
CS:4980
Foundations of Embedded Systems

Synchronous Model
Part I

Copyright 2014-20, Rajeev Alur and Cesare Tinelli.
Created by Cesare Tinelli at the University of Iowa from notes originally developed by Rajeev Alur at the University of
Pennsylvania. These notes are copyrighted materials and may not be used in other course settings outside of the
University of Iowa in their current form or modified form without the express written permission of one of the copyright
holders. During this course, students are prohibited from selling notes to or being paid for taking notes by any person
or commercial firm without the express written permission of one of the copyright holders.

Model-Based Design

q Block Diagrams
§ Widely used in industrial design
§ Tools: Simulink, Modelica, LabView, RationalRose, …

q Key question: what is the execution semantics?
§ What is a base component?
§ How do we compose components to form complex components?

Functional vs. Reactive Computation

q Functional model of computation (classical one):
§ Given inputs, a program produces outputs
§ Desired functionality described by a mathematical function
§ Example: sorting of names; shortest paths in a weighted graph
§ Theory of computation provides foundation
§ Canonical model: Turing machines

q Reactive model of computation:
§ System continually interacts with its environment via inputs and outputs
§ Desired behavior described by sequences of observed input/output

interactions
§ Example: cruise controller in a car

Sequential vs. Concurrent Computation

q Sequential model of computation (classical):
§ A computation is a sequence of instructions executed one at a time
§ Well understood and canonical model: Turing machines

q Concurrent model of computation
§ Multiple components/processes exchanging information and evolving

concurrently
§ Logical vs. physical concurrency
§ Broad range of formal models for concurrent computation
§ Key distinction: synchronous vs. asynchronous

Synchronous Models

q All components execute in a sequence of (logical) rounds, in lock-step

q Example: Component blocks in digital hardware circuit
§ Clock drives all components in a synchronized manner

q Key idea in synchronous languages:
§ Design system based on such synchronous round-based computation
§ Benefit: design is simpler (why?)
§ Challenge: ensure synchronous execution even if implementation

platform is not single-chip hardware

First Example: Delay

q Input variable: in of Boolean type ({0,1})

bool in bool outbool x := 0

out := x ; x := in

q Output variable: out of Boolean type

q State variable: x of Boolean type

q Initialization of state variables (x := 0)

q Execution: in each round, in response to an input,
§ produce output (out := x) and
§ update state (x := in)

Delay: Round-based Execution

1. Initialize state x to 0

bool in bool x := 0

out := x ; x := in

2. Repeatedly execute rounds. In each round:
a. Read current value of the input variable in
b. Execute the update code to produce output out and change state

Sample execution:

0
1 / 0

1
1 / 1

1
0 / 1

0
0 / 0

0
1 / 0

1

bool out

in / outx

Synchrony Hypothesis

q Assumption: Time needed to execute the update code is negligible
compared to delay between successive input arrivals

q Logical abstraction:
§ Execution of update code takes zero time
§ Reception of inputs and production of outputs occur

simultaneously

q Composition: when multiple components are composed, all execute
synchronously and simultaneously

q Implementation: must ensure that this design-time assumption is
valid!

Components in an Automobile

q Components need to communicate and coordinate over a shared bus

q Design abstraction: Synchronous time-triggered communication
§ Time is divided into slots
§ In each slot, exactly one component sends a message over the bus

q CAN protocol implements time-triggered communication

Model Definition

q Syntax: How to describe a component?
§ Variable declarations, types, state updates, …

q Semantics: What does the description mean?
§ Defined using mathematical concepts such as sets, functions, …

q Formal foundations: Semantics is defined precisely
§ Necessary for tools for analysis, compilation, verification, …
§ Defining formal semantics for a real language is challenging
§ But concepts can be illustrated on a toy modeling language

Model Definition

Our modeling language: Synchronous Reactive Components

§ Representative of many academic proposals
§ Foundations of Industrial-strength synchronous languages:

Esterel, Lustre, VHDL, Verilog, Stateflow, …

Synchronous Reactive Component

bool in
bool x := 0

out :=x ; x := in

bool out

Delay

State variables:
Declaration + Initialization

Update code:
To be executed in each round

Inputs Outputs

SRC Definition (1): Inputs

bool in

q Each component has a set I of input variables
§ Variables have types. E.g. bool, int, nat, real, {on, off}, …

q Input: Valuation of all the input variables
§ The set of inputs is denoted QI

q For Delay
§ I contains a single variable in of type bool
§ The set of inputs is { {in := 0}, {in := 1} }

q Example: I contains two variables: int x , bool y
§ Each input is a pair: (integer value for x and 0/1 value for y)

