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Model-Based Design

q Block Diagrams
§ Widely used in industrial design
§ Tools: Simulink, Modelica, LabView, RationalRose, …

q Key question: what is the execution semantics?
§ What is a base component?
§ How do we compose components to form complex components?



Functional vs. Reactive Computation

q Functional model of computation (classical one):
§ Given inputs, a program produces outputs
§ Desired functionality described by a mathematical function
§ Example: sorting of names; shortest paths in a weighted graph
§ Theory of computation provides foundation 
§ Canonical model: Turing machines

q Reactive model of computation:
§ System continually interacts with its environment via inputs and outputs
§ Desired behavior described by sequences of observed input/output 

interactions
§ Example: cruise controller in a car



Sequential vs. Concurrent Computation

q Sequential model of computation (classical):
§ A computation is a sequence of instructions executed one at a time
§ Well understood and canonical model: Turing machines

q Concurrent model of computation
§ Multiple components/processes exchanging information and evolving 

concurrently
§ Logical vs. physical concurrency
§ Broad range of formal models for concurrent computation
§ Key distinction: synchronous vs. asynchronous



Synchronous Models

q All components execute in a sequence of (logical) rounds, in lock-step 

q Example: Component blocks in digital hardware circuit
§ Clock drives all components in a synchronized manner

q Key idea in synchronous languages:
§ Design system based on such synchronous round-based computation
§ Benefit: design is simpler (why?)
§ Challenge: ensure synchronous execution even if implementation 

platform is not single-chip hardware



First Example: Delay

q Input variable: in of Boolean type ( {0,1} )

bool in bool outbool x := 0

out := x ;  x := in

q Output variable: out of Boolean type 

q State variable: x of Boolean type 

q Initialization of state variables ( x := 0 )

q Execution: in each round, in response to an input,
§ produce output ( out := x ) and
§ update state ( x := in )



Delay: Round-based Execution

1. Initialize state x to 0

bool in bool x := 0

out := x ; x := in

2. Repeatedly execute rounds. In each round:
a. Read current value of the input variable in
b. Execute the update code to produce output out and change state

Sample execution:

0 
1 / 0

1
1 / 1

1
0 / 1

0
0 / 0

0
1 / 0

1

bool out

in / outx



Synchrony Hypothesis

q Assumption: Time needed to execute the update code is negligible 
compared to delay between successive input arrivals

q Logical abstraction:
§ Execution of update code takes zero time
§ Reception of inputs and production of outputs occur 

simultaneously

q Composition: when multiple components are composed, all execute 
synchronously and simultaneously

q Implementation: must ensure that this design-time assumption is 
valid!



Components in an Automobile

q Components need to communicate and coordinate over a shared bus

q Design abstraction: Synchronous time-triggered communication
§ Time is divided into slots
§ In each slot, exactly one component sends a message over the bus

q CAN protocol implements time-triggered communication



Model Definition

q Syntax: How to describe a component?
§ Variable declarations, types, state updates, …

q Semantics: What does the description mean?
§ Defined using mathematical concepts such as sets, functions, …

q Formal foundations: Semantics is defined precisely
§ Necessary for tools for analysis, compilation, verification, …
§ Defining formal semantics for a real language is challenging
§ But concepts can be illustrated on a toy modeling language 



Model Definition

Our modeling language: Synchronous Reactive Components

§ Representative of many academic proposals
§ Foundations of Industrial-strength synchronous languages:

Esterel, Lustre, VHDL, Verilog, Stateflow, …



Synchronous Reactive Component

bool in
bool x := 0

out :=x ; x := in

bool out

Delay

State variables:
Declaration + Initialization

Update code:
To be executed in each round

Inputs Outputs



SRC Definition (1): Inputs

bool in

q Each component has a set I of input variables
§ Variables have types. E.g. bool, int, nat, real, {on, off}, …

q Input: Valuation of all the input variables 
§ The set of inputs is denoted QI

q For Delay
§ I contains a single variable in of type bool
§ The set of inputs is { {in := 0}, {in := 1} }

q Example: I contains two variables: int x , bool y
§ Each input is a pair: (integer value for x and 0/1 value for y)  

InputsDelay



SRC Definition (2): Outputs

q Each component has a set O of typed output variables
q Output: Valuation of all the output variables 

§ The set of outputs is denoted QO

q For Delay
§ O contains a single variable out of type bool
§ The set of outputs is { {out := 0}, {out := 1} }

