
Copyright 2014-20, Rajeev Alur and Cesare Tinelli.
Created by Cesare Tinelli at the University of Iowa from notes originally developed by Rajeev Alur at the University of
Pennsylvania. These notes are copyrighted materials and may not be used in other course settings outside of the
University of Iowa in their current form or modified form without the express written permission of one of the copyright
holders. During this course, students are prohibited from selling notes to or being paid for taking notes by any person or
commercial firm without the express written permission of one of the copyright holders.

CS:4980
Foundations of Embedded Systems

Liveness Requirements
Part I

From Desktops to Cyber-Physical Systems

Traditional computers: Stand-alone devices running software
applications

– e.g., data processing

Traditional controllers: Devices interacting with physical world
via sensors and actuators

– e.g., thermostat

Embedded (aka Cyber-physical) Systems: Special-purpose
system with integrated microcontroller/software

– e.g., cameras, watches, washing machines, …

Formal Verification

Model/Program

Requirement

yes/proof

no/bug
Verifier

How to formalize requirements?

1. Safety requirements: Invariants, monitors
2. Liveness requirements: Temporal logic

Recap: Safety Requirements

Nothing bad ever happens
§ Trains should not be on bridge simultaneously
§ If the east train is waiting, the west train should not be

allowed on the bridge twice in succession

Violation of a safety property is demonstrated by a (finite)
execution

Recap: Safety Requirements

Formalization:
§ Identify a property j over state variables, and check if
j is an invariant of the system

§ Construct a monitor M and check that “monitor mode
is not error” is an invariant of the composite system C
|| M

Analysis:
§ Proof based on inductive invariants
§ Algorithms for exploring the reachable states of the

system

Liveness Requirements

Something good eventually happens
§ A waiting train is eventually allowed to enter the bridge
§ Each process eventually decides to be a leader /

follower

No finite execution demonstrates violation of such properties
§ Counterexample should show a cycle where the system

may get stuck without achieving the goal

Formalization:
§ Need to consider infinite executions (w-executions)
§ Need a logic to state properties of infinite executions

Liveness Requirements

Temporal Logic

q Logics proposed to reason about time
§ Origins in philosophy
§ Tense logic: Prior (1920)

q Linear temporal logic (LTL) proposed for reasoning about executions of
reactive systems
§ Pnueli (1977), later selected for Turing award (1996)

q Industrial adoption
§ Property Specification Language (PSL) IEEE standard
§ LTL enriched with many additional constructs for usability
§ Supported by CAD tools for simulation/analysis of Verilog/VHDL

Valuations and Base Formulas

V: set of typed variables
§ Example: nat x, bool y

Valuation: type-consistent assignment of values to variables in V
§ q0 : (x = 26, y = 0)
§ q1 : (x = 11, y = 1)

Base formula: Boolean-valued expression over V
§ even(x)
§ (y = 0) ⇒ even(x)

Satisfiability: valuation q satisfies formula j, written q ⊨ j, if q(j)
evaluates to 1

§ q0 ⊨ even(x)
§ q0 ⊨ (y = 0) ⇒ even(x)
§ q1 ⊭ even(x)
§ q1 ⊨ (y = 0) ⇒ even(x)

Traces

A base formula expresses a property of a single valuation

Trace: Infinite sequence of valuations
§ r : (0,0), (1,1), (2,0), (3,1), (4,0), (5,1), …
§ r’ : (0,0), (21,1), (13,1), (43,0), …

In system specification and verification:
§ V can be set of state variables

(a trace is a possible infinite execution of the system)
§ V can be set of input and output variables

(a trace is an observed input/output behavior of system)
§ V can include all of state, input, and output variables

LTL Basics

A base formula expresses a property of a single valuation

Trace: Infinite sequence of valuations

LTL formulas are built from Boolean-valued expressions using
§ Logical connectives: _ ∧ _ , _ ∨ _ , _ ⇒ _ , ¬ _
§ Temporal operators: Always _ , Eventually _ , Next _ , _ Until _

□ _ , ◇ _ , ○ _ , _ U _

LTL formulas are evaluated with respect to a trace

A trace r = q1, q2, q3, … satisfies a base formula j if q1 ⊨ j

Always Operator

Always j intuitively means j holds at all times

For a base formula j, a trace r = q1, q2, q3, … satisfies Always j
if qj ⊨ j for all j > 0

Example: trace
x: 0 1 2 3 4 5 …
y: 0 1 0 1 0 1 …

§ falsifies (i.e., does not satisfy) Always even(x)

§ satisfies Always (y = 0 ⇒ even(x))

Note: a state property j is invariant for a transition system T iff every
infinite execution of T satisfies Always j

Eventually Operator

Eventually j intuitively means j holds at some point (at least once)

For a base formula j, a trace r = q1, q2, q3, … satisfies Eventually j
if qj ⊨ j for some j > 0

Example: trace
x: 0 1 2 3 4 5 …
y: 0 1 0 1 0 1 …
§ satisfies Eventually (y = 1)
§ satisfies Eventually (x = 45)
§ falsifies Eventually (x = 4 ∧ y = 1)

Note: Eventually is the logical dual of Always: a trace
r satisfies Eventually j iff r satisfies ¬Always ¬j iff
r falsifies Always ¬j

