CS:4980
Foundations of Embedded Systems

Timed Model

Copyright20014-16, Rajeev Alurand Cesare Tinelli.

Created by Cesare Tinelli at the University of lowa from notes originally developed by Rajeev Alur atthe University of
Pennsylvania. These notes are copyrighted materials and may notbe used in other course settings outside of the
University of lowa in their current form or modified form withoutthe express written permission of one of the copyright
holders. During this course, students are prohibited from selling notes to or being paid for taking notes by any person or
commercial firm withoutthe express written permission ofone of the copyrightholders.

Models of Reactive Computation

Synchronous model

= Componentsexecuteina sequence of discreteroundsin lock-step

= Computationwithinaround: Execute all tasksin an order consistent
with precedence constraints

Asynchronous model

= Speeds at which different components execute areindependent
= Computationwithin a step: Execute a single task thatis enabled
Continuous-time model for dynamical system

= Synchronous, but nowtime evolves continuously

= Execution of system:Solution to differential equations

Timed model

= Like asynchronous for communication of information

= Canrelyon global timefor coordination

Example Timed Model

(press & x>=1)7

(press & x<=1)7?

I

clock x:=0

press?—> x:=0

press ?

Initial state: mode = off, x = 0)
Timed transition:(off, 0) —0.5—> (off, 0.5)
off, 0.5) —press?—> (dim, 0)

(
(
Input transition: (
(dim, 0) —0.8—> (dim, 0.8)
(
(
(

Timed transition:
Input transition: (dim, 0.8) —press?—> (bright, 0.8)
Timed transition:(dim, 0.8) —=1—> (dim, 1.8)

Input transition: (dim, 1.8) —press?—> (off, 1.8)

Example Timed Model

(press & x>=1)7?

(press & x<=1)7?

-

clock x:=0

press?—> x:=0

press?

Clock variables

= Tests and updatesin mode-switches like other variables

= New: Duringa timed transition of duration d, the value of
clock variablesincreases by an amountequalto d

Timing constraint: Setting x to O for off —> dim and guard x <=1

for dim —> bright specifies that timing of these two transitions
is <=1 apart

Example: Timed Buffer

bool in bool out
—_— 5

Buffer with a bounded delay

Behavior: Inputreceived on channelin is transmitted on
output channelout after a delay of d, with LB <=d <= UB

(i.e. we know lower and upper bounds on this delay)

Modeling Timed Buffer

in?
y>=1 —> out:=x

clocky:=0
Empty Full

in? —> x:=in;y:=0

Mode indicates whetherthe bufferis full or not

State variable x remembers the lastinput value when bufferis full
Clock variabley tracks the time elapsed since buffer filled up
When bufferis full, input events areignored

C OO0 D0

Guardy >= 1 ensures that at least 1 time unit elapsesin mode Full

How to ensure that mode-switch from Full to Emptyis executed before
clock y exceeds the upperbound 17?

Clock Invariants

in?
y>=1 —> out:=x
clocky:=0

Empty yF<u_II2

in? —> x:=in;y:=0

The constrainty <= 1 associated with mode Fullis a clock invariant

A timed transition of duration d is allowed only if the clock invariant
is satisfied for the entire duration of the transition

= (Full, x, 0.8) —0.7—> (Full, x, 1.5)
= (Full,x,0.8) =1.4—> (Full,x,2.2) disallowed

Clock invariants to limit howlong a process staysina mode

clockx,y:=0

OO0 Do

Example with Two Clocks

y>=1 —> out2!

Waitl
in? > x:=0\Xx<=1 outl!;y:=0

Input event:in

Output events:outl, out2

Two clock variables: x, y

As time passes, both clocks increase (and at the same rate)

Sample timed transitions from state (mode, x, y) = (Wait2, 0.8, 0) :
(Wait2, 0.8, 0) —0.3—> (Wait2, 1.1, 0.3) —-0.72—> (Wait2, 1.82, 1.02)

clock x,y:=0

O 00O

Two Clock Example

y>=1 —> out2!