Delay
bool out

Outputs



SRC Definition (3): States

q Each component has a set S of typed state variables
q State: Valuation of all the state variables 

§ The set of states is denoted QS

q For Delay
§ S contains a single variable x of type bool
§ The set of states is { {x := 0}, {x := 1} }

q State is internal and maintained across rounds

Delay
bool outbool x 

State variables:
Declaration 



SRC Definition (4): Initialization

q Initialization of state variables specified by Init
§ Sequence of assignments to state variables

q Semantics of initialization: 
§ The set [Init] of initial states, which is a subset of QS

q For Delay
§ Init is given by the code fragment x := 0
§ The set [Init] of initial states is { {x := 0} }

q Component can have multiple (alternative) initial states
§ Example: bool x := choose {0, 1}

Delay
bool outbool x := 0 

State variables:
Declaration + Initialization



SRC Definition (5): Reactions

q Execution in each round given by code fragment React
§ Sequence of assignments and conditionals that assign output 

variables and update state variables
q Semantics of update: 

§ The set [React] of reactions, where each reaction is of the form 
(old) state - input / output -> (new) state

§ [React] is a subset of QS × QI × QO × QS

q For Delay:
§ React is given by the code fragment out := x ; x := in
§ There are 4 reactions: 0 - 0/0 -> 0;  0 - 1/0 -> 1;  1 - 0/1 -> 0;  1 - 1/1 -> 1

Delay
bool out

out :=x ; x:= in Update code:
To be executed in 
each round



Multiple Reactions

bool in bool x := 0

out := x ; x := choose { in, x }

bool out

q During update, x is either updated to input in or is left unchanged
§ Models the possibility that an input may be lost or ignored

q Nondeterministic reactions:
§ Given (old) state and input, output/new state need not be 

unique
§ The set [React] of reactions now consists of

0 - 0/0 -> 0
0 - 1/0 -> 1;  0 - 1/0 -> 0
1 - 0/1 -> 0;  1 - 0/1 -> 1
1 - 1/1 -> 1



Multiple Reactions

bool in bool x := 0

if x != in then 
{ out := x ; x := in }

bool out

q A component may not accept all inputs in all states
§ Motivation: blocking communication

q Possible set of reactions in certain state/input combinations may 
be empty
§ The set [React] of reactions now consists of

0 - 1/0 -> 1
1 - 0/1 -> 0



Syntax Errors

bool in bool x := 0

x := out; out := in

bool out

q Update code expected to satisfy a number of requirements:
§ Types of variables and expressions should match
§ Output variables must first be written before being read
§ Output variable must be explicitly assigned a value

q Otherwise, then no reaction possible
§ In above: set [React] of reactions is the empty set



Semantic Equivalence

q Both have identical sets of reactions

q Syntactically different but semantically equivalent

q Compiler can optimize code as long as semantics is preserved!

int in1

out := in12 – in22
int out

int in2

DiffSquare int in1 local int x, y ;
x := in1 + in2 ;
y := in1 – in2 ;
out := x * y 

int out

int in2

DiffSquare1



Synchronous Reactive Component Definition

q Set I of typed input variables: gives set QI of inputs
q Set O of typed output variables: gives set QO of outputs
q Set S of typed state variables: gives set QS of states
q Initialization code Init: defines set [Init] of initial states
q Reaction description React: defines set [React] of reactions of the 

form s – i/o -> t, where s, t are states, i is an input, and o is an output

Synchronous languages in practice:
Richer syntactic features to describe React
Key to understanding: what happens in a single reaction?

Formal semantics: Necessary for development of tools!



Definition of Executions

q Initialize state to some state s0 in [Init]

q Repeatedly execute rounds. In each round n = 1, 2, 3, …
Choose an input value in in QI

Execute React to produce output on and change state to sn

that is, sn-1 - in / on -> sn must be in [React]

q Sample execution:

s0

q Given component C = (I, O, S, Init, React), what are its executions?

i1 / o1 s1
i2 / o2 s2

i3 / o3 s3



What does this component do ?

bool in

bool x := 0 ; y := 0

if y then out := x
else out := 0 ;
x := in ;
y := ¬y

bool out



Extended State Machines

Input: bool press

off on
int x := 0

(press = 0) ?

(press = 1) ?

