
CS:4980
Foundations	of	Embedded	Systems

Copyright 20014-16, Rajeev Alur and Cesare Tinelli.
Created by Cesare Tinelli at the University of Iowa from notes originally developed by Rajeev Alur at the University of
Pennsylvania. These notes are copyrighted materials and may not be used in other course settings outside of the
University of Iowa in their current form or modified form without the express written permission of one of the copyright
holders. During this course, students are prohibited from selling notes to or being paid for taking notes by any person or
commercial firm without the express written permission of one of the copyright holders.

Hybrid	Systems
Part	II

Model-Based	Design	and	Analysis

Requirements

Specify	correctness
formally

Modeling

High-level	design

Analysis

Debugging
Design-space	
exploration	

Implementation	
and

Testing	

Multi-Robot	Coordination

q Autonomous	mobile	robots	in	a	room

q Goal	of	each	robot:
§ Reach	a	target	at	a	known	location
§ Avoid	obstacles	(positions	of	obstacles	not	known	in	

advance)
§ Minimize	distance	travelled

q Cameras	and	vision	processing	algorithms	allow	each	robot	to	
estimate	obstacle	positions
§ Estimates	are	only	approximate,	and	depend	on	relative	

position	of	obstacles	with	respect	to	a	robot’s	position
§ How	often	should	robot	update	these	estimates	?

Multi-Robot	Coordination

q Each	robot	can	communicate	with	others	using	wireless	links
§ How	often	and	what	information?
§ How	does	communication	help?

q High-level	motion	control	(path	planning)
§ Decide	on	speed	and	direction

Path	Planning	with	Obstacle	Avoidance

X

Y

Robot R1
(x1,	y1)

Direction θ1
Robot R2

(x2,	y2)

θ2

Target(xf,	yf)

ObstacleO2

ObstacleO1

Assumptions:
§ Two	dimensional	world
§ Point	robots
§ Fixed	speed	v

Path	Planning	with	Obstacle	Avoidance

X

Y

(x1,	y1)

θ (x2,	y2)

θ2

Target(xf,	yf)

O2O1

State	variables:	(x1,	y1),	(x2,	y2)

Initialization:
(x1,	y1)	:=	(x10,	y10)
(x2,	y2)	:=	(x20,	y20)

Dynamics:
dx1 =	v	cos	θ dx2 =	v	cos	θ2
dy1 =	v	sin	θ dy2 =	v	sin	θ2

Safety	requirement:
(x1,	y1),	(x2,	y2)	∉ O1∪O2

Liveness requirement:
Eventually	(x1,	y1)	=	(xf,	yf)	and
Eventually	(x2,	y2)	=	(xf,	yf)	

Performance:	Reduce	distance	travelled!

Abstractions

q For	modeling	and	analysis	for	motion	planning,	we	need	to	
simplify obstacle	shapes	and	complexity	of	image	processing	
algorithms
§ Simplicity	and	abstraction:	key	to	modeling	

q Assume	each	robot	is	a	point
§ Can	be	described	by	coordinates	of	point

q Assume	each	obstacle/estimate	is	a	circle
§ Can	be	described	by	coordinates	of	center	and	radius
§ Assumption:	real	obstacle	is	always	contained	in	estimated	

circle
§ Alternative:	ellipses	(more	accurate)

Modeling	Obstacles

q Consider	an	obstacle	with	center	(xo,	yo)	and	radius	r
§ Radius	of	smallest	circle	that	envelopes	the	actual	obstacle

q Estimate	of	the	obstacle	as	computed	by	a	robot	using	image	
processing	algorithms	of	a	robot	
§ A	circle	with	center	(xo,	yo)	and	radius	e	>	r
§ The	closer	the	robot	to	the	obstacle,	the	better	the	estimate
§ Estimate	e	decreases	with	distance	of	robot	from	obstacle,	

and	converges	to	r	

Obstacle	Estimation

Y

Estimated	radius:	e1 =	r	+	a	(d1 – r)
0	<	a	<	1	is	a	constant

xo,yo
r

Estimate	from	distance	d1

(x1,	y1)

Distance	d1

e1
(x2,	y2)

Distance	d2

Estimate	from	distance	d2

X

Rule	for	Obstacle	Estimation

X

Y

(x,	y)

θ

Target(xf,	yf)

Robot	R1maintains	radii	e1 and	e2 that
are	estimates	of	the	obstacles

e1
(xo1,	yo1)

e2

(xo2,	yo2)

Obstacle	estimation	is	computationally	expensive

Every	te seconds,	robot	executes	discrete	update:
e1 :=	min	(e1,	r1 +	a(dist ((x,	y),	(xo1,	yo1))	– r1)	;
e2 :=	min	(e2,	r2 +	a(dist ((x,	y),	(xo2,	yo2))	– r2)

Computation	for	robot	R2 is	symmetric

Path	Planning

X

Y

(x,	y)

θ0

(xf,	yf)
Shortest	path:	straight	line	to	target
Preferred	direction:	θ0

θ2
θ1

If	estimate	of	obstacle	O1 intersects	straight	path,
calculate	two	paths	that	are	tangents	to	obstacle	

θ4

If	estimate	of	obstacle	O2 intersects	straight	path,
or	obstacle	O1,	calculate	tangent	paths	

