
CS:4980
Foundations of Embedded Systems

Copyright 2014-20, Rajeev Alur and Cesare Tinelli.
Created by Cesare Tinelli at the University of Iowa from notes originally developed by Rajeev Alur at the University of
Pennsylvania. These notes are copyrighted materials and may not be used in other course settings outside of the
University of Iowa in their current form or modified form without the express written permission of one of the copyright
holders. During this course, students are prohibited from selling notes to or being paid for taking notes by any person or
commercial firm without the express written permission of one of the copyright holders.

Synchronous Model
Part II

Block Diagrams

Structured modeling
§ How do we build complex models from simpler ones?
§ What are basic operations on components?

DoubleDelay

Design a component with
§ Input: bool in
§ Output: bool out
§ Output in round n should equal input in round n-2

bool in bool x := 0

out := x ; x := in

bool out

Delay

bool in bool out

Delay

DoubleDelay

q Instantiation: Create two instances of Delay
§ Output of Delay1 = Input of Delay2 = Variable temp

q Parallel composition: Concurrent execution of Delay1 and Delay2
q Encapsulation/Hiding: Hide variable temp

bool in bool temp

Delay1

bool out

Delay2

Instantiation / Renaming

q Delay1 = Delay[out ↦ temp]
§ Explicit renaming of input/output variables
§ Implicit renaming of state variables
§ Components (I, O, S, Init, React) of Delay1 derived from Delay

q Delay2 = Delay[in ↦ temp]

bool in bool x := 0

out := x ; x := in

bool out

Delay
bool in bool x1 := 0

temp := x1 ; x1 := in

bool temp

Delay1

bool temp bool x2 := 0

out := x2 ; x2 := temp

bool out

Delay2

Parallel Composition (or Product)

q DoubleDelay = Delay1 || Delay2
§ Execute both concurrently

q When can two components be composed?
q How to define parallel composition precisely?

§ Input/output/state variables, initialization, and reaction
description of composite defined in terms of components

§ Can be viewed as an algorithm for compilation

bool in bool temp

Delay1

bool out

Delay2

DoubleDelay

Compatibility of Components C1 and C2

Allowed:
q input variables in common
q output variable of one is input variable of the other

Disallowed:
q output variables in common

§ a unique component must be responsible for values of any given variable
q state variables in common

§ but state variables can be implicitly renamed to avoid conflicts

Outputs of Product

q The output variables of Delay1 || Delay2 are {temp, out}
Note: by default, every output is available to outside world

q If C1 has output vars O1 and C2 has output vars O2 then the product
C1 || C2 has output vars O1 È O2

bool in bool temp

Delay1

bool out

Delay2

bool x1 := 0

temp := x1 ; x1 := in

bool x2 := 0

out := x2 ; x2 := temp

Delay1 || Delay2

Inputs of Product

q The input variables of Delay1 || Delay2 are {in}
§ Even though temp is input of Delay2, it is not an input of product

q If C1 has input vars I1 and C2 has input vars I2 then C1 || C2 has input vars
(I1 È I2) \ (O1 È O2)
§ A variable is an input of the product iff it is an input of one of the

components, and not an output of the other

bool in bool temp

Delay1

bool out

Delay2

bool x1 := 0

temp := x1 ; x1 := in

bool x2 := 0

out := x2 ; x2 := temp

Delay1 || Delay2

States of Product

q The state variables of Delay1 || Delay2 are {x1, x2}

q If C1 has state vars S1 and C2 has state vars S2 then C1 || C2 has state vars
S1 È S2 (recall that S1 Ç S2 = Æ)
§ A state of the product is a pair (s1, s2), where s1 is a state of C1 and s2

is a state of C2

§ If C1 has n1 states and C2 has n2 states then C1 || C2 has n1 × n2 states

bool in bool temp

Delay1

bool out

Delay2

bool x1 := 0

temp := x1 ; x1 := in

bool x2 := 0

out := x2 ; x2 := temp

Delay1 || Delay2

Initial States of Product

q The initialization code Init for Delay1 || Delay2 is x1 := 0 ; x2 := 0
§ Initial states are { (0,0) }

