
CS:4980
Foundations of Embedded Systems

Copyright 2014-20, Rajeev Alur and Cesare Tinelli.
Created by Cesare Tinelli at the University of Iowa from notes originally developed by Rajeev Alur at the University of
Pennsylvania. These notes are copyrighted materials and may not be used in other course settings outside of the
University of Iowa in their current form or modified form without the express written permission of one of the copyright
holders. During this course, students are prohibited from selling notes to or being paid for taking notes by any person or
commercial firm without the express written permission of one of the copyright holders.

The Asynchronous Model
Part I

Asynchronous Model

Recall: In the Synchronous Model, all components execute in
lock-step in a sequence of (logical) rounds

In the Asynchronous Model instead the speeds at which different
components execute are independent, or unknown
Examples:

§ Processes in a distributed system
§ Threads in a typical operating system

Key design challenge: how to achieve coordination?

Example: Asynchronous Buffer

Input channel: in of type Boolean

Output channel: out of type Boolean

State variable: x; can be empty (null) or hold 0/1 value

Initialization: x := null

Input task: Ai processing input: x := in

Output task: Ao producing outputs:
Guard: x != null Update: out := x ; x := null

bool in bool out
{ 0, 1, null } x := null

Ai : x := in

Ao : x != null –> { out := x ; x := null }

Example: Asynchronous Buffer

Execution Model: only one task per step is executed
§ processing of inputs (by input tasks) is decoupled from

production of outputs (by output tasks)
§ A task can be executed if it is enabled, i.e., its guard holds
§ If multiple tasks are enabled, one of them is executed non-

deterministically

Sample Execution:

in?0
0

out!0
null

in?1
1

in?0
0

out!0
null

bool in bool out
{ 0, 1, null } x := null

Ai : x := in

Ao : x != null –> { out := x ; x := null }

null

Example: Asynchronous Increments

nat x := 0 ; y := 0

Ax : x := x + 1

Ay : y := y + 1

q An internal task does not involve input or output channels
§ Can have guard condition and update code
§ the execution of internal task in an internal action

q In each step, execute, either task Ax or task Ay

q Sample Execution:
(0,0) → (1,0) → (1,1) → (1,2) → (1,3) → … → (1,105) → (2, 105) → …

q For every m, n, state {x := m, y := n} is reachable
§ Interleaving model of concurrency

Asynchronous Merge

msg in1

msg out

queue(msg) x1 := [] ; x2 := []

A1 : ¬Full(x1) –> Enqueue(in1, x1)

msg in2

A2 : ¬Full(x2) –> Enqueue(in2, x2)

B1 : ¬Empty(x1) –> out := Dequeue(x1)

B2 : ¬Empty(x2) –> out := Dequeue(x2)

Sequence of messages on output channel is an arbitrary
merge of sequences of values on the two input channels

Asynchronous Merge

At every step, exactly one of the four tasks executes,
provided its guard holds

Sample Execution:
([], []) → ([5], []) → ([5], [0]) → ([5], []) → ([5,6], []) → ([5,6], [3]) → ([6], [3]) → …
out: // // 0 // // 5

msg in1

msg out

queue(msg) x1 := [] ; x2 := []

A1 : ¬Full(x1) –> Enqueue(in1, x1)

msg in2

A2 : ¬Full(x2) –> Enqueue(in2, x2)

B1 : ¬Empty(x1) –> out := Dequeue(x1)

B2 : ¬Empty(x2) –> out := Dequeue(x2)

What does this component do?

int in1

int out

int+null x1 := null ; x2 := null

A1 : x1 = null –> x1 := in1

int in2

A2 : x2 = null –> x2 := in2

B: (x1 != null) & (x2 != null) –>
{ out := x1 + x2 ;

x1 := null ;
x2 := null }

Components are now called processes

Asynchronous Process P

q Set I of (typed) input channels
§ Defines the set of inputs of the form x?v,

where x is an input channel and v is a value

q Set O of (typed) output channels
§ Defines the set of outputs of the form y!v,

where y is an output channel and v is a value

q Set S of (typed) state variables
§ Defines the set of states QS

q An initialization Init
§ Defines the set Init of initial states

Asynchronous Process P (cont.)
q Set of input tasks, each associated with an input channel x

§ Guard condition over state variables S
§ Update code from read-set S ∪ {x} to write-set S
§ Defines a set of input actions of the form s – x?v –> t

q Set of output tasks, each associated with an output channel y
§ Guard condition over state variables S
§ Update code from read-set S to write-set S ∪ {y}
§ Defines a set of output actions of the form s – y!v –> t

q Set of internal tasks
§ Guard condition over state variables S
§ Update code from read-set S to write-set S
§ Defines a set of internal actions of the form s – e –> t

Asynchronous Gates

bool in bool out

Why design asynchronous circuits?
§ Input can be changed even before the effect propagates through the

entire circuit
§ Can be faster than synchronous circuits, but design is more complex

Example: modeling a NOT gate
§ When input changes, gate enters unstable state until it gets a chance

to update its output value
§ Later input changes in unstable state lead to a hazard state with

unpredictable behavior

Asynchronous NOT Gate as an ESM

Sample Execution:
(stable,0) –out!0–> (stable,0) –in?0–> (unstable,0) –e–>

(stable,1) –out!1–> (stable,1) –in?1–> (unstable,1) –out!1–>
(unstable,1) –in?0–> (hazard,1) –out!0–> (hazard,1) –out!1–>
(hazard,1) …

How to ensure that the gate does not enter hazard state?
Environment should wait to see a change in value of output
before toggling input again

Executing an ESM

Each mode-switch corresponds to a task

Examples:
§ Input task: (mode = stable & in = x) –> mode := unstable
§ Output task: (mode = stable) –> out := x
§ Internal task: (mode = unstable) –> { x := ¬x ; mode := stable }
§ …

Block Diagrams

q Visually the same as the synchronous case

q However, their execution semantics is different !

