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Safety Requirements
Part I



Requirements

Desirable properties of the executions of the system
§ Informal: either implicit, or stated in natural language
§ Formal: stated explicitly in a mathematically precise way

Model/design/system meets the requirements if every execution 
satisfies them

Clear separation between 
§ requirements, what needs to be implemented, and 
§ system, how it is implemented



Requirements

High assurance / safety-critical  systems are typically provided with 
precise requirements

Verification Problem:
Given a formally specified requirement R and a system/model C, 
prove or disprove that C satisfies R



Safety and Liveness Requirements

q A safety requirement states that a system always stays within good
states (i.e., nothing bad ever happens)
§ Leader election: it is never the case that two nodes consider 

themselves to be leaders
§ Collision avoidance: Distance between two cars is always greater 

than some minimum threshold

q A liveness requirement states that a system eventually achieves its goal 
(i.e., something good eventually happens)
§ Leader election: Each node eventually makes a decision
§ Cruise controller: Actual speed eventually equals desired speed

q Formalization and analysis techniques for safety and liveness differ 
significantly. 

q We will start with safety



Transition Systems

State space  +  Initial states  + Transitions between states 



Definition of Transition System

Syntax: a transition system T has
1. A set S of (typed) state variables
2. An initialization Init for state variables
3. A description Trans of how to move from one state to the next

Semantics:
1. Set QS of states
2. Set [Init] of initial states, a subset of QS

3. Set [Trans] of transitions, a subset of QS x QS

Synchronous reactive components, EMS, programs, and computational 
systems in general, all have an underlying transition system



Switch Transition System

off on
int x := 0

(press = 0) ?

(press = 1) ?

(press = 0  &  x < 10)  ->  x := x + 1

(press = 1 | x >= 10)  ->  x := 0

State variables: 
{off, on} mode, int x

(off, 0)

(off, 17)

(on, 2)

(on, 56)

Initialization: 
mode := off ; x := 0

Transitions:
(off, n) -> (off, n) ; 
(off, n) -> (on, n) ; 
(on, n) -> (on, n+1) if n < 10 ;
(on, n) -> (off, 0) 

(on, 3)

(on, 0)

(on, 17)
• Input/output variables become local vars
• Values for input vars are chosen non-

deterministically



Euclid’s GCD Algorithm

loop stop
nat x := m ; y := n

(x > 0  &  y > 0) ->
if (x > y) then x := x - y else y := y - x

¬(x  > 0  &  y > 0) ->
if (x = 0) then x := y

Classical program to compute greatest common divisor of 
(non-negative) input numbers m and n



Reachable States

off on
int x := 0

(press = 0) ?

(press = 1) ?

(press = 0  &  x < 10) -> x := x + 1

(press = 1  |  x >= 10) -> x := 0

(off, 17)

(on, 1)

(on, 56)

(on, 10)

(off, 0)

(on, 0)

(on, 17)

…

reachable

unreachable



Reachable States of Transition Systems

A state s of a transition system T is reachable if there is an execution 
starting in an initial state of T and ending in s



Invariants

(off, 17)

(on, 1)

(on, 56)

(on, 10)

(off, 0)

(on, 0)

(on, 17)
(off, 10)

§ A property of a transition system T is a Boolean-valued expression P over 
state variables

§ Property P is an invariant of T if every reachable state satisfies P
§ Some invariants for T above:          x <= 10,   x <= 50,   mode = off  =>  x = 0
§ Some non-invariants for T above:  x < 10,   mode = off 

state space of T

reachable states of T

…



Invariants

q We express safety requirements for a transition system T as 
properties P of T’s state variables
§ If P is invariant then T is safe (wrt P)
§ If P is not invariant, then some bad state, satisfying ¬P, is 

reachable 
(the execution leading to such a state is a counterexample)

q Leader election: 
(rn = N) => (idn = max I)      I : set of identifiers of all nodes

q Euclid’s GCD Program:
(mode = stop) => (x = gcd(m, n))



Formal Verification

Model/Program

Requirements

yes/proof

no/cex
Verifier

Grand challenge: automate verification as much as possible! 