q If C1 has initialization Init1 and C2 has initialization Init2 then C1 || C2 has
initialization Init1 ; Init2 (or, equivalently, Init2 ; Init1)

q Order does not matter
[Init] is the Cartesian product [Init]1 ´ [Init2]

bool in bool temp

Delay1

bool out

Delay2

bool x1 := 0

temp := x1 ; x1 := in

bool x2 := 0

out := x2 ; x2 := temp

Delay1 || Delay2

Reactions of Product

Execution of Delay1 || Delay2 within a round:
§ environment provides input value for variable in
§ execute code temp := x1 ; x1 := in of Delay1
§ execute code out := x2 ; x2 := temp of Delay2

bool in bool temp

Delay1

bool out

Delay2

bool x1 := 0

temp := x1 ; x1 := in

bool x2 := 0

out := x2 ; x2 := temp

Delay1 || Delay2

Final Composition

§ Instantiation: Delay[out ↦ temp] and Delay[in ↦ temp]
§ Parallel composition: Delay[out ↦ temp] || Delay[in ↦ temp]
§ Output hiding: (Delay[out ↦ temp] || Delay[in ↦ temp]) \ temp

bool in bool temp

Delay1

bool out

Delay2

bool x1 := 0

temp := x1 ; x1 := in

bool x2 := 0

out := x2 ; x2 := temp

(Delay[out ↦ temp] || Delay[in ↦ temp]) \ temp

Feedback Composition

q When
§ some output of C1 is an input of C2, and
§ some output of C2 is an input of C1,
how do we order the executions of reaction React1 and React2?

q Should such composition be allowed at all?

C1

C2

Feedback Composition

For Relay: its output b awaits its input a
For Inverter: its output a awaits its input b

q In product, we cannot order the execution of the two
q In the presence of such cyclic dependency, composition is disallowed
q Intuition: combinational cycles should be avoided

Relay

b := a

Inverter

a := ¬b

bool bbool a

Feedback Composition

q For Delay, it is possible to produce output without waiting for its input
by executing the assignment b := x

q Reaction code for Delay || Inverter could be b := x ; a := ¬b ; x := a

q Goal: Refine specification of reaction description so that await
dependencies among output-input variables are easy to detect
§ Ordering of code-blocks during composition should be easy

Delay

b := x ; x := a

Inverter
bool bbool a

bool x := 0

a := ¬b

Interfaces

bool in bool x := 0

out := x ; x := in

bool out

Delay

Interface = (input variables, output variables, await dependencies)

bool in bool x := 0

out := x ; x := in

bool out

Delay

A: x,in ↦ out,x

bool in bool out awaits in

Delay Interface

Interface: SplitDelay

bool in bool out

SplitDelay Interface

bool in

bool x := 0

out := x

bool out

SplitDelay

A1: x ↦ out A2: in ↦ x

x := in

Decomposing the reaction into tasks eliminates in
this case the await dependency between out and in

Example Interface

in1 out1

A1: x1,in1 -> y,x1

in2

out2

out3

x1, x2

local y

A2: x2 -> out2

A3: x1,in1 -> out1,x1

A4: in2,y,out2 -> x2,out3

awaits in1

awaits in1, in2

Example Interface

in1 out1

A1: x1,in1 -> y,x1

in2

out2

out3

x1, x2

local y

A2: x2 -> out2

A3: x1,in1 -> out1,x1

A4: in2,y,out2 -> x2,out3

awaits in1

awaits in1, in2

Back to Parallel Composition

Relay and Inverter are not compatible since there is
a cycle in their combined await dependencies

Relay

Inverter
bool b awaits abool a awaits b

Composing SplitDelay and Inverter

SplitDelay

Inverter
bool bbool a awaits b

Note: Based on their interfaces, Delay and Inverter are not compatible

SplitDelay and Inverter are compatible since there is
no cycle in their combined await dependencies