Waitl
in? —> x:=0 x<=1 outl!’-y;:o

Clock x tracks time elapsed since the lastinput event
Clock y tracks time elapsed since the output event
Whatis the behavior of this model?

If input event occurs at time t, the processissues an output eventon
channeloutlat timet’ withintheinterval [t, t+1], and then on
channelout2 attime t” withintheinterval [t'+1, t+2]

Example Specification

1 Consideratimed process with
Input: event x Output: eventy, eventz

J Desired behavior
" Foreachinput, produce both output events

*= Time delay between x? andy! is in the interval [2, 4]
= Time delay between x? andz! is in the interval [3,5]

" |gnorelater inputs received in these intervals

Definition of Timed Process

A timed process TP consists of

1. Anasynchronous process P, where some of the state variables can
be of type clock (ranging non-negative reals)

2. Aclock invariant Cl, a Boolean expressionover P’s state variables

Inputs, outputs, states, initial states, internal actions, input actions,
and output actions exactlyasin the asynchronous model

Notation: Fora states andtime t, let s+t denote the state such that
= (s+t)(x) = s(x)+t forevery clock variable x, and

= (s+t)(y)

s(y) for every non-clock variabley

Timed actions: Given a statesandatimed >0, s—-d—>s+d isa
transitionofdurationd as longas the state s+t satisfiesinvariant Cl
foralltin [0, d]

Note: If a clock-invariantis a convex constraintthen itis sufficientto
check that the end-states s and s+d satisfy Cl

Composition of Processes

TimedBufl
bool in bool outl
N —
bool out2
N —
TimedBuf2

d How to construct timed process correspondingto the composition of
the two processes?

d Whatare the possible behaviors of the composite process?

Composition of Timed Processes

TimedBufl
yl>=1LB1 —> outl:=x1
clockyl:=0
in? —> x1:=in;yl
TimedBuf2
y2>=1B2 —> out2:=x2
clocky2 :=0

in? —> x2:=in;y2:

The composite process has four modes: (Empty, Empty), (Empty, Full),
(Full, Empty), (Full, Full),

Composition of Timed Processes

msg Xi, Xo

clock yy, v :=0

Yo 2> LBy — outs ! X3 7, > LBy — outy ! x;

in? —
xy:=1In;y; ;=0
Xo :=1In;yy :=10

Vo > LBy — outy ! x9
e

n? — xo:=1in:v, :=0
2 ')2

in?

(mode = EF =>y2 <= UB2) & (mode = FF =>y1 <= UB1 & y2 <=UB2) &
(mode = FE =>y1 <= UB1)

Composition of Processes

TimedBufl
bool in bool outl
N —
bool out2
N —
TimedBuf2

If UB1 < LB2 then outl guaranteed to occur before out?2
= |mplicitcoordination based on bounds on delays

Is it possible to observe two outl events withoutaninterveningout?2
event?

= Dependson relative magnitudes of bounds (need timinganalysis!)

Definition of Parallel Composition

Considertimed processes TP, = (P, Cl;)and TP, = (P,, Cl,)

When is the parallelcomposition TP, | TP, defined?

= Exactly when the asynchronous parallelcompositionP, | P,
is defined (thatis, when the outputs of the two are disjoint)

TP, | TP,=(P, | P,, Cl; & Cl,)

"= Asynchronouscomposition of P, and P, defines the internal,
input and output actions of the composite

= Conjunction of the clock-invariants defines the clock-
invariantof the composite

Consequence: The composite process can allow a timed action
of duration d exactly when both TP, and TP, can wait for time d

Block Diagrams

>
) >
>
>
>

L Componentscan betimed processes now

= Qperation:instantiation (input/output variable renaming), parallel
composition, and variable hiding

d A step of the composite systemiis either
1. Aninternalstep of one of components

A communication (input/output) step involving relevantsender
and receivers

3. Atimedstepinvolvingall the components

Timed Model

d Timed model is sometimes called the semi-synchronous model
(mix of asynchronousand synchronous)

d Definitions/concepts that carry over naturally from those
models:

= Executions of a timed process

= Transition system associated with a timed process
= Safety/liveness requirements

d Distributed coordination problems: how can we exploit the
knowledge of timing delays to design protocols?