Analysis Techniques

q Dynamic Analysis (runtime)
§ Execute the system, possibly multiple times with different inputs
§ Check if every execution meets the desired requirement

q Static Analysis (design time)
§ Analyze the source code or the model for possible bugs

q Trade-offs
§ Dynamic analysis is incomplete but accurate (checks real system, 

and discovered bugs are real bugs)
§ Static analysis can be complete and can catch design bugs early

but many static analysis techniques are not scalable         
(solution: analyze approximate models, can lead to false 
warnings)



Invariant Verification

Simulation
§ Simulate the model, possibly multiple times with different inputs
§ Easy to implement, scalable, but no correctness guarantees

Deductive verification
§ Construct a proof that system satisfies the invariant
§ Usually requires manual effort (but partial automation often possible)

Model checking
§ Automatically explores all reachable states to check invariants
§ Not scalable, but current tools can analyze many real-world designs 

(relies on many interesting theoretical advances)

Note: Newer techniques are blurring the differences between deductive 
verification and model checking



Proving Invariants

q Given a transition system T = (S, Init, Trans), and a property P, 
prove that all reachable states of T satisfy P

q Inductive definition of reachable state:
§ All initial states are reachable in 0 transitions
§ If a state s is reachable in k transitions and s -> t is a transition, 

then the state t is reachable in k+1 transitions
§ Reachable = Reachable in n transitions, for some n

q Prove: for all n, states reachable in n transitions satisfy P
§ Base case: Show that all initial states satisfy P
§ Inductive case:

1. Assume that a state s satisfies P
2. Show that if s -> t is a transition then t must satisfy P



Recall: Inductive Proofs in Arithmetic

q To show that a statement P holds for all natural numbers n, 
§ Base case: Prove that P holds for n = 0
§ Assume that P holds for an arbitrary natural k
§ Using the assumption, prove that P holds for k+1

q Example statement: For all n, 
(0 + 1 + 2 + … + n)  =  n(n+1)/2



Inductive Invariant

A property P is an inductive invariant of transition system T if 
1. Every initial state of T satisfies P
2. If a state satisfies P and s -> t is a transition of T, then t

satisfies P

Note:
1. If P is an inductive invariant of T, then all reachable states of T

must satisfy P, and thus, it is an invariant of T

2. There are invariants which are not inductive



Proving Inductive Invariant Example (1)

Consider transition system T given by 
§ State variable int x, initialized to 0
§ Transition description given by   if (x < m) then x := x+1

for some m >= 0

Is the property P :  0 <= x <= m  an inductive invariant of T?

q Base case: Consider initial state x := 0.  Check that it satisfies P
q Inductive case:

§ Consider an arbitrary state s, suppose s(x) = a
§ Assume that s satisfies P, that is, assume 0 <= a <= m
§ Consider the state t obtained by executing a transition from s
§ If a < m then t(x) = a+1, else t(x) = a
§ In either case, 0 <= t(x) <= m
§ So t satisfies the property P, and the proof is complete



Proving Inductive Invariant Example (2)

Consider transition system T given by 
§ State variables int x, y;   initially:  x := 0 ; y := m   for some m > 0
§ Transition description given by  if (x < m) then { x := x+1 ; y := y-1 }

Is the property P :  0 <= y <= m  an inductive invariant of T?

q Base case: Consider initial state (x := 0, y := m). Check that it satisfies P
q Inductive case:

§ Consider an arbitrary state s with x = a and y = b
§ Assume that s satisfies P, that is, assume 0 <= b <= m
§ Consider the state t obtained by executing a transition from s
§ If a < m then t(y) = b-1, else t(y) = b
§ Can we conclude that 0 <= t(y) <= m?
§ No! When b = 0, t(y) is negative.
§ The proof fails. In fact, P is not an inductive invariant of T!



