operator

Next j intuitively means  j holds the next time

For a base formula j, a trace r = q1, q2, q3, … satisfies Next j if  q2 ⊨ j

Example: trace
x:  0  1  2  3  4  5  …
y:  0  1  0  1  0  1  …
§ satisfies Next (y = 1)
§ falsifies Next (x = 2)



Until Operator

j Until y intuitively means  y holds at some point and j holds at all 
times until then

For base formulas j, y , a trace r = q1, q2, q3, … satisfies  j U y
if qj ⊨ y for some j > 0 and qi ⊨ j for all  i < j

Example: trace:
x:  0  0  0  2  2  5  …
§ satisfies (x = 0) Until (x = 2)
§ satisfies (x < 5) Until (x = 5)

Note: If a trace satisfies j Until y then it must also satisfy  Eventually y



Nested Operators

q What does Next Always j mean?

q Trace r = q1, q2, q3, … satisfies Next Always j if qj ⊨ j for all j > 1

q To formalize this, we have to define the relation 
(r, j) ⊨ j (trace r satisfies formula j at position j)

§ Same as suffix trace qj, qj+1, qj+2, … starting at position j satisfies j

§ (r, j) ⊨ Next j if (r, j+1) ⊨ j

§ (r, j) ⊨ Always j if (r,  k) ⊨ j for all positions k ≥ j

§ (r, j) ⊨ Eventually j if (r, k) ⊨ j for some position k ≥ j

§ (r, j) ⊨ j U y if there is a position k ≥ j such that 

(r, i) ⊨ j for all i = j … k and (r, k) ⊨ y

q Trace r satisfies j iff (r, 1) ⊨ j



Multiple Eventualities

Example: Multi-agent system where multiple goals have to be satisfied
§ Goal1: Robot 1 has finished its mission
§ Goal2: Robot 2 has finished its mission

Spec: (Eventually Goal1) ∧ (Eventually Goal2)
§ Trace r satisfies this spec if there are positions i, j such that 

(r, i) ⊨ Goal1 and  (r, j) ⊨ Goal2
§ No specific order specified in which goals are achieved

Spec: Eventually [Goal1 ∧ (Eventually Goal2)]
§ Trace r satisfies this spec if there are positions i, j such that 

i ≤ j  and  (r, i) ⊨ Goal1 and  (r, j) ⊨ Goal2

Spec: Eventually [Goal1 ∧ Next (Eventually Goal2)]
§ Trace r satisfies this spec if there are positions i, j such that 

i < j and  (r, i) ⊨ Goal1 and  (r, j) ⊨ Goal2



Recurrence and Persistence

Repeatedly j =  Always Eventually j
§ i.e., for every j,  (r, j) ⊨ Eventually j
§ i.e., for every j, there is an i ≥ j such that (r, i) ⊨ j
§ i.e., there are infinitely many positions where j holds

Persistently j =  Eventually Always j
§ i.e., for some j, (r, j) ⊨ Always j
§ i.e., there is a j such that for all i ≥ j , (r, i) ⊨ j
§ i.e., formula j becomes true eventually and stays true

The two patterns are logical duals: 
a trace r satisfies Repeatedly j iff it falsifies Persistently ¬j



Examples

Trace:
x:   0     1     2      3      4     5  …
y:   0     1     0      1      0     1  …

Repeatedly (y = 0)    

Persistently (x ≥ 10)

Always [ even(x) ⇒ Next odd(x) ]

Repeatedly prime(x)



Requirements-based Design

Given:
§ Input/output interface of system C to be designed
§ Model E of the environment
§ LTL-formula j over I/O variables and state variables

of the environment model E

Design problem:
Fill in details of C so that every infinite execution of 
the composition of E and C satisfies j

Applies to synchronous as well as asynchronous designs



Leader Election

Requirements refer to output variable statusn of each node n

Liveness: Each node n eventually decides its status

Eventually ( statusn = leader ∨ statusn = follower )

Safety: For distinct nodes m, n, if m decides to be a leader at some point 
then n can never be a leader

Eventually (statusm = leader)  ⇒ Always ¬(statusn = leader)



Railroad Controller

Requirements refer to mode variables of trains and I/O variables (signals)

Safety: The two trains should not be on bridge simultaneously
Always ¬(modeW = bridge ∧ modeE = bridge)

Liveness 1: West train gets on bridge repeatedly
Repeatedly (modeW = bridge)

Not a good spec (why?), no controller can satisfy this

Liveness 2: A waiting west train is eventually allowed to enter
Always [ (modeW = wait) ⇒ Eventually (signalW = green) ]

Note: LTL helps clarify ambiguities in English sentences
Formula is not satisfied by our controller (what is a counter-example?)
What if east train never leaves the bridge?



Railroad Controller

Liveness 2’: Conditioned upon east train not staying on bridge forever
Repeatedly ¬(modeE = bridge) ⇒

Always[ (modeW = wait) ⇒ Eventually (signalW = green) ]
Does either of the two controllers in Chapter 3 satisfy this?

Liveness 3: If west train is waiting then eventually either it is allowed to 
enter bridge or east train is on bridge (implies absence of deadlocks)

Always [ (modeW = wait) ⇒
Eventually (signalW = green  ∨ modeE = bridge ) ]

Writing precise requirements is challenging but crucial!



Credits

Notes based on Chapter 5 of

Principles of Cyber-Physical Systems
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MIT Press, 2015