(press = 0 & x < 10)  ->  x := x+1

(press = 1 | x >= 10)  ->  x := 0

mode is an implicit state variable ranging over {on, off}

Reaction corresponds to executing a mode-switch
Example mode-switch: from on to off with 

guard (press = 1 | x >= 10) and update x := 0



Executing ESMs: Switch

Input: bool press

off on
int x := 0

(press = 0) ?

(press = 1) ?

(press = 0 & x < 10 )  ->  x := x+1

(press = 1 | x >= 10)  -> x := 0

q State of the component Switch assigns values to mode and x

q Initial state: (off, 0)  (i.e., {mode := off, x := 0})

q Sample Execution:
(off,0) - 0 -> (off,0) - 1 -> (on, 0) - 0 -> (on,1) - 0 -> (on,2) … - 0 -> (on,10) - 0 -> (off,0)



Modified Switch: What executions are possible?

Input: bool press

off on
int x := 0

(press = 0) ?

(press = 1) ?

(press = 0 & x <= 10 )  ->  x := x+1

(press = 1 | x >= 10)  -> x := 0



Exercise: ESM to SRC

Rewrite this ESM as a synchronous reactive component

Input: bool press

off on
int x := 0

(press = 0) ?

(press = 1) ?

(press = 0 & x < 10 )  ->  x := x+1

(press = 1 | x >= 10)  -> x := 0



Finite-State Components

bool in bool x := 0

out := x ; x := in

bool out

Delay
int in1

out := in12 – in22
int out

int in2

DiffSquare

A component is finite-state if all its variables range over finite types
§ Finite types: bool, enumerated types (e.g. {on, off}, int[-5..5] )
§ Delay is finite-state, but DiffSquare is not



Mealy Machines (for finite-state components)

bool in bool x := 0

out := x ; x := in

bool out

Delay

0 1

0 / 0

1 / 0

1 / 1

0 / 1

Finite-state components are amenable to exact, algorithmic analysis



Switch: Is it finite-state?

Input: bool press

off on
int x := 0

(press = 0) ?

(press = 1) ?

(press = 0 & x < 10)  ->  x := x+1

(press = 1 | x >= 10)  ->  x := 0
int[0,10]  x := 0

The system is effectively finite-state



Combinational Components

bool in bool x := 0

out := x ; x := in

bool out

Delay
int in1

out := in12 – in22
int out

int in2

DiffSquare

A component is combinational if it has no state variables
§ DiffSquare is combinational, but Delay is not
§ Hardware gates are combinational components



Events

q Input/output variable can be of type event
q Motivation: notion of clock can be different for different components
q An event can be absent, or present, in which case it has a value

§ event x means x ranges over {present, ⊥}
§ event(bool) x means x ranges over {0, 1, ⊥}
§ event(nat) x means x ranges over {⊥, 0, 1, 2, …}

q Syntax: x? is a short form for the test (x != ⊥)

q Syntax: x!v is a short form for the assignment x := v

q Syntax: x! is a short form for the assignment x := present (for event x)

q Event-based communication:
§ If no value is assigned to an output event, then it is absent (by default)
§ Event-triggered component executes only in those rounds where input 

events are present (actual definition slightly more general, see textbook)



Second-To-Minute

event second

int x := 0

if second? then {
x := x+1 ;
if x == 60 then 

{
minute! ;
x := 0 }

}

event minute

Desired behavior (spec):
Issue the output event every 60th time the input event is present

Event-Triggered Components
§ No need to execute in a round where triggering input events absent
§ See textbook for formal definition



Deterministic Components

bool in bool x := 0

out := x ;
x := in

bool out

Delay

A component is deterministic if 
1. it has a single initial state, and
2. for every state s and input i, there is a unique state t and output o

such that s – i/o -> t is a reaction

bool in
bool x := 0
out := x ; 
x := choose { in, x }

bool out

LossyDelay

Delay is deterministic, but LossyDelay is not



Deterministic Components

bool in bool x := 0

out := x;
x := in

bool out

Delay

q Deterministic: same sequence of inputs supplied, same outputs 
observed (predictable, repeatable behavior)

q Nondeterminism is useful in modeling uncertainty 
/unknown/abstraction

q Nondeterminism is different from probabilistic (or random) choice

bool in
bool x := 0
out := x ; 
x := choose { in, x }

bool out

LossyDelay



What does this component do?

event req1

Arbiter

req1? -> grant1!

req2? -> grant2!

