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Synchronous Model
Part III



Synchronous Design

Component (de)composition can be stratified 



Bottom-Up Design

q Design basic components

q Compose existing components in block-diagrams to build 
new components

q Maintain a library of components, and try to reuse at 
every step

q Canonical example: Synchronous circuits



Combinational Circuits

bool in
out := ¬in

bool out
SyncNot

in out awaits in

SyncNot

bool in1
out := in1 & in2

bool out
SyncAnd

bool in2

in1 out awaits in1, in2

SyncAnd

in2



Design OR gate

in1
out awaits in1, in2

SyncOr

in2

Recall: A ∨ B  ≡ ¬(¬A ∧ ¬B)



Synchronous Latch

Latch

reset = 1  ->  x := 0

set = 1  ->  x := 1

(set = 0 & reset = 0) ?

set

reset

out

out := x 

A1: x ↦ out

A2: x,set,reset ↦ x

bool x := choose {0, 1}

Deterministic?
Input-enabled?



Designing Counter Circuit (1)

Are await-dependencies acyclic?

1BitCounter



Designing Counter Circuit (2)

3BitCounter



Top-Down Design

q Starting point: Inputs and outputs of desired design C

q Models/assumptions about the environment C operates in

q Informal/formal description of desired behavior of C

q Example: Cruise Controller



CruiseController

event second

Driver

event cruise

event inc

event dec

Clock

Sensor event rotate

Display

nat speed event(nat) cruiseSpeed

ThrottleController

event(real) F

Top-Down Design of a Cruise Controller



Decomposing CruiseController



Tracking Speed

q Inputs: Events rotate and second

q Output: current speed

q Computes  the number of rotate events per second

event rotate nat speed
MeasureSpeed

event second



Tracking Speed

event rotate
nat speed

MeasureSpeed

event second

nat c := 0, s := 0

if rotate? then c := c + 1 ;
if second? then {

s := round(k*c) ; 
c := 0

} ;
speed := s



Tracking Cruise Settings

q Inputs from driver: commands to turn the cruise-control on/off and 
increment/decrement desired cruising speed from driver 

q Input from MeasureSpeed: current speed 
q Output: Desired cruising speed
q What assumptions can we make about simultaneity of events? 
q Should we include safety checks to keep desired speed within 

bounds?

event cruise
event(nat) cruiseSpeed

SetSpeed

nat speed
event inc
event dec



Tracking Cruise Settings

event cruise

event(nat) cruiseSpeed

SetSpeed

nat speed

event inc

event dec

nat s := minSpeed ; bool on := 0

if cruise? then { 
on := ¬on;
if (speed < minSpeed) then s := minSpeed
else if (speed > maxSpeed) then s := maxSpeed
else s := speed

}
else if (dec? & on & s > minSpeed) then s := s - 1
else if (inc? & on & s < maxSpeed) then s := s + 1 ;
if on then cruiseSpeed := s



Controlling Speed

q Inputs: Actual speed and desired speed
q Output: Pressure on the throttle
q Goal: Make actual speed equal to the desired speed (while 

maintaining key physical properties such as stability)
q Design relies on theory of dynamical systems (Chapter 6)

nat speed event(real) F

ControlSpeed

event(nat) cruiseSpeed



Synchronous Networks

q Time divided into slots, with all nodes synchronized
q In one round, each node can get a message from each neighbor
q Design abstraction for simplicity
q Some implementation platforms directly support such a time-

triggered network: WirelessHART (control), CAN (automotive)

1 8

5 3



Modeling Synchronous Networks

Assume: Each link is directed and connects two nodes
Alternative: Broadcast communication (everyone can listen)

Assume: Communication is reliable
Alternative: Messages may be lost, collisions in broadcast

Network is a directed graph
Each link can carry one message in each slot

1 8

5 3



Component for a Network Node

q A node does not know network topology
§ Each node has unique identifier, myID
§ Does not know which nodes it is connected to
§ Useful for network identification problems

q Interface for each node:
§ Output is an event carrying msg (may be absent in some rounds)
§ Input is a set of msg (delivered by the network)
§ Output should not await input

set(msg)  in nat id := myID event(msg) out

NetworkNode



Modeling Synchronous Networks

q Description of each node does not depend on the network

q Network itself is modeled as a synchronous component

q Description of network depends on the network graph

§ Input variables: for each node n, outn of type event(msg)

§ Output variables: for each node n, inn of type set(msg)

q Network is a combinational component (simply routes messages)

1 8

5 3



set(msg)  in5

nat id := 5 event(msg) out5

set(msg)  in1

nat id := 1 event(msg) out1

set(msg)  in3

nat id := 3 event(msg) out3

set(msg)  in8

nat id := 8 event(msg) out8

Network



set(msg)  in5

event(msg) out5

set(msg)  in1

event(msg) out1

set(msg)  in3

event(msg) out3

set(msg)  in8

event(msg) out8

Network

1 8

5 3

§ Value of in1 should equal the set 
of messages sent on links 
incoming to node 1

§ Sample code:
in1 := EmptySet ;
if out5? then Insert(out5, in1) ;
if out8? then Insert(out8, in1) ;

§ Update of in5, in3, in8 is similar



Leader Election

Classical coordination problem: Elect a unique node as a leader
§ Exchange messages to find out which nodes are in network
§ Output the decision using the variable status

Requirements:
1. Eventually every node sets status to either leader or follower
2. Only one node sets its status to leader

set(msg)  in nat id := myID

NetworkNode

event(msg) out

{unknown, leader, follower}  status



Leader Election: Flooding Algorithm

Goal: Elect the node with highest identifier as the leader

Strategy: Transmit to your neighbors the highest id you have 
encountered so far

Implementation:
§ Maintain a state variable, id, initialized to your own identifier
§ In each round, transmit value of id on output
§ Receive input values from the network
§ If a value higher than id received, then update id



Execution of Leader Election
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Leader Election

q When should a node stop and make a decision?
q When it knows that enough rounds have elapsed for message from 

every node to reach every other node
q Correctness depends on following assumptions:

1. Network is strongly connected: for every pair of nodes m and n, 
there is a directed path from node m to node n

2. Each node knows an upper bound N on total number of nodes
q Implementation of decision rule:

§ Maintain a state variable r to count rounds, initially 1
§ In each round, r is incremented
§ When r = N, decide

q What should the decision be?



Node Component for Leader Election

if (r < N) then
{ out := id ; r := r+1 } 

A1: r, id ↦ r, out

A2: r,id,in ↦ id, status

nat id := myID ; r := 1

set(msg)  in

event(msg) out

{ unknown,
leader,
follower }  

status
if (in != Empty) then id := max (id, max in) ; 

if (r < N) then status := unknown
else if (id = myID) then status := leader

else status := follower 



Leader Election

q Does a node really have to wait for N rounds?

q If a node receives a value higher than its own identifier, can it 
stop participating (i.e. transmit no more messages)?

q Does a node have to transmit in each round? When can it 
choose to skip a round without affecting correctness?
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