Next Operator

Next j intuitively means j holds the next time

For a base formula j, a trace r = q1, q2, q3, … satisfies Next j if q2 ⊨ j

Example: trace
x: 0 1 2 3 4 5 …
y: 0 1 0 1 0 1 …
§ satisfies Next (y = 1)
§ falsifies Next (x = 2)

Until Operator

j Until y intuitively means y holds at some point and j holds at all
times until then

For base formulas j, y , a trace r = q1, q2, q3, … satisfies j U y
if qj ⊨ y for some j > 0 and qi ⊨ j for all i < j

Example: trace:
x: 0 0 0 2 2 5 …
§ satisfies (x = 0) Until (x = 2)
§ satisfies (x < 5) Until (x = 5)

Note: If a trace satisfies j Until y then it must also satisfy Eventually y

Nested Operators

q What does Next Always j mean?

q Trace r = q1, q2, q3, … satisfies Next Always j if qj ⊨ j for all j > 1

q To formalize this, we have to define the relation
(r, j) ⊨ j (trace r satisfies formula j at position j)

§ Same as suffix trace qj, qj+1, qj+2, … starting at position j satisfies j

§ (r, j) ⊨ Next j if (r, j+1) ⊨ j

§ (r, j) ⊨ Always j if (r, k) ⊨ j for all positions k ≥ j

§ (r, j) ⊨ Eventually j if (r, k) ⊨ j for some position k ≥ j

§ (r, j) ⊨ j U y if there is a position k ≥ j such that

(r, i) ⊨ j for all i = j … k and (r, k) ⊨ y

q Trace r satisfies j iff (r, 1) ⊨ j

Multiple Eventualities

Example: Multi-agent system where multiple goals have to be satisfied
§ Goal1: Robot 1 has finished its mission
§ Goal2: Robot 2 has finished its mission

Spec: (Eventually Goal1) ∧ (Eventually Goal2)
§ Trace r satisfies this spec if there are positions i, j such that

(r, i) ⊨ Goal1 and (r, j) ⊨ Goal2
§ No specific order specified in which goals are achieved

Spec: Eventually [Goal1 ∧ (Eventually Goal2)]
§ Trace r satisfies this spec if there are positions i, j such that

i ≤ j and (r, i) ⊨ Goal1 and (r, j) ⊨ Goal2

Spec: Eventually [Goal1 ∧ Next (Eventually Goal2)]
§ Trace r satisfies this spec if there are positions i, j such that

i < j and (r, i) ⊨ Goal1 and (r, j) ⊨ Goal2

Recurrence and Persistence

Repeatedly j = Always Eventually j
§ i.e., for every j, (r, j) ⊨ Eventually j
§ i.e., for every j, there is an i ≥ j such that (r, i) ⊨ j
§ i.e., there are infinitely many positions where j holds

Persistently j = Eventually Always j
§ i.e., for some j, (r, j) ⊨ Always j
§ i.e., there is a j such that for all i ≥ j , (r, i) ⊨ j
§ i.e., formula j becomes true eventually and stays true

The two patterns are logical duals:
a trace r satisfies Repeatedly j iff it falsifies Persistently ¬j

Examples

Trace:
x: 0 1 2 3 4 5 …
y: 0 1 0 1 0 1 …

Repeatedly (y = 0)

Persistently (x ≥ 10)

Always [even(x) ⇒ Next odd(x)]

Repeatedly prime(x)

Requirements-based Design

Given:
§ Input/output interface of system C to be designed
§ Model E of the environment
§ LTL-formula j over I/O variables and state variables

of the environment model E

Design problem:
Fill in details of C so that every infinite execution of
the composition of E and C satisfies j

Applies to synchronous as well as asynchronous designs

Leader Election

Requirements refer to output variable statusn of each node n

Liveness: Each node n eventually decides its status

Eventually (statusn = leader ∨ statusn = follower)

Safety: For distinct nodes m, n, if m decides to be a leader at some point
then n can never be a leader

Eventually (statusm = leader) ⇒ Always ¬(statusn = leader)

Railroad Controller

Requirements refer to mode variables of trains and I/O variables (signals)

Safety: The two trains should not be on bridge simultaneously
Always ¬(modeW = bridge ∧ modeE = bridge)

Liveness 1: West train gets on bridge repeatedly
Repeatedly (modeW = bridge)

Not a good spec (why?), no controller can satisfy this

Liveness 2: A waiting west train is eventually allowed to enter
Always [(modeW = wait) ⇒ Eventually (signalW = green)]

Note: LTL helps clarify ambiguities in English sentences
Formula is not satisfied by our controller (what is a counter-example?)
What if east train never leaves the bridge?

Railroad Controller

Liveness 2’: Conditioned upon east train not staying on bridge forever
Repeatedly ¬(modeE = bridge) ⇒

Always[(modeW = wait) ⇒ Eventually (signalW = green)]
Does either of the two controllers in Chapter 3 satisfy this?

Liveness 3: If west train is waiting then eventually either it is allowed to
enter bridge or east train is on bridge (implies absence of deadlocks)

Always [(modeW = wait) ⇒
Eventually (signalW = green ∨ modeE = bridge)]

Writing precise requirements is challenging but crucial!

Credits

Notes based on Chapter 5 of

Principles of Cyber-Physical Systems
by Rajeev Alur
MIT Press, 2015

