
CS:4980
Foundations of Embedded Systems

Copyright 2014-20, Rajeev Alur and Cesare Tinelli.
Created by Cesare Tinelli at the University of Iowa from notes originally developed by Rajeev Alur at the University of
Pennsylvania. These notes are copyrighted materials and may not be used in other course settings outside of the
University of Iowa in their current form or modified form without the express written permission of one of the copyright
holders. During this course, students are prohibited from selling notes to or being paid for taking notes by any person or
commercial firm without the express written permission of one of the copyright holders.

Asynchronous Model
Part II

Shared Memory Programs

AtomicReg nat x := 0

Process P1

nat y1 := 0

y1 := x

x := y1 + 1

Process P2

nat y2 := 0

y2 := x

x := y2 + 1

Declaration of shared variables
+ code for each process

Key restriction:
each process statement either

§ changes local variables,
§ reads (single) shared var x, or
§ writes shared var x

Execution model: execute one step
of one of the processes

Can be formalized as asynchronous
processes

Shared Memory Processes

q Processes P1 and P2 communicate by reading/writing shared variables

q Each shared variable s can be modeled as an asynchronous process Ps

For each such s, Ps has output channels s.read1, s.read2, and input
channels s.write1, s.write2; its state stores the value of s

q In example above:
§ To write x, P1 synchronizes with Px on x.write1 channel
§ To read x, P2 synchronizes with Px on x.read2 channel

x.write1

P1

Px

Py

P2
y.write1

y.read2

y.write2

x.read2

x.write2

y.read1

x.read1

Atomic Registers

Note: By def. of asynchronous model, each step of above model is either
1. internal to P1 or P2, or
2. involves exactly one synchronization (read or write of one shared

variable by one of the processes)

x.write1

P1

Px

Py

P2
y.write1

y.read2

y.write2

x.read2

x.write2

y.read1

x.read1

Atomic Registers

Atomic register: Basic primitives are read and write
§ To increment such a register, a process first needs to read and

then write back incremented value
§ But these two are separate steps, and register value can be

changed in between by another process

x.write1

P1

Px

Py

P2
y.write1

y.read2

y.write2

x.read2

x.write2

y.read1

x.read1

Shared Memory Programs

AtomicReg nat x := 0

Process P1

nat y1 := 0

y1 := x

x := y1 + 1

Process P2

nat y2 := 0

y2 := x

x := y2 + 1

Data Races

AtomicReg nat x := 0

Process P1

nat y1 := 0

R1: y1 := x

W1: x := y1 + 1

Process P2

nat y2 := 0

R2: y2 := x

W2: x := y2 + 1

What are the possible values of x
after all steps are executed?

x can be 1 or 2
Possible executions:

R1, R2, W1, W2
R1, W1, R2, W2
R1, R2, W2, W1
R2, R1, W1, W2
R2, W2, R1, W1
R2, R1, W2, W1
…

Data race: Concurrent accesses to shared object where the result
depends on order of execution.

It should be avoided!

Exercise
AtomicReg nat x := 1

What are the possible values for the shared register x?

Process P1

nat u1, v1

u1 := x

v1 := x

x := u1 + v1

Process P2

nat u2, v2

u2 := x

v2 := x

x := u2 + v2

Mutual Exclusion Problem

Critical Section: part of code that an asynchronous process should
execute without interference from others

§ Critical section can include code to update shared objects/database

Mutual Exclusion Problem: design code to be executed before entering
critical section by each process

§ Coordination using shared atomic registers
§ No assumption about how long a process stays in critical section
§ A process may want to enter critical section repeatedly

Process P1

Entry Code

Critical Section

To be designed

Process P2

Entry Code

Critical Section

Safety requirement: both processes should not be in critical section
simultaneously (can be formalized using invariants)

Progress requirement: if any process is trying to enter, then some process
should be able to enter (no deadlocks)

Process P1

Entry Code

Critical Section

To be designed

Process P2

Entry Code

Critical Section

Mutual Exclusion Problem

Mutual Exclusion: First Attempt

AtomicReg bool flag1 := 0 ; flag2 := 0

Process P1

Idle
flag1 := 1

Try
flag2 = 0 ?