¬req1? & ¬req2?

event req2

event grant1

event grant2



Input Enabled Components

bool in bool x := 0

out := x ; x := in

bool out

Delay

q A component is input-enabled if for every state s and input i, there 
exists a state t and an output o such that s – i/o -> t is a reaction
§ Delay is input-enabled, but BlockingDelay is not

q Not input-enabled means component is making assumptions about 
the context in which it is going to be used
§ When rest of system is designed, must check that it indeed 

satisfies these assumptions

BlockingDelay

bool in bool x := 0

if x != in then 
{ out := x ; x := in }

bool out



Splitting Reaction Code into Tasks

bool in

bool x := 0

out := x 

bool out

SplitDelay

q A1 and A2 are tasks (atomic blocks of code)
§ Each task specifies variables it reads and writes
§ A1 reads x and writes out

q Task Graph: vertices are tasks and edges denote precedence (<)
§ A1 < A2 means that A1 should be executed before A2
§ Graph must be acyclic

A1: x ↦ out A2: in ↦ x

x := in <



Example Task Graph

bool in1

out1 := in1 

bool out1

ParallelRelay

q Tasks A1 and A2 are unordered
§ Possible schedules (linear ordering of tasks): A1, A2 and A2, A1
§ All consistent schedules must give the same result

q I/O await dependencies: out1 awaits in1, out2 awaits in2

A1: in1 ↦ out1 A2: in2 ↦ out2

out2 := in2 bool in2 bool out2



Example Task Graph

in1 out1

A1: x1,in1 ↦ y,x1

in2

out2

out3

x1, x2 

local y

A2: x2 ↦ out2

A3: x1,in1 ↦ out1,x1

A4: in2,y,out2 ↦ x2,out3

q What are possible schedules consistent with precedence constraints?
q What are I/O await dependencies?



Task Graphs: Definition

For a synchronous reactive component C with 
§ input vars I output vars O
§ state vars S local vars L

the reaction description is given by 
§ a set of tasks, and 
§ precedence edges < over these tasks

Each task A is specified by:

1. Read-set R
§ must be a subset of  I È S È O È L

2. Write-set W
§ must be a subset of O È S È L

3. Update: code to write vars in W based on values of vars in R
§ [Update] is a subset of QR ´ QW



Requirements on Task Graph (1)

The precedence relation < must be acyclic

q Notation: A <+ A’ means that there is a path from task A to task A’ in 
the task graph using precedence edges

q Relation <+ is the transitive closure of the relation <
q Task schedule: Total ordering A1, A2, …, An of all the tasks that is 

consistent with the precedence edges
§ If A < A’, then A must appear before A’ in the ordering
§ Multiple schedules are possible
§ If A <+ A’ then A must appear before A’ in every schedule

q Acyclicity implies that there is at least one task schedule



Requirements on Task Graph (2)

Each output variable is in the write-set of exactly one task

q If output y is in write-set of task A, then as soon as A executes the 
output y is available to the rest of the system

q If task A writes output y, then y awaits an input variable x, written 
y > x,  if

either the task A reads x
some another task A’ such that A’ <+ A reads x

Note: y awaits x means that y cannot be produced before x is supplied



Requirements on Task Graph (3)

Output/local variables are written before being read

q If an output or a local variable y is in the read-set of a task A, 
then y must be in the write-set of some task A’ such that A’ <+ A



Requirements on Task Graph (4)

Tasks with a write conflict must be ordered

q There is a write-conflict between tasks A and A’
if a variable written by A is read or written by A’

q If A and A’ have a write-conflict, the result depends on whether A
executes before A’ or vice versa.
§ Example:  A update is x := x+1;  A’ update is out := x 

q If tasks A and A’ have a write-conflict then they must be ordered: 
either A <+ A’ or A’ <+ A

q This way, set of reactions resulting from executing all the tasks do not 
depend on the task schedule



Task Properties

q Task A = (R, W, Update) is deterministic if for every value u Î QR there 
is a unique value v Î QW such that (u,v) Î [Update]

q If all tasks of a component are deterministic, what can we conclude 
about the component itself?

q Task A = (R, W, Update) is input-enabled if for every value u Î QR
there exists at least one value v Î QW such that (u,v) Î [Update]

q If all tasks of a component are input-enabled, what can we conclude 
about the component itself?
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