CS:4980
 Foundations of Embedded Systems

Synchronous Model

Part II

Copyright 2014-20, Rajeev Alur and Cesare Tinelli.
Created by Cesare Tinelli at the University of lowa from notes originally developed by Rajeev Alur at the University of Pennsy/vania. These notes are copyrighted materials and may not be used in other course settings outside of the University of lowa in their current form or modified form without the express written permission of one of the copyright holders. During this course, students are prohibited from selling notes to or being paid for taking notes by any person or commercial firm without the express written permission of one of the copyright holders.

Block Diagrams

Structured modeling

- How do we build complex models from simpler ones?
- What are basic operations on components?

DoubleDelay

Design a component with

- Input: bool in
- Output: bool out
- Output in round n should equal input in round $\mathrm{n}-2$

DoubleDelay

[Instantiation: Create two instances of Delay

- Output of Delay1 = Input of Delay2 = Variable temp

P Parallel composition: Concurrent execution of Delay1 and Delay2

- Encapsulation/Hiding: Hide variable temp

Instantiation / Renaming

\square Delay1 $=$ Delay[out \mapsto temp]

- Explicit renaming of input/output variables
- Implicit renaming of state variables
- Components (I, O, S, Init, React) of Delay1 derived from Delay
\square Delay2 $=$ Delay[in \mapsto temp]

Parallel Composition (or Product)

DoubleDelay

- DoubleDelay = Delay1 || Delay2
- Execute both concurrently

When can two components be composed?
\square How to define parallel composition precisely?

- Input/output/state variables, initialization, and reaction description of composite defined in terms of components
- Can be viewed as an algorithm for compilation

Compatibility of Components C1 and C2

Allowed:

\square input variables in common
\square output variable of one is input variable of the other

Disallowed:

\square output variables in common

- a unique component must be responsible for values of any given variable
\square state variables in common
- but state variables can be implicitly renamed to avoid conflicts

Outputs of Product

Delay1 || Delay2

The output variables of Delay1 || Delay2 are \{temp, out\}
Note: by default, every output is available to outside world

If C 1 has output vars O 1 and C 2 has output vars O 2 then the product C1 || C2 has output vars $01 \cup 02$

Inputs of Product

The input variables of Delay1 || Delay2 are $\{\mathrm{in}\}$

- Even though temp is input of Delay2, it is not an input of product

If C1 has input vars I1 and C2 has input vars I2 then C1 || C2 has input vars $(\mathrm{I} \cup \mathrm{I}) \backslash(\mathrm{O} 1 \cup \mathrm{O} 2)$

- A variable is an input of the product iff it is an input of one of the components, and not an output of the other

States of Product

Delay1 || Delay2

The state variables of Delay1 || Delay2 are $\{\times 1, \times 2\}$
If C_{1} has state vars S_{1} and C_{2} has state vars S_{2} then $C_{1}| | C_{2}$ has state vars $S_{1} \cup S_{2}$ (recall that $S_{1} \cap S_{2}=\varnothing$)

- A state of the product is a pair $\left(s_{1}, s_{2}\right)$, where s_{1} is a state of C_{1} and s_{2} is a state of C_{2}
- If C_{1} has n_{1} states and C_{2} has n_{2} states then $C_{1}| | C_{2}$ has $n_{1} \cdot n_{2}$ states

Initial States of Product

Delay1 || Delay2

The initialization code Init for Delay1 || Delay2 is x1 := 0 ; x2 := 0

- Initial states are $\{(0,0)\}$

If C_{1} has initialization Init ${ }_{1}$ and C_{2} has initialization Init ${ }_{2}$ then $\mathrm{C}_{1}| | \mathrm{C}_{2}$ has initialization Init $_{1}$; Init $_{2}$ (or, equivalently, Init $_{2}$; lnit_{1})
\square Order does not matter
[Init] is the Cartesian product $[\text { Init }]_{1} \times\left[\right.$ nit $\left._{2}\right]$

Reactions of Product

Delay1 || Delay2

Execution of Delay1 || Delay2 within a round:

- environment provides input value for variable in
- execute code temp := x1 ; x1 := in of Delay1
- execute code out :=x2 ; x2 := temp of Delay2

Final Composition

- Instantiation:

Delay[out \mapsto temp] and Delay[in \mapsto temp]

- Parallel composition: Delay[out \mapsto temp] || Delay[in \mapsto temp]
- Output hiding: (Delay[out \mapsto temp] || Delay[in \mapsto temp]) \temp

Feedback Composition

[When

- some output of C_{1} is an input of C_{2}, and
- some output of C_{2} is an input of C_{1}, how do we order the executions of reaction React $_{1}$ and React ${ }_{2}$?

