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Safety Requirements
Part II



A Brief Detour into Computational Complexity

Goal: Classify computational problems in terms of (roughly) how many 
basic operations it takes to solve the problem, as function of input size

Example 1: Finding maximum of a list of numbers
§ Time complexity is linear: O(n)

Example 2: Sorting a list of numbers
§ Algorithm (e.g. selection-sort) with doubly-nested loop: O(n2)
§ More efficient algorithm (e.g. quicksort) possible: O(n log n)



A Brief Detour into Computational Complexity

Goal: Classify computational problems in terms of (roughly) how many 
basic operations it takes to solve the problem, as function of input size

Example 3: Expression evaluation. Given 
1. an expression e (with not/or/ and as operations) over Boolean vars, 

and 
2. an assignment a of 0/1 values to vars, 
determine whether e evaluates to 1 or 0. 
Linear-time O(n)

Example 4: Boolean satisfiability. Given an expression e, determine if there 
is an assignment a to vars that makes the expression evaluate to 1

§ Naïve algorithm: Evaluate e on every possible assignment a
§ Exponentially many choices for a: algorithm is O(2k), k = no. of vars



The Class P

q Polynomial-time algorithm means an algorithm with time complexity 
such as O(n), O(n log n), O(n2), O(n3), or O(nc), for constant c

q A problem is in P if there is a polynomial-time algorithm to solve it

q Examples:
§ Finding maximum
§ Sorting
§ Expression evaluation
§ Finding shortest path in a graph

q P is the class of tractable (i.e., efficiently solvable) problems
§ Problem can be solved exactly 
§ Solution will scale reasonably well as input size grows
§ In principle, O(n) is better than O(n2)



NP-Complete Problems
q SAT: Given an expression e over Boolean variables, check if there exists 

an assignment of 0/1 values to vars for which e evaluates to 1
§ No proof that SAT is in P (no known polynomial-time algorithm)
§ No proof that SAT is not in P

q Cook (1972): SAT is NP-complete

q Hundreds of problems equivalent to SAT
§ Hamiltonian Path: Is there a path in a graph from source to 

destination that visits each vertex exactly once
§ Max Clique: Given a graph, find largest subset of vertices such 

that there is an edge between every pair of vertices in this set

q Grand Challenge Open Problem : Is P = NP?
§ If you find a polynomial-time algorithm for SAT, then P = NP, and 

many other problems will have polynomial-time algorithms
§ If you prove SAT is not in P, then P != NP, and many other 

problems then provably don’t have efficient algorithms 



NP-Completeness Continued

q Known algorithms for SAT are exponential-time in the worst-case, but
§ Highly efficient implementations, SAT solvers, exist
§ Can handle millions of variables
§ Many practical problems solved by encoding into SAT

q Key feature of NP problems such as SAT: suffices to find one satisfying 
assignment

q This does not hold for all intractable problems
§ Validity: Given a Boolean expression e, is it the case that e evaluates 

to 1 no matter what values we give to its variables

q Many complexity classes beyond NP: coNP, PSPACE, Exptime, …
§ Problems may require exponential-time (or more) to solve
§ Not all exponential-time problems are equal.



(Un)Decidability
q Some problems cannot be solved by a computer at all!

q Fundamental Theorem of CS (Alan Turing, 1936):
§ The Halting problem for Turing machines is undecidable

There is no program that takes as its input an arbitrary program C
and an arbitrary input x, and determines if C terminates on x

q Intuition: If a program could analyze other programs exactly, then it 
can analyze itself, and this suffices to set up a logical contradiction!

q A surprisingly undecidable problem: Does a given a polynomial  
(e.g., x3 + 2xy2 - 15xy + 156) have integer roots?

q Decidable Problems: There exists a program (or Turing machine) that 
solves the problem correctly (gives the right answer and stops)
§ Includes problems in P as well as intractable classes such as NP, 

Exptime, etc.



Back To Invariant Verification Problem

Theorem: The invariant verification problem is undecidable. 
Proof idea: undecidable problems for Turing machines can be recast as 
invariant verification problems for transition systems with integer state 
variables 

Transition System T

Property P

yes

no/bug
Verifier

Is P an invariant of T?



Finite-State Invariant Verification Problem

Theorem: The invariant verification problem for finite-state systems 
is decidable

Proof sketch: If T has k Boolean state vars, then total number of states is 
2k.
Verifier can systematically search through all possible states.
Complexity is exponential. More precisely, it is PSPACE, a class of 
problems harder than NP-complete problems such as SAT.

Finite-State
Transition System T

Property P

yes

no/bug
Verifier

Is P an invariant of T?



P

§ Sorting
§ Expression Evaluation
§ Shortest Paths ..

NP
§ SAT
§ Hamiltonian Path
§ Max Clique ..

PSPACE

Invariant 
verification 
for finite-
state 
systems

Decidable

Invariant 
verification
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