Recall: Shared Memory Asynchronous Processes

x.writel X.write2
> <€
X.read1l X X.read2
¢ >
P1 _ P2
y.writel y.write2
> €
y.readl y y.read2
€ >

1 Processes P1 and P2 communicate by reading/writing shared variables

1 Each shared variable can be modeled as an asynchronous process
= Stateof each such process is the value of correspondingvariable

= |nimplementation, shared memorycan be a separate subsystem

J Read and write channel between each process and each shared variable
= To write x, P1 synchronizes with x on x.writel channel
= Toreadx, P2 synchronizes with xon x.read2 channel

Shared Memory Programs with Atomic Registers

AtomicReg natx := 0 Declaration of shared variables
+ code for each process
Process P1 Process P2
natyl =0 naty2 :=0 Key restriction: Each statement of a
process either
vyl :=x y2 = X changes local variables,
reads a single shared var, or
CY) ¢ writes a single shared var
X:=yl+1 X:=y2+1
é é Execution model: execute one step

of one of the processes

What if we knew lower and upper boundson howlonga read or a write
takes? Could we solve coordination problems better?

Asynchronous Execution Model

@ (%, y)
natx:=0;y:=0

A xi=x+1 @ @

Aj:yi=y+1 @ @ @

Tasks A, and A execute in an arbitrary order

For every possible choice of numbers m and n, the state (m, n) is
reachable

Recall: Fairness assumptions can be used to rule out executions where
one of the tasks is ignored forever (although this does not affect the
set of reachable states)

What if we know how long each of these increments take?

U O

Timed Increments

u>=1->x=x+1;u:=0 v>=1—>vy:=y+l;v:=0

clocku:=0 m clock v :=0 m

Task A, increments x, and this takes between 1 to 2 time units

Task A, incrementsy, and this also takes between 1 to 2 time units

Two tasks execute in parallel, asynchronously, but timingintroduces
loose coordination

Which states are reachable? What is the relationship between mand
n so thatthe state (m, n) is reachable?

Mutual Exclusion Problem

Process P, Process P,

Entry Code } To be designed «|: Entry Code

Critical Section Critical Section

O Safety requirement: processes should not both be in critical section
simultaneously (can be formalized usinginvariants)

O Absence of deadlocks: ifany processis trying to enter, then some
process should be able to enter

Mutual Exclusion: Incorrect Solution
AtomicReg {0, 1, 2} Turn:=0

Process P1

[\ else
/\Turn=0? Turn:=1
(1die Tryl @

Turn:=0
Process P2 Whatis the problem?

else
/\Turn:O? Turn:=2
D Tryl @

Turn:=0

Timing-based Mutual Exclusion

1. Beforeenteringcritical section, read the shared variable Turn
2. If Turn!=0 then go to step 1 and try again
3. IfTurn=0then set TurntoyourID

Proceeding directly to critical section is a problem (since the other
process may also have concurrentlyread Turn to be 0, and
updating Turn to its own ID). Solution:

4. Delayandwaittill you are surethat concurrentwritesare
finished

5. Read Turnagain:if Turn equalsyourown ID then proceed to
critical section; otherwise, go to Step 1 and try again

6. When done with critical section, set Turn back to O

Fisher’s Mutual Exclusion Protocol

AtomicReg Turn:=0 Timingassumption:
y1=0? writing Turn takes at most A,

naty, clock x

—> Turn:=mylD

Wait for at least A, time units,
andread Turn again

Why does this work ?