Path	P4
Path	P1

Plausible	paths:	P1 and	P4	

Calculate	which	one	is	shorter:
Planning	algorithm	returns	either	θ1 or	θ4

O2O1

Path	Planning
q Function	plan	with	inputs:

§ current	position	of	robotRi

§ target	position
§ obstacle	O1 position	(center	and	radius	estimate)
§ obstacle	O2 position	(center	and	radius	estimate)	

q Output:	Direction	for	motion
§ Best	possible	path	to	target	while	avoiding	obstacles	and	

assuming	estimates	are	correct

q Function	plan	written	in	C	code	(can	be	embedded	in	model)

q Does	it	help	to	rerun	planning	algorithm	again	as	robot	moves?
§ Yes!	Estimates	may	improve,	suggesting	shorter	paths
§ Invoke	planning	algorithm	every	tp seconds

Communication

q Each	robot	has	its	own	estimate	of	each	obstacle

q Robot	R2’s	estimates	may	be	better	than	R1’s	own	estimates

q Strategy:	Every	tc seconds,	send	your	own	estimates	to	the	
other	robot,	and	receive	estimates	from	it

q If	your	own	estimates	are	ei1 and	ei2,	and	you	receive	estimates	
ej1 and	ej2,	set

ei1 :=	min	(ei1,	ej1)
ei2 :=	min	(ei2,	ej2)

Effect	of	Coordination

X

Y

(x,	y)

(xf,	yf) Suppose	Path	P1 was	preferredPath	P4
Path	P1

Communication	with	other	robot	gives
a	better	estimate	of	obstacle	O2,	but
not	for	obstacle	O1

P2

Path	P2 is	now	viable.
Running	planner	again	could	choose	path	P2		

O1 O2

System	of	Robots

(real	× real)	in (real	× real)	out

Hybrid	process	Robot

(real	× real)

(real	× real)

R2R1

Robot	Model

clock	zp,	ze,	zc :=	0
cont	x	:=	x0,	y	:=	y0
real	e1,	e2 :=	e0	;	θ :=	θ0

dx =	v	cos θ

dy =	v	sin	θ

zp <=	tp &	zc <=	tc &	ze <=	te

~(x	=	xf &	y	=	yf)	

x	=	xf &	y	=	yf dx	=	0
dy =	0

zc =	tc ->		out	:=	(e1,	e2)	;	zc :=	0 zp =	tp ->		θ :=	plan(x,	y,	e1,	e2)	;	zp :=	0

ze =	te ->		
ze :=	0	;
e1 :=	min(e1,	 r1 +	a(dist((x,	y),	(xo1,	yo1))	– r1)	;
e2 :=	min(e2,	 r2 +	a(dist((x,	y),	(xo2,	yo2))	– r2)

in	=	(e1’,	e2’)		->
e1 :=	min(e1,	 e1’)	;	e2 :=	min(e2,	e2’)

Analysis

q Key	system	parameters
§ How	often	should	a	robot	communicate?
§ How	often	should	a	robot	execute	planning	algorithm
§ How	often	should	a	robot	execute	image	processing	

algorithm	to	update	obstacle	estimates?

q Design-space	exploration:	Choose	values	of	tc,	tp,	te

§ Reduce	distance	travelled,	but	also	account	for	costs	of	

communication/computation

q Symbolic	analysis	beyond	the	scope	of	current	tools,	so	need	to	
run	multiple	simulations

Illustrative	Execution

§ Speed	v	: 0.5	u/s
§ Planning	rate	tp : 2	s
§ Obstacle	estimation	rate	tp : 2	s
§ Communication	rate	tc : 4	s
§ Distance	travelled	by	R’	: 9.15	u
§ Distance	travelled	by	R	: 8.65 u	

(4.5,	2) (10,	2)

(3.7,	7.5)

(7,	7)

r	=	0.9
r	=	1.25

§ Speed	v	: 0.5	u/s
§ Planning	rate	tp : 2	s
§ Obstacle	estimation	rate	tp : 2	s
§ Communication	rate	tc : >>	4	s
§ Distance	travelled	by	R’	: 9.15	u
§ Distance	travelled	by	R	: 8.81 u	

Automated	Guided	Vehicle

q Autonomous	vehicle	on	a	flat	surface,
following	a	visual	track

q Goal	of	each	robot:
§ Move	along	a	track	

(i.e.,	center	line	of	a	road)
§ Follow	track	as	close	as	possible

q Cameras	and	vision	processing	algorithms	allow	vehicle	to	sense	track	
and	measure	(signed)	distance	d from	center	of	the	track

q Two	degrees	of	freedom:	move	forward	and	rotate

q Two	velocities:	(regular)	velocity	(v,	θ)	and	angular	velocity	ω

Automated	Guided	Vehicle	Controller

Inputs: {start,	stop} command	c,	distance	d from	center	of	track	
Outputs: speed	v,	angular	speed	ω
State: coordinates x, y; angle	θ
Modes: Stop,	Straight,	Left,	Right

Simplifications: v ∊ {vc/2,	vc}		and		ω ∊ {-π, 0,	π}

Automated	Guided	Vehicle	Controller

Credits

Notes	based	on	Chapter	9	of

Principles	of	Cyber-Physical	Systems
by	Rajeev	Alur
MIT	Press,	2015