Why did the proof fail?
q Consider the state s with x = 0 and y = 0 

§ State s satisfies P:  0 <= y <= m   
§ Executing a transition from s leads to state t with x = 1 and y = -1
§ State t does not satisfy P

q However, the state s in above argument is not reachable!

q Cause of failure: The property P did not capture correlation between 
the state components x and y

q Solution: Inductive Strengthening
§ Consider property Q : (0 <= y <= m) & (x + y = m)
§ Property Q implies property P
§ While P is not an inductive invariant, Q is!
§ It follows that all reachable states must satisfy P



Proving Inductive Invariant Example (3)
Consider transition system T given by 

§ State variables int x, y;   initially:  x := 0 ; y := m   for some m > 0
§ Transition description given by if (x < m) then { x := x+1 ; y := y-1 }

Property Q : (0 <= y <= m) & (x + y = m)

q Base case: Consider initial state (x := 0, y := m). Check that it satisfies Q
q Inductive case:

§ Consider an arbitrary state s with x = a and y = b
§ Assume that s satisfies Q, that is, assume 0 <= b <= m and a+b = m
§ Consider the state t obtained by executing a transition from s
§ If a < m then t(x) = a+1 and t(y) = b-1, else t(x) = a and t(y) = b
§ But if a < m, since b = m-a, then b > 0, and thus b-1 >= 0
§ In either case, the condition (0 <= t(y) <= m)  &  (t(x)+t(y) = m) holds

q Conclusion: Property Q is an inductive invariant



Proof Rule for Proving Invariants
q To establish that a property P is an invariant of transition system T

q Find an inductive strengthening of P: a property Q such that
1. Q implies P (i.e., every state satisfying Q also satisfies P)
2. Q is an inductive invariant:

§ all initial states satisfies Q
§ For any states s, t such as s satisfies Q and s -> t is a 

transition, t satisfies Q

q This is a sound and complete strategy for establishing invariants
Sound: If P has an inductive strengthening Q then P is indeed 
invariant
Complete: If P is an invariant, then it has an inductive 
strengthening Q  (however, it may not be representable in the chosen 
property language)



Inductive Strengthening

Initial
States

Reachable
States

Property P

Strengthening Q



Correctness of GCD

q Property P : gcd(x, y) = gcd(m, n)  
q Verify that P is an inductive invariant (Exercise)
q Captures the core logic of the program: even though x and y

are updated at every step, their gcd stays unchanged
q When switching to stop, if x is 0, then gcd(x, y) is y; if y = 0, 

then gcd(x, y) = x, and thus x = gcd(m, n) upon switching to stop
q Note: (mode = stop) => (x = gcd(m, n)) is invariant, but not 

inductive

loop stop
nat x := m ; y := n

(x > 0 & y > 0) ->
if (x > y) then x := x-y else y := y-x

¬(x > 0 & y > 0) ->
if (x = 0) then x := y



Transition System for Leader Election

For each node n

Initial state:
int idn := n ;   int rn := 1

State transition update:
§ Round counters rn : 

if rn < N then rn := rn + 1
§ Identifiers rn : 

idn := max {idn, max {idm | m is connected to n}}



Invariants for Leader Election

Initial state: for all n, int idn := n; int rn := 1
State transition update: for all n,

§ if rn < N then rn := rn + 1
§ idn := max {idn, max {idm| m is connected to n}}

Property: for all n, idn >= n
§ Obviously an invariant; is it an inductive invariant?