InputsDelay

SRC Definition (2): Outputs

q Each component has a set O of typed output variables
q Output: Valuation of all the output variables

§ The set of outputs is denoted QO

q For Delay
§ O contains a single variable out of type bool
§ The set of outputs is { {out := 0}, {out := 1} }

Delay
bool out

Outputs

SRC Definition (3): States

q Each component has a set S of typed state variables
q State: Valuation of all the state variables

§ The set of states is denoted QS

q For Delay
§ S contains a single variable x of type bool
§ The set of states is { {x := 0}, {x := 1} }

q State is internal and maintained across rounds

Delay
bool outbool x

State variables:
Declaration

SRC Definition (4): Initialization

q Initialization of state variables specified by Init
§ Sequence of assignments to state variables

q Semantics of initialization:
§ The set [Init] of initial states, which is a subset of QS

q For Delay
§ Init is given by the code fragment x := 0
§ The set [Init] of initial states is { {x := 0} }

q Component can have multiple (alternative) initial states
§ Example: bool x := choose {0, 1}

Delay
bool outbool x := 0

State variables:
Declaration + Initialization

SRC Definition (5): Reactions

q Execution in each round given by code fragment React
§ Sequence of assignments and conditionals that assign output

variables and update state variables
q Semantics of update:

§ The set [React] of reactions, where each reaction is of the form
(old) state - input / output -> (new) state

§ [React] is a subset of QS × QI × QO × QS

q For Delay:
§ React is given by the code fragment out := x ; x := in
§ There are 4 reactions: 0 - 0/0 -> 0; 0 - 1/0 -> 1; 1 - 0/1 -> 0; 1 - 1/1 -> 1

Delay
bool out

out :=x ; x:= in Update code:
To be executed in
each round

Multiple Reactions

bool in bool x := 0

out := x ; x := choose { in, x }

bool out

q During update, x is either updated to input in or is left unchanged
§ Models the possibility that an input may be lost or ignored

q Nondeterministic reactions:
§ Given (old) state and input, output/new state need not be

unique
§ The set [React] of reactions now consists of

0 - 0/0 -> 0
0 - 1/0 -> 1; 0 - 1/0 -> 0
1 - 0/1 -> 0; 1 - 0/1 -> 1
1 - 1/1 -> 1

Multiple Reactions

bool in bool x := 0

if x != in then
{ out := x ; x := in }

bool out

q A component may not accept all inputs in all states
§ Motivation: blocking communication

q Possible set of reactions in certain state/input combinations may
be empty
§ The set [React] of reactions now consists of

0 - 1/0 -> 1
1 - 0/1 -> 0

Syntax Errors

bool in bool x := 0

x := out; out := in

bool out

q Update code expected to satisfy a number of requirements:
§ Types of variables and expressions should match
§ Output variables must first be written before being read
§ Output variable must be explicitly assigned a value

q Otherwise, then no reaction possible
§ In above: set [React] of reactions is the empty set

Semantic Equivalence

q Both have identical sets of reactions

q Syntactically different but semantically equivalent

q Compiler can optimize code as long as semantics is preserved!

int in1

out := in12 – in22
int out

int in2

DiffSquare int in1 local int x, y ;
x := in1 + in2 ;
y := in1 – in2 ;
out := x * y

int out

int in2

DiffSquare1

Synchronous Reactive Component Definition

q Set I of typed input variables: gives set QI of inputs
q Set O of typed output variables: gives set QO of outputs
q Set S of typed state variables: gives set QS of states
q Initialization code Init: defines set [Init] of initial states
q Reaction description React: defines set [React] of reactions of the

form s – i/o -> t, where s, t are states, i is an input, and o is an output

Synchronous languages in practice:
Richer syntactic features to describe React
Key to understanding: what happens in a single reaction?

Formal semantics: Necessary for development of tools!

Definition of Executions

q Initialize state to some state s0 in [Init]

q Repeatedly execute rounds. In each round n = 1, 2, 3, …
Choose an input value in in QI

Execute React to produce output on and change state to sn

that is, sn-1 - in / on -> sn must be in [React]

q Sample execution:

s0

q Given component C = (I, O, S, Init, React), what are its executions?

i1 / o1 s1
i2 / o2 s2

i3 / o3 s3

What does this component do ?

bool in

bool x := 0 ; y := 0

if y then out := x
else out := 0 ;
x := in ;
y := ¬y

bool out

Extended State Machines

Input: bool press

off on
int x := 0

(press = 0) ?

