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Dynamical	Systems
Part	IV



Control	Design	Problem

Plant	model	as	
Continuous-time	
Component	H

Uncontrolled	inputs
Observable	Outputs	

q Design	a	controller	C so	that	the	composed	system	C	||H	is	stable

q Reference	inputs	are	high-level	commands	supplied	by	humans	
(e.g.	desired	speed	of	the	car,	temperature	in	the	room)

q Controller	should	satisfy	additional	safety/liveness requirements	
corresponding	to	reference	inputs	(e.g.	speed	of	car	eventually	
becomes	close	to	desired	cruising	speed)

Controllable	inputs	

Controller	C
Reference	inputs	



Open	Loop	Controller

Plant	model	as	
Continuous-time	
Component	H

Uncontrolled	inputs
Observable	Outputs	

q Plant	outputs	not	fed	to	the	controller
§ Benefit:	Sensors	not	needed	(less	expensive)	

q Controller	simply	maps	reference	inputs	to	controllable	inputs	
§ Knowledge	of	plant	dynamics	hard-coded	in	this	algorithm

q Human	intervention	typically	necessary	to	maintain	acceptable	
performance

Controllable	inputs	

Controller	C

Reference	inputs	



Feedback	Controller

Plant	model	as	
Continuous-time	
Component	H

Uncontrolled	inputs
Observable	Outputs	

q Controller	adjusts	controllable	inputs	in	response	to	outputs
§ Can	respond	better	to	variations	in	disturbances
§ Performance	depends	on	how	well	outputs	can	be	measured

q Two	control	design	techniques:
1. Mathematical,	based	on	theory	of	linear	systems
2. PID	controllers,	widely	used	in	practice

Controllable	inputs	

Controller	C
Reference	inputs	



Feedback	Controller	for	Helicopter	Model

q Design	controller	so	that	composed	system	is	stable

q Error	e	=	(r	– s)	:	difference	in	desired	value	and	observed	output

q Proportional	controller:	output	T is	proportional	to	error	e

q Constant	KP:	proportional	gain

q Note:	the	direction	of	torque	changes	with	sign	of	the	error

ds =	T	/	I

Torque	T Spin	s
Helicopter	plant

T	=	KP (r	– s)
Reference	r

Controller



Stabilizing	Controller	for	Helicopter	Model

q Dynamics	of	the	composed	system:		ds/dt =	KP (r	– s)	/	I

q When	is	this	system	asymptotically	stable?	BIBO	stable?

§ When	the	coefficient	–KP	/	I	is	negative

q Control	design:	choose	a	positive	gain	constant	KP
§ Rate	of	convergence	depends	on	magnitude	of	KP

ds =	T	/	I
Torque	T Spin	s

Helicopter	plant

T	=	KP (r	– s)
Reference	r

Controller



Feedback	Controller	for	Linear	Systems

q Assume	the	controller	observes	the	complete	state	vector	S

q Reference	signal	R has	same	dimension	as	state	vector	S

q State	feedback	controller:	linear	transformation

q Matrix	F:	gain	matrix	of	dimension	m⨯n,	with	m	=	|I|,	n	=	|S|

dS =	A	S	+	B	I
Control	I State	S

Linear	plant

I	=	F	(R	– S)
Reference	R

Controller



Stabilization	by	Linear	State	Feedback

q Dynamics	of	the	composed	system:
dS/dt =	(A	– B	F)	S	+	B	F	R

q Goal	of	control	design:	define	the	gain	matrix	F so	that	the	
composed	system	is	asymptotically,	and	so	BIBO,	stable
§ Given	matrices	A and	B,	find	F such	that	each	eigenvalue	of	

A	– B	F has	negative	real	part

dS =	A	S	+	B	I

Control	I State	S
Linear	plant

I	=	F	(R	– S)
Reference	R

Controller



Design	of	Gain	Matrix

q System	dynamics:	dS/dt =	A	S	+	B	I	with	n state	and	m input	vars

q Design	goal:	given	matrices	A and	B,	find	F such	that	each	
eigenvalue	of	A	– B	F		has	negative	real	part

q When	is	this	possible	?

q Suppose	we	choose	desired	eigenvalues	λ1,	…,	λn and	solve	the	
system	of	equations

det(A	– B	F	– λI) =		(λ – λ1)	(λ – λ2)	…	(λ – λn)
where	the	m⨯n entries	of	matrix	F are	the	unknowns

q When	is	this	system	guaranteed	to	be	solvable?
q Does	the	existence	of	a	solution	depend	on	the	choice	of	

eigenvalues?



Controllability

q Given	an	n⨯n matrix	A and	n⨯mmatrix	B,	consider	the	
controllability n⨯mnmatrix

C[A,B]		=		( B			AB			A2B			…			An-1B	)

m columns	of	B followed	by	m columns	of	A	B,	then	of	A	A	B,	…

q Recall:	the	rank of	a	matrix	is	the	maximum	number	of	linearly	
independent	rows

q The	matrix	pair	(A,	B)	is	controllable if	C[A,B] has	rank	n

Theorem: The	following	are	equivalent:
1. The	matrix	pair	(A,	B)	is	controllable
2. For	any	set	{λ1,	…	,	λn} of	complex	numbers	such	that	a	+	bj is	in	

the	set	iff its	conjugate	a	– bj is	in	the	set,	there	is	a	n⨯m gain	
matrix	F such	that	the	eigenvalues	of	A	– B	F are	λ1,	…	,	λn



Example:	Controllability	test
Consider	2-dimensional	system	with	one	input	u,	with	dynamics	
given	by

d	s1 =		4	s1 +		6	s2 +	2	u
d	s2 =					s1 +		3	s2 +				u

§ What	are	the	matrices	A,	B,	C[A,	B]?
§ What	is	the	rank	of	C[A,	B]?