Property: id1 ∈ ID with ID set of identifiers of all nodes
§ Not an inductive invariant! 
§ During a transition s -> t, value of id1 in state t may equal 

value of idm in state s, but property says nothing about s(idm)
§ What about: forall n, idn ∈ ID ? (Exercise)



Correctness of Leader Election

We expect idn to be maximum of all identifiers after N rounds
Property:  for all n,  (rn= N) => (idn = max ID)

§ Not inductive

Goal: Find inductive strengthening capturing co-relation among all 
state variables at intermediate steps
Observe: for all nodes n, after k rounds  rn is k and idn is max of ids 
of nodes that are < k hops away from n
Property: 

P1 : for all m, n,  rm = rn

& P2 : for all n,  idn = max { c | distance(c, n) < rn }

Let’s prove that P1 & P2 is an inductive invariant!



Proof: Base Case

Initial state s: for each node n, s(idn) = n and s(rn) = 1

Goal: Show that the following both hold in this initial state s
P1 :  for all m, n,  rm = rn

P2 :  for all n,  idn = max { c | distance(c, n) < rn }

P1 ) s(rm) = s(rn) = 1;  so P1 holds

P2 ) Consider a node n, we want to show
s(idn) = max { c | distance(c, n) < 1 }

The only node c with distance(c, n) < 1 is n itself, and s(idn) = n, 
so P2 holds



Proof: Inductive Case
§ Consider an arbitrary state s, and assume both P1 and P2 hold
§ Let s(rn) = k, for each node n
§ For k < N, consider a successor state t of s
§ Goal: Show that both P1 and P2 hold in state t
§ To show P1 , consider two nodes m and n

§ t(rm) = s(rm) + 1 = k+1, and similarly, t(rn) = k+1, 
so P1 holds in t

§ To show P2, consider a node n, we want to show
t(idn) = max { c | distance(c, n) < k+1 }

§ Assumption 1 (from inductive hypothesis): for all m,
s(idm) = max { c | distance(c, m) < k}

§ Assumption 2 (from the transition relation):
t(idn) = max { s(idn), max {s(idc) | c is linked to n } }



Proof: Inductive Case (Continued)

§ Let h = max { c | distance(c, n) < k+1 }  and d = distance(h, n) 
§ Goal: show that t(idn) = h
§ Since d < k+1, either d < k or d = k

Case (d < k)
§ By Assumption 1, s(idn) cannot be < h, so must be h
§ By Assumption 2, t(idn) cannot be < s(idn), so must be h
Case (d = k)
§ By basic properties of graphs, there must be a node m such 

that distance(h, m) = k - 1 and m is linked to n
§ By Assumption 1, s(idm) cannot be < h, so must be h
§ By Assumption 2, t(idn) cannot be < s(idm), so must be h

§ The proof is complete!



Summary of Invariants
q General way to formulate and prove safety properties of 

programs/models/systems

q Inductive invariant:
§ Holds in initial states
§ Is preserved by every transition

q To be inductive, property needs to capture relevant relationships 
among all state variables

q Benefit of finding inductive invariants:
§ Correctness reasoning becomes local (one needs to think 

about what happens in one step)
§ Tools available to check if a property is an inductive invariant

q Area of active research: can a tool discover them automatically?



Automated Invariant Verification

Transition System T

Property P

yes

no/bug
Verifier

Is P an invariant of T?

Can such a verifier exist? 
If so, what is the computational complexity of the verification 
problem? 



Solving Invariant Verification
Establishing system safety is important, but there is no generally efficient 
procedure to solve the verification problem

Solution 1: Simulation-based analysis
§ Simulate the model multiple times, and check that each state 

encountered on each execution satisfies desired safety property
§ Useful, practical in real-world, but gives only partial guarantee 

(and is known to miss hard-to-find bugs)

Solution 2: Semi-automated formal proofs using inductive invariants
§ Only partial tool support possible, so requires considerable effort
§ Recent successes: verified microprocessor, web browser, JVM 

Solution 3: Exhaustive search through state-space
§ Fully automated, but with scalability limitations (may not work!)
§ Complementary to simulation, increasingly used in industry
§ Two approaches: On-the-fly enumerative search, symbolic search
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