DoubleBuffer

q Instantiation: Create two instances of Buffer
§ output of Buffer1 = input of Buffer2 = variable temp

q Parallel composition: Asynchronous concurrent execution of Buffer1
and Buffer2

q Variable hiding: Encapsulation (temp becomes local)

bool in bool temp

Buffer1

bool out

Buffer2

(Buffer[out ↦ temp] | Buffer[in ↦ temp]) \ temp

Composing Buffer1 and Buffer2

q Inputs, outputs, states, and initialization for composition
obtained as in synchronous case

q What are the tasks of the composition?
Production of output on temp by Buffer1 synchronized with
consumption of input on temp by Buffer2

bool in bool temp

Buffer1

bool out

Buffer2

{ 0, 1, null } x1 := null { 0, 1, null } x2 := null

A1i : x1 := in A2i : x2 := temp
A1o : (x1 != null) –>

{ temp := x1 ;
x1 := null }

A2o : (x2 != null) –>
{ out := x2 ;

x2 := null }

Compiled DoubleBuffer

bool in bool out

{ 0, 1, null } x1 := null ; x2 := null

A1i : x1 := in

A2o : (x2 != null) –> { out := x2 ; x2 := null }

B (A1o + A2i) : (x1 != null) –>
{ local bool temp

temp := x1 ; x1 := null ; x2 := temp }

bool in bool temp bool out
{ 0, 1, null } x1 := null { 0, 1, null } x2 := null

A1i : x1 := in A2i : x2 := temp
A1o : (x1 != null) –>

{ temp := x1 ;
x1 := null }

A2o : (x2 != null) –>
{ out := x2 ;

x2 := null }

Buffer1 Buffer2

Asynchronous Composition
q Given asynchronous processes P1 and P2, how to define P1 | P2 ?

q In each step of execution, only one task is executed
§ Concepts such as await-dependencies, compatibility of

interfaces are not relevant

Sample Case 1: (see textbook for complete definition)
If

§ y is an output channel of P1 and input channel of P2,
§ A1 is an output task of P1 for y with code: Guard1 –> Update1,
§ A2 is an input task of P2 for y with code: Guard2 –> Update2,

then
§ P1 | P2 has an output task for y with code:

(Guard1 & Guard2) –> Update1 ; Update2

Asynchronous Composition
q Given asynchronous processes P1 and P2, how to define P1 | P2 ?

q In each step of execution, only one task is executed
§ Concepts such as await-dependencies, compatibility of

interfaces are not relevant

Sample Case 2: (see textbook for complete definition)
If

§ y is an input channel of P1 and input channel of P2,
§ A1 is an input task of P1 for y with code: Guard1 –> Update1,
§ A2 is an input task of P2 for y with code: Guard2 –> Update2,

then
§ P1 | P2 has an output task for y with code:

(Guard1 & Guard2) –> Update1 ; Update2

Execution Model: Another View

q A single step of execution
§ Execute an internal task of one of the processes, or
§ Process input on an external channel x: execute an input task for x

of every process to which x is an input, or
§ Execute an output task for an output y of some process, followed

by an input task for y for every process to which y is an input

q If multiple choices are enabled, choose one non-deterministically
§ No constraint on relative execution speeds

Asynchronous Execution

What can happen in a single round of this asynchronous model P?
§ P1 synchronizes with the environment to accept input on in
§ P2 synchronizes with the environment to send output on out
§ P1 performs some internal computation (one of its internal tasks)
§ P2 performs some internal computation (one of its internal tasks)
§ P1 produces output on x, followed by its immediate consumption by P2
§ P2 produces output on y, followed by its immediate consumption by P1

in
x

P1
out

P2

y

P

Asynchronous Merge

msg in1

msg out

queue(msg) x1 := null ; x2 := null

A1: ¬Full(x1) –> Enqueue(in1, x1)

msg in2

A2: ¬Full(x2) –> Enqueue(in2, x2)

B1: ¬Empty(x1) –> out := Dequeue(x1)

B2: ¬Empty(x2) –> out := Dequeue(x2)

msg in1

msg in2

msg temp

msg in3
msg out

Merge

Merge1 Merge2

Merge[out ↦ temp] | Merge[in1 ↦ temp][in2 ↦ in3]

Asynchronous Execution

Note: Interprocess communication is blocking:
if no task of P2 associated with x is enabled in a round then P1 cannot
write to x in that round

A process P is non-blocking if for every input channel in and state s of P,
some task of P associated with in is enabled in state s

In designs with non-blocking processes, a receiving process is often
expected to send an acknowledgement back to the sender of a message
m that it did receive m

in
x

P1
out

P2

y

P

Credits

Notes based on Chapter 4 of

Principles of Cyber-Physical Systems
by Rajeev Alur
MIT Press, 2015