Advantages	of	Controllability

q Consider	a	linear	system	with	dynamics:	
dS/dt =	A	S	+	B	I	;	initial	state	s0

q Suppose	(A, B) is	controllable

q Then,	for	every	system	state	s there	is	an	input	signal	I and	a	
time	tg such	that		

S(tg)	=	s
where	S is	the	unique	response	signal	for	I and	s0



PID	Controllers

q Strategy	for	designing	controllers	that	is	widely	used	in	practice
q Error	=	Reference	Inputs	– Observable	Outputs
q Controller’s	output	is	sum	of	3	terms:

§ Term	proportional	to	error	
§ Integral	term	to	handle	cumulative	error
§ Derivative	term	in	response	to	rate	of	change	of	error

Plant	model	as	
Continuous-time	
Component	H

Uncontrolled	inputs
Observable	Outputs	

Controllable	inputs	

Controller	C
Reference	inputs	



DC	Motor

Resistance	R Inductance	L

Current		i+	

-

Voltage	Vs
Back	EMF	k	dθ

Torque	k	i

Displacement	θ

Damping	
resistance	b	dθInertial	

resistance	I	d2θLaws	of	electrical	circuits:
L	di/dt +	R	i +	k	dθ/dt =	Vs

Laws	of	motion	for	the	shaft:
I	d2θ/dt2 +	b	dθ/dt =	k	i



Proportional	Controller	for	DC	Motor

q DC	Motor	modeled	as	a	linear	system	with	2	state	variables,	1	
input	variable,	and	1	output	variable

q Feedback	controller	observes	rotational	velocity	ν,	and	adjusts	
voltage	to	make	ν equal	to	desired	velocity	r

q First	attempt:	proportional	controller	(P	controller)

Vs =	KP (r	- ν)
Reference	velocity	r

Controller

dν =	(k	i - b	ν)	/	IVoltage	Vs
Rotational
velocity	ν

DC	Motor

di =	(Vs - k	ν - R	i)	/	L



Step	Response	of	P	Controller

q Step	response:	How	will	system	
output	change	if	at	time	0,	with	ν =	0,	
we	change	reference	input	r to	1?

q Plotted	using	MATLAB	(see	notes	for	
values	of	various	parameters)

q Beyond	stability	and	convergence,	
what	are	desired	characteristics	of	the	
response?



Characteristics	of	the	Step	Response

1. Overshoot:	Difference	between	
maximum	output	value	and	
reference	value	(12%	in	this	plot)

2. Rise	Time:	Time	at	which	the	output	
value	crosses	reference	value	
(0.15sec	in	this	plot)

3. Settling	Time:	Time	at	which	output	
value	reaches	steady-state	value	
(0.8sec	in	this	plot)

4. Steady	State	Error:	Difference	
between	steady-state	output	value	
and	reference	(10%	in	this	plot)



Improving	the	Step	Response

q Performance	of	the	P-controller	
depends	on	the	value	of	the	
proportional	gain	constant	KP

q What	happens	if	we	increase	it?

q Rise	time	decreases,	but	
overshoot	increases

q Steady-state	error	remains!

q Solution:	Use	integral and	
derivative gains



Generic	PID	Controller

Reference	r

uP =	KP e

Proportional

Output	y
Plant

uI =	KI xI

Integral
dxI =	e

uD =	KD de/dt

Derivative

Error	e
Σ

Σ
Control	u

uP

uI

uD

–

e	=	r	– y



q If	e(t) is	the	error	signal,	then	the	output	u(t)	of	the	PID	
controller	is	sum	of	3	terms:
§ Proportional	term:	KP e(t),		where	KP is	the	proportional	gain

(response	to	current	error)

§ Integral	term:	KI	∫0t e(t)	dt,		where	KI is	the	integral	gain
(response	to	error	accumulated	so	far)

§ Derivative	term:	KD (d/dt)e(t),	where	KD is	the	derivative	gain
(response	to	current	rate	of	change	of	error)

q Special	cases	of	controllers:	P,	PD,	PI

PID	Controller



PI	and	PD	Controllers	for	DC	Motor

q PI	Controller:	adding	integral	
term	to	proportional	controller	
gets	rid	of	steady	state	error
§ Overshoot,	rise	time,	

setting	time	increase	
(why?)

q PD	controller:	adding	derivative	
term	to	proportional	controller	
gets	rid	of	overshoot
§ Steady	state	error	remains



PID	Controller	for	DC	Motor

Excellent	performance	on	all	metrics:	KP =	100,	KD =	10,	KI =	200
Small	rise	time,	settling	time,	negligible	steady	state	error,	no	overshoot



Designing	PID	Controllers

q What	are	the	effects	of	changing	the	gain	constants	KP,	KD,	KI ?

q Broad	co-relationships	well	understood

q Control	toolboxes	allow	automatic	tuning	of	parameters

q PID	controllers	seem	to	work	well	even	when	the	actual	system	
differs	significantly	from	the	plant	model
§ Computation	of	control	output	depends	only	on	the	measured	

error,	and	not	on	the	model!	



PI	Cruise	Controller

q Desired	change	in	velocity:	10	m/s

q PI	controller:	KP =	600,	KI = 40

q Settling	time:	7s,	with	negligible	
overshoot	and	steady-state	error

q Works	in	a	real	car!
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