Component Compatibility Definition

q Given components :
§ C1 with input vars I1, output vars O1, and awaits-dep. relation >1

§ C2 with input vars I2, output vars O2, and awaits-dep. relation >2

q C1 and C2 are compatible if
§ they have no common outputs: sets O1 and O2 are disjoint
§ the relation >1 È >2 of combined await-dependencies is acyclic

q Parallel Composition is allowed only for compatible components

Defining the Product

bool in bool temp

Delay1

bool out

Delay2

bool x1 := 0

temp := x1 ; x1 := in

Delay1 || Delay2

bool in

bool out

bool temp

bool x1 := 0 ; x2 := 0

temp:=x1 ; x1:= in

A1 : in, x1 ↦ temp, x1

out:=x2 ; x2:= temp

A2 : temp, x2 ↦ out, x2

A1 : in, x1 ↦ temp, x1

bool x2 := 0

out := x2 ; x2 := temp

A2 : temp, x2 ↦ out, x2

Composing SplitDelay and Inverter

bool in awaits out

bool x := 0

out := x

bool out

SplitDelay

A1: x ↦ out A2: in ↦ x

x := in

A: out ↦ in

in := ¬out

Inverter

SplitDelay || Inverter

bool out

bool in

bool x := 0

out := x

A1 : x ↦ out

x := in

A2 : in ↦ x

A: out ↦ in

in := ¬out

Parallel Composition Definition

q Given compatible components
§ C1 = (I1, O1, S1, Init1, React1) and
§ C2 = (I2, O2, S2, Init2, React2),
what’s the reaction of product C = C1 || C2?

q Suppose React1 and React2 are specified using resp.
§ local vars L1, set of tasks P1, and precedence <1, and
§ local vars L1, set of tasks P2, and precedence <2

q Reaction description for product C has
§ local variables L1 È L2

§ set of tasks P1 È P2

§ precedence edges <1 È <2 È {edges between tasks A1 and A2 of
different components if A2 reads a var written by A1}

Parallel Composition Definition

q Why is the parallel composition operation well-defined?
§ Can the new edges make task graph of the product cyclic?

q Recall: Await-dependencies among I/O variables of compatible
components must be acyclic

q Proposition 2.1: Awaits compatibility implies acyclicity of product
task graph

q Bottom line: Interfaces capture enough information to define parallel
composition in a consistent manner

q Aside: It is possible to define more flexible (but more complex)
notions of awaits dependency

Properties of Parallel Composition

q Commutative: C1 || C2 = C2 || C1 (when C1, C2 are compatible)

q Associative: (C1 || C2) || C3 = C1 || (C2 || C3)

§ If compatibility check fails in one case, will also fail in others

q Bottom line: order of composition does not matter

q If C1 has n1 states and C2 has n2 states then C1 || C2 has n1 × n2 states

q If both C1 and C2 are deterministic, so is C1 || C2

q If both C1 and C2 are event-triggered, is C1 || C2 guaranteed to be
event-triggered?

Output Hiding

q Let C be a component and y one of its output vars
§ The result of hiding y in C, written as C \ y, is a component

identical to C except that y is no longer an output variable but
a local variable

q This is useful for limiting the scope or a component
(encapsulation)

DoubleDelay

bool in
bool temp

Delay1

bool out

Delay2

bool x1 := 0

temp := x1 ; x1 := in

bool x2 := 0

out := x2 ; x2 := temp

(Delay1 || Delay2) \ temp

bool in bool out

bool x1 := 0 ; x2 := 0

temp := x1 ; x1 := in

A1 : in, x1 ↦ temp, x1

out := x2 ; x2:= temp

A2 : temp, x2 ↦ out, x2

A1 : in, x1 ↦ temp, x1 A2 : temp, x2 ↦ out, x2

local bool temp

Credits

Notes based on Chapter 2 of

Principles of Cyber-Physical Systems
by Rajeev Alur
MIT Press, 2015

https://www.cis.upenn.edu/~alur/pcps.html