Should such composition be allowed at all?

Feedback Composition

For Relay: its output b awaits its input a For Inverter: its output a awaits its input b

In product, we cannot order the execution of the two
In the presence of such cyclic dependency, composition is disallowed
Intuition: combinational cycles should be avoided

Feedback Composition

\square For Delay, it is possible to produce output without waiting for its input by executing the assignment $b:=x$
\square Reaction code for Delay || Inverter could be b:=x ; a := $\square \mathrm{b} ; \mathrm{x}:=\mathrm{a}$
\square Goal: Refine specification of reaction description so that await dependencies among output-input variables are easy to detect

- Ordering of code-blocks during composition should be easy

Interfaces

Interface = (input variables, output variables, await dependencies)

Interface: SplitDelay

Decomposing the reaction into tasks eliminates in this case the await dependency between out and in

SplitDelay Interface

Example Interface

Example Interface

Back to Parallel Composition

bool a awaits b

Relay and Inverter are not compatible since there is a cycle in their combined await dependencies

Composing SplitDelay and Inverter

SplitDelay and Inverter are compatible since there is no cycle in their combined await dependencies

Note: Based on their interfaces, Delay and Inverter are not compatible

Component Compatibility Definition

] Given components:

- C_{1} with input vars I_{1}, output vars O_{1}, and awaits-dep. relation $>_{1}$
- C_{2} with input vars I_{2}, output vars O_{2}, and awaits-dep. relation $>_{2}$
- C_{1} and C_{2} are compatible if
- they have no common outputs: sets O_{1} and O_{2} are disjoint
- the relation $>_{1} \cup>_{2}$ of combined await-dependencies is acyclic
- Parallel Composition is allowed only for compatible components

Defining the Product

Composing SplitDelay and Inverter

SplitDelay || Inverter

Parallel Composition Definition

- Given compatible components
- $\mathrm{C}_{1}=\left(\mathrm{I}_{1}, \mathrm{O}_{1}, \mathrm{~S}_{1}\right.$, Init $_{1}$, React $\left._{1}\right)$ and
- $C_{2}=\left(I_{2}, O_{2}, S_{2}\right.$, Init $_{2}$, React $\left._{2}\right)$,
what's the reaction of product $\mathrm{C}=\mathrm{C}_{1} \| \mathrm{C}_{2}$?
[Suppose React ${ }_{1}$ and React $_{2}$ are specified using resp.
- local vars L_{1}, set of tasks P_{1}, and precedence $<_{1}$, and
- local vars L_{1}, set of tasks P_{2}, and precedence $<_{2}$
- Reaction description for product C has
- local variables $L_{1} \cup L_{2}$
- set of tasks $P_{1} \cup P_{2}$
- precedence edges $<_{1} \cup<_{2} \cup\left\{\right.$ edges between tasks A_{1} and A_{2} of different components if A_{2} reads a var written by $\left.\mathrm{A}_{1}\right\}$

Parallel Composition Definition

Why is the parallel composition operation well-defined?

- Can the new edges make task graph of the product cyclic?
- Recall: Await-dependencies among I/O variables of compatible components must be acyclic
- Proposition 2.1: Awaits compatibility implies acyclicity of product task graph
\square Bottom line: Interfaces capture enough information to define parallel composition in a consistent manner
- Aside: It is possible to define more flexible (but more complex) notions of awaits dependency

Properties of Parallel Composition

Commutative: $\mathrm{C}_{1}\left\|\mathrm{C}_{2}=\mathrm{C}_{2}\right\| \mathrm{C}_{1}$ (when $\mathrm{C}_{1}, \mathrm{C}_{2}$ are compatible)
\square Associative: $\left(C_{1}| | C_{2}\right)\left|\left|C_{3}=C_{1}\right|\right|\left(C_{2}| | C_{3}\right)$

- If compatibility check fails in one case, will also fail in others
\square Bottom line: order of composition does not matter
I. If C_{1} has n_{1} states and C_{2} has n_{2} states then $C_{1}| | C_{2}$ has $n_{1} \cdot n_{2}$ states
- If both C_{1} and C_{2} are deterministic, so is $\mathrm{C}_{1}| | \mathrm{C}_{2}$

I If both C_{1} and C_{2} are event-triggered, is $C_{1}| | C_{2}$ guaranteed to be event-triggered?

Output Hiding

- Let C be a component and y one of its output vars
- The result of hiding y in C, written as $C \backslash y$, is a component identical to C except that y is no longer an output variable but a local variable
- This is useful for limiting the scope or a component (encapsulation)

DoubleDelay

Credits

Notes based on Chapter 2 of

Principles of Cyber-Physical Systems
by Rajeev Alur
MIT Press, 2015