Crit

else

flag1 := 0

Process P2

Idle
flag2 := 1

Try
flag1 = 0 ?

Crit

else

flag2 := 0

Is this correct?

Peterson’s Mutual Exclusion Protocol
AtomicReg bool flag1 := 0 ; flag2 := 0 ; {1, 2} turn

Process P1

Idle
flag1 := 1

Try1
turn = 2 ?

Crit

else

flag1 := 0

turn := 1
Try2 Try3

flag2 = 0 ?

else

Process P2

Idle
flag2 := 1

Try1
turn = 1 ?

Crit

else

flag2 := 0

turn := 2
Try2 Try3

else

flag1 = 0 ?

Test&Set Register

q Beyond atomic registers:
If in one atomic step, can do more than just read or write
then we have stronger synchronization primitives

q Test&Set Register: holds a Booleans value
§ Reset operation: changes the value to 0
§ Test&Set operation: returns the old value and changes value to 1
§ If two processes are competing to execute Test&Set on a register

with value 0, one will get back 0 and other will get back 1

q Modern processors support strong atomic operations
§ Ex: compare-and-swap; load-linked-store-conditional
§ Implementation is expensive (compared to read/write operations)

Mutual Exclusion using Test&Set Register
Test&SetReg free := 0

Process P1

Idle Try
t&s(free)=0?

Crit

else

reset(free)

Is this correct?
Process P2

Idle Try
t&s(free)=0?

Crit

else

reset(free)

Another Look at Asynchronous Execution Model

q Tasks Ax and Ay execute in an arbitrary order
Motivation: If we establish that all possible executions of this design
satisfy some requirement R, then every implementation of P will satisfy R

q Are the following realistic executions?
• (0,0) –Ax–> (1,0) –Ax-> (2,0) –Ax-> (3,0) … –Ax-> (95,0) –Ax-> …
• (0,0) –Ax–> (1,0) –Ax–> (2,0) –Ay–> (2,1) –Ay–> (2,2) … –Ay–> (2,95) …

q Does the system satisfy the following requirement:
In every execution, values of both x and y eventually exceed 10

Process P
nat x := 0 ; y := 0

Ax: x := x + 1

Ay: y := y + 1

Fairness Assumption

Fairness assumption for a task
§ Assumption about the underlying platform/scheduler
§ Informally, an infinite execution is unfair to a task

if the task does not get a chance to execute

q Unfair to Ay: (0,0) -Ax-> (1,0) -Ax-> (2,0) -Ax-> (3,0) … -Ax-> (95,0) …

q Unfair to Ax: (0,0) -Ax-> (1,0) -Ax-> (2,0) -Ay-> (2,1) -Ay-> (2,2) … (2,95) …

q Fairness assumptions restrict the set of possible executions to realistic
ones without putting concrete bounds on relative speeds

nat x := 0 ; y := 0

Ax: x := x + 1

Ay: y := y + 1

P

Formalizing Fairness

Definition 0. An infinite execution is fair to a task A, if the task A is
executed repeatedly (i.e., infinitely often) during that execution

q Is this execution fair to task Ay? How about By?
(0,0) -Bx-> (1,0) -Bx-> (2,0) -Bx-> (3,0) -Bx-> … (105,0) -Bx-> …

q After first step, the task By is not enabled, and so cannot be
executed. This execution should not be considered unfair

Definition 1 (Weak fairness). An infinite execution is fair to a task A if,
repeatedly, either A is executed or is disabled
(If enabled then eventually executed or disabled)

nat x := 0 ; y := 0

Ax : x := x + 1

Ay : y := y + 1

Process P1
nat x := 0 ; y := 0

Bx : x := x + 1

By : x = 0 -> y := y + 1

Process P2

Weak vs Strong Fairness

q Is this execution fair to task Ay?
(0,0) -Ax-> (1,0) -Ax-> (2,0) -Ax-> (3,0) … -Ax-> (105,0) -Ax-> …

q According to weak fairness, yes, because Ay is disabled infinitely often

Definition 2 (Strong fairness). An infinite execution is fair to a task A, if
task A is either executed repeatedly or disabled continuously from a
certain step onwards
(If repeatedly enabled then repeatedly executed)