(press = 1) ?

(press = 0 & x < 10) -> x := x+1

(press = 1 | x >= 10) -> x := 0

mode is an implicit state variable ranging over {on, off}

Reaction corresponds to executing a mode-switch
Example mode-switch: from on to off with

guard (press = 1 | x >= 10) and update x := 0

Executing ESMs: Switch

Input: bool press

off on
int x := 0

(press = 0) ?

(press = 1) ?

(press = 0 & x < 10) -> x := x+1

(press = 1 | x >= 10) -> x := 0

q State of the component Switch assigns values to mode and x

q Initial state: (off, 0) (i.e., {mode := off, x := 0})

q Sample Execution:
(off,0) - 0 -> (off,0) - 1 -> (on, 0) - 0 -> (on,1) - 0 -> (on,2) … - 0 -> (on,10) - 0 -> (off,0)

Modified Switch: What executions are possible?

Input: bool press

off on
int x := 0

(press = 0) ?

(press = 1) ?

(press = 0 & x <= 10) -> x := x+1

(press = 1 | x >= 10) -> x := 0

Exercise: ESM to SRC

Rewrite this ESM as a synchronous reactive component

Input: bool press

off on
int x := 0

(press = 0) ?

(press = 1) ?

(press = 0 & x < 10) -> x := x+1

(press = 1 | x >= 10) -> x := 0

Finite-State Components

bool in bool x := 0

out := x ; x := in

bool out

Delay
int in1

out := in12 – in22
int out

int in2

DiffSquare

A component is finite-state if all its variables range over finite types
§ Finite types: bool, enumerated types (e.g. {on, off}, int[-5..5])
§ Delay is finite-state, but DiffSquare is not

Mealy Machines (for finite-state components)

bool in bool x := 0

out := x ; x := in

bool out

Delay

0 1

0 / 0

1 / 0

1 / 1

0 / 1

Finite-state components are amenable to exact, algorithmic analysis

Switch: Is it finite-state?

Input: bool press

off on
int x := 0

(press = 0) ?

(press = 1) ?

(press = 0 & x < 10) -> x := x+1

(press = 1 | x >= 10) -> x := 0
int[0,10] x := 0

The system is effectively finite-state

Combinational Components

bool in bool x := 0

out := x ; x := in

bool out

Delay
int in1

out := in12 – in22
int out

int in2

DiffSquare

A component is combinational if it has no state variables
§ DiffSquare is combinational, but Delay is not
§ Hardware gates are combinational components

Events

q Input/output variable can be of type event
q Motivation: notion of clock can be different for different components
q An event can be absent, or present, in which case it has a value

§ event x means x ranges over {present, ⊥}
§ event(bool) x means x ranges over {0, 1, ⊥}
§ event(nat) x means x ranges over {⊥, 0, 1, 2, …}

q Syntax: x? is a short form for the test (x != ⊥)

q Syntax: x!v is a short form for the assignment x := v

q Syntax: x! is a short form for the assignment x := present (for event x)

q Event-based communication:
§ If no value is assigned to an output event, then it is absent (by default)
§ Event-triggered component executes only in those rounds where input

events are present (actual definition slightly more general, see textbook)

Second-To-Minute

event second

int x := 0

if second? then {
x := x+1 ;
if x == 60 then

{
minute! ;
x := 0 }

}

event minute

Desired behavior (spec):
Issue the output event every 60th time the input event is present

Event-Triggered Components
§ No need to execute in a round where triggering input events absent
§ See textbook for formal definition

Deterministic Components

bool in bool x := 0

out := x ;
x := in

bool out

Delay

A component is deterministic if
1. it has a single initial state, and
2. for every state s and input i, there is a unique state t and output o

such that s – i/o -> t is a reaction

bool in
bool x := 0
out := x ;
x := choose { in, x }

bool out

LossyDelay

Delay is deterministic, but LossyDelay is not

Deterministic Components

bool in bool x := 0

out := x;
x := in

bool out

Delay

q Deterministic: same sequence of inputs supplied, same outputs
observed (predictable, repeatable behavior)

q Nondeterminism is useful in modeling uncertainty
/unknown/abstraction

q Nondeterminism is different from probabilistic (or random) choice

bool in
bool x := 0
out := x ;
x := choose { in, x }

bool out

LossyDelay

What does this component do?

event req1

Arbiter

req1? -> grant1!

req2? -> grant2!