J

Properties of Timed Fisher’s Protocol

AssumingA, > A, the algorithm satisfies:

" Mutual exclusion: Two processes cannotbe in critical
section simultaneously

= Deadlockfreedom:If a processwantsto enter critical
section then some process will enter critical section

Protocol works for arbitrarily many processes (notjust 2)

" |ncontrast,in the asynchronous model, mutual exclusion
protocolfor N processesis lot more complexthan
Peterson’s algorithm

Exercise: Does the protocol satisfy the stronger property of
starvation freedom (if a process wants to enter critical section
then it eventually will)?

Exercise: If A, <= A, does mutual exclusion hold? Deadlock
freedom?

Timed Communication

Suppose a sender wants to transmita sequence of bits to a
receiver connected by a communication bus

Natural strategy: Divide time into slots, and in each slot
transmita bit using high/low voltage valuesto encode 0/1

Manchester encoding: O encoded as a fallingedge, and 1
encoded as a rising edge

Timed Communication Challenges

lllJlDIl|Dl|{]|D
SEppE pEEEppUE RS pu

Sender and receiver know the duration of each time slot, but...

Receiver does not know when the communication begins

= Whenidle, thevoltageis set to low

Receiver cannotreliably detect falling edges

Sender and receiver clocks are synchronized imperfectly due to drift
= Whenaclock xis 1, actual elapsed timeisininterval [1-¢, 1+¢]

= Sincein the timed model clocks are considered to be perfect,
we can capturethiserrorby using x <= 1+¢ instead of x <= 1, and
1-¢ <=xinstead of 1 <= x

Addressingthe challenges:
= Allmessages start with 1 and end with 00

" Processes use timinginformation to transmit0Os

Audio Control Protocol

L

d Protocol developed by Philips to reliably transmit messagesin
presence of imperfect clocks

d Design logic for receiver to map measured delays between
successive raising edges to sequence of bits

1 Verification: Prove that message transmission is reliable for a given
drift ratec

d Optimization: Find the largest skew value that the protocol tolerates

Audio Control System

Sender

msg In
—_ =

queue(bool) m

event up

clock x

event down
Y

-

Receiver

queue(bool) out
clock y

Sender Process #ymnwppf

i : S @
(x> 27 Am =null) — down!

n? —
m = inDeq(m)ix:=0"| (x> 9= AF(m)=1) -
up!;Deq(m); x := 0

(x>4°AF(m)=

XZZG) — upl;x:=0
(x>2°AF(m)=0)—

down!;Deq(m); x:= 0

Receiver Process Lol

up? N3¢ <y<5 —

(an(out, 0);y:=0

up? A37 ¢ <y <5t —
y := 0;Enq(out, 1)

Last1l
y S 9—|—€

J‘
up? A7 <y <9t —
y := 0;Enq(out, 01)

up? A5 <y <7 —
Enq(out,01);y:=0

Execution Example

0

T

‘ [

!

i

| ‘

Time | Event X Sender | Queue m v Receiver | Queue out
0 B 00110100 Idle null
2.07 up 2.07 D 0110100 Last1 1
5.97 | down | 3.9 F 110100 3.9 Last1 1
7.97 up 2 G 110100 5.9 LastO 10
9.92 | down | 1.95 E 10100 1.95 LastO 10
14.08 up 4.16 C 0100 6.11 Last1 1001
16.1 down | 2.02 B 0100 2.02 Last1 1001
18 up 1.9 D 100 3.92 Last1 10011
22.05 | down | 4.05 E 00 4.05 Last1 10011
25.91 up 3.86 D 0 7.91 Last1 1001101
30.01 | down | 4.1 F null 4.1 Lastl 1001101
32.11 up 2.1 G null 6.2 LastO 10011010
34.16 | down | 2.05 H null 2.05 LastO 10011010
38.29 4.13 A null 6.18 LastO 10011010
39.39 1.1 A null 7.28 Idle 100110100

Credits

Notes based on Chapter 7 of

Principles of Cyber-Physical Systems

by Rajeev Alur
MIT Press, 2015