q Above execution is weakly fair to task Ay, but not strongly fair

nat x := 0 ; y := 0

Ax : x := x + 1

Ay : even(x) -> y := y + 1

Process P3

Fairness Assumption

q Fairness assumptions for an asynchronous process P:
For each output and internal task, either
§ no assumption,
§ weak fairness assumption, or
§ strong fairness assumption

q Restricts the set of possible infinite executions
§ If weak/strong fairness is assumed for a task A, then task scheduling

should be such that executions are weakly/strong fair to A

q Affects whether process P meets a requirement R or not:
§ Maybe not all executions satisfy R, but all fair executions satisfy it

Requirements under Fairness Assumptions

Under what fairness assumptions do P1 and P3 satisfy these requirements?
q R1: eventually, x + y > 10

§ P1 and P3 both satisfy this, without any fairness assumption
q R2: eventually, x > 10

§ P1 with weak fairness for Ax, P3 with weak fairness for Bx

q R3: eventually, y > 10
§ P1 with weak fairness for Ay, P3 with strong fairness for By

q R4: eventually, x > y
§ neither, no matter what fairness assumption we make!

nat x := 0 ; y := 0
Ax : x := x + 1

Ay : y := y + 1

Process P1
nat x := 0 ; y := 0
Bx : x := x + 1

By : even(x) -> y := y + 1

Process P3

Asynchronous Merge

Requirement: whenever an input message is received,
it is eventually output

Under which fairness assumptions does the requirement hold?

Weak fairness for tasks B1 and B2 suffices

msg in1

msg out

queue(msg) x1 := null ; x2 := null

A1: ¬Full(x1) -> Enqueue(in1, x1)

msg in2

A2: ¬Full(x2) -> Enqueue(in2, x2)

B1: ¬Empty(x1) -> out := Dequeue(x1)

B2: ¬Empty(x2) -> out := Dequeue(x2)

Merge

Unreliable (Unbounded) FIFO

Tasks A and B model normal input/output behavior

msg in msg out

queue(msg) x := null

A: Enqueue(in, x)

B : ¬Empty(x) -> out := Dequeue(x)

B1: ¬Empty(x) -> Dequeue(x)

B2: ¬Empty(x) -> out := Front(x)

Task B1 models message loss

Task B2 models message duplication

What are natural fairness assumptions for these tasks?

Strong fairness for B, no assumptions for B1 and B2

Fairness Assumptions for Mutual Exclusion Protocol

AtomicReg bool flag1 := 0 ; flag2 := 0 ; {1,2} turn
Process P1

Idle
flag1 := 1

Try1
turn=2 ?

Crit

else

flag1 := 0

turn := 1
Try2 Try3flag2=1?

else

Requirement: if a process ever wants to enter critical section,
it eventually will

What fairness assumptions should we make?

Weak fairness for highlighted steps/tasks

Fairness Summary
q A fairness assumption is an assumption made about the underlying

platform or scheduler
§ The weaker the assumption, the better

q It restricts the set of possible infinite executions, allowing the
satisfaction of more requirements
§ Does not affect the set of reachable states and safety properties
§ Does not change underlying coordination

q For each output and internal task, we can assume weak or strong
fairness, as needed
§ Strong fairness is needed if the task can switch between enabled

and disabled due to the execution of other tasks

q Key distinction: Fairness assumption for tasks (which ensures tasks get
executed as expected) vs “fairness” requirements for protocols (which
are about high-level goals of the problem being solved)

Exercise: Solution

AtomicReg nat x := 1

What possible values can x take?

Process P1

nat u1, v1

u1 := x

v1 := x
x := u1 + v1

Process P2

nat u2, v2

u2 := x

v2 := x

x := u2 + v2

Every possible natural number!

u1 := 1

v1 := 1

x := 2

u1 := 2

v1 := 2

x := 4

u2 := 1

v2 := 2

x := 3

u2 := 3

v2 := 4

x := 7

Credits

Notes based on Chapter 4 of

Principles of Cyber-Physical Systems
by Rajeev Alur
MIT Press, 2015