¬req1? & ¬req2?

event req2

event grant1

event grant2

Input Enabled Components

bool in bool x := 0

out := x ; x := in

bool out

Delay

q A component is input-enabled if for every state s and input i, there
exists a state t and an output o such that s – i/o -> t is a reaction
§ Delay is input-enabled, but BlockingDelay is not

q Not input-enabled means component is making assumptions about
the context in which it is going to be used
§ When rest of system is designed, must check that it indeed

satisfies these assumptions

BlockingDelay

bool in bool x := 0

if x != in then
{ out := x ; x := in }

bool out

Splitting Reaction Code into Tasks

bool in

bool x := 0

out := x

bool out

SplitDelay

q A1 and A2 are tasks (atomic blocks of code)
§ Each task specifies variables it reads and writes
§ A1 reads x and writes out

q Task Graph: vertices are tasks and edges denote precedence (<)
§ A1 < A2 means that A1 should be executed before A2
§ Graph must be acyclic

A1: x ↦ out A2: in ↦ x

x := in <

Example Task Graph

bool in1

out1 := in1

bool out1

ParallelRelay

q Tasks A1 and A2 are unordered
§ Possible schedules (linear ordering of tasks): A1, A2 and A2, A1
§ All consistent schedules must give the same result

q I/O await dependencies: out1 awaits in1, out2 awaits in2

A1: in1 ↦ out1 A2: in2 ↦ out2

out2 := in2 bool in2 bool out2

Example Task Graph

in1 out1

A1: x1,in1 ↦ y,x1

in2

out2

out3

x1, x2

local y

A2: x2 ↦ out2

A3: x1,in1 ↦ out1,x1

A4: in2,y,out2 ↦ x2,out3

q What are possible schedules consistent with precedence constraints?
q What are I/O await dependencies?

Task Graphs: Definition

For a synchronous reactive component C with
§ input vars I output vars O
§ state vars S local vars L

the reaction description is given by
§ a set of tasks, and
§ precedence edges < over these tasks

Each task A is specified by:

1. Read-set R
§ must be a subset of I È S È O È L

2. Write-set W
§ must be a subset of O È S È L

3. Update: code to write vars in W based on values of vars in R
§ [Update] is a subset of QR ´ QW

Requirements on Task Graph (1)

The precedence relation < must be acyclic

q Notation: A <+ A’ means that there is a path from task A to task A’ in
the task graph using precedence edges

q Relation <+ is the transitive closure of the relation <
q Task schedule: Total ordering A1, A2, …, An of all the tasks that is

consistent with the precedence edges
§ If A < A’, then A must appear before A’ in the ordering
§ Multiple schedules are possible
§ If A <+ A’ then A must appear before A’ in every schedule

q Acyclicity implies that there is at least one task schedule

Requirements on Task Graph (2)

Each output variable is in the write-set of exactly one task

q If output y is in write-set of task A, then as soon as A executes the
output y is available to the rest of the system

q If task A writes output y, then y awaits an input variable x, written
y > x, if

either the task A reads x
some another task A’ such that A’ <+ A reads x

Note: y awaits x means that y cannot be produced before x is supplied

Requirements on Task Graph (3)

Output/local variables are written before being read

q If an output or a local variable y is in the read-set of a task A,
then y must be in the write-set of some task A’ such that A’ <+ A

Requirements on Task Graph (4)

Tasks with a write conflict must be ordered

q There is a write-conflict between tasks A and A’
if a variable written by A is read or written by A’

q If A and A’ have a write-conflict, the result depends on whether A
executes before A’ or vice versa.
§ Example: A update is x := x+1; A’ update is out := x

q If tasks A and A’ have a write-conflict then they must be ordered:
either A <+ A’ or A’ <+ A

q This way, set of reactions resulting from executing all the tasks do not
depend on the task schedule

Task Properties

q Task A = (R, W, Update) is deterministic if for every value u Î QR there
is a unique value v Î QW such that (u,v) Î [Update]

q If all tasks of a component are deterministic, what can we conclude
about the component itself?

q Task A = (R, W, Update) is input-enabled if for every value u Î QR
there exists at least one value v Î QW such that (u,v) Î [Update]

q If all tasks of a component are input-enabled, what can we conclude
about the component itself?

Credits

Notes based on Chapter 2 of

Principles of Cyber-Physical Systems
by Rajeev Alur
MIT Press, 2015

https://www.cis.upenn.edu/~alur/pcps.html

