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Dynamical	Systems	
Part	I	



Dynamical	Systems	

q Controller	interac/ng	with	the	physical	world	via	sensors	
and	actuators	

§  Thermostat	controlling	temperature	

§  Cruise	controller	regula/ng	speed	of	a	car	

q System	variables:	physical	quan//es	evolving	con/nuously	
over	/me	
§  Temperature,	pressure,	velocity	…		

q Con/nuous-/me	models	using	differen/al	equa/ons	



Model-Based	Design	

q Block	Diagrams	
§  Widely	used	in	industrial	design	

§  Tools:	Simulink,	Modelica,	Ra/onalRose…	

q Key	ques/on:	what	is	the	execu/on	seman/cs?	

§  Similar	to	synchronous	model,	but	con/nuous-/me	
instead	of	discrete-/me	



Tradi/onal	Feedback	Control	Loop	

Plant	

Controller	

Actuators	 Sensors	

Disturbances	

Reference	inputs	



Example:	Heat	Flow	

q  	Input	variables:	hin	and	hout	of	type	real		

	hnet		=	hin		-		hout	

q  	Output	variable:	hnet	of	type	real	
q  	No	state	variables	
q  	Signal:	assignment	of	values	to	variables	as	func/on	of	/me	t	

q  	At	each	/me	t,	value	of	output	signal	hnet(t)	equals	hin(t)	–	hout(t)	
q  	Output	as	a	func/on	of	inputs/state,	specified	using	algebraic		

equa/ons	(as	opposed	to	assignments)	

hnet	hin	

hout	



Car	Model	

Posi/on	x	

Velocity	v	

Force	F	

Fric/on	k	v	

§  v,	x,	F	and	v	are	all	func/ons	of	/me	t;				k	is	a	fric/on	constant	

§  Newton’s	law	of	mo/on	gives:		

F	–	k	v		=		m	d2x/dt	



Nota/on	

First	deriva/ve	of	func/on	f(t)	with	respect	to	t	:	

§  	df(t)/dt 	(full	nota/on)	

§  	df/dt 	(with	the	understanding	that	f	is	a	func/on	of	t)	

§  	df 	 	(dimension	t	is	implicit)	

§  	f’ 	 	(same	as	df)	
							.	
§  	f 	 	(same	as	df)	

Second	deriva/ve	of	func/on	f(t)	with	respect	to	t	:	

§  	d2f(t)/dt2 	(full	nota/on)	

§  	d2f/dt2 	(with	the	understanding	that	f	is	a	func/on	of	t)	

§  	d2f 	 	(dimension	t	is	implicit)	

§  	f’’ 	 	(same	as	d2f)	
							.	.	
§  	f 	 	(same	as	d2f)	



Con/nuous-/me	Component	Car	

v	F	
	dx		=		v	
	dv		=		(F	–	k	v)	/	m	

	real	xL	<=	x	<=	xU	;	
									vL	<=	v	<=	vU	

q  The	value	of	output	variables	is	defined	in	terms	of	input	and	
state	variables	

q  For	each	state	variable	s,	its	rate	of	change	ds/dt	is	defined	in	
terms	of	input	and	state	variables	



Execu/ons	of	Car	

q  Input	signal:	func/on	F(t)	:	real>=0	→	real	that	gives	value	of	
force	as	a	func/on	of	/me	
§  should	be	con/nuous	or	piecewise-con/nuous	

q  Given	an	ini/al	state	(x0,	v0)	and	input	signal	F(t),	the	execu/on	
of	the	system	is	defined	by	state-signals		

x:	real>=0	→	real				and					v:	real>=0	→	real			

that	sa/sfy	the	ini/al-value	problem:	

1.  	x(0)		=		x0	
2.  	v(0)		=		v0	
3.  	dx(t)/dt		=		v(t)	

4.  	dv(t)/dt		=	d2x(t)/dt2		=		(F(t)	–	k	v(t))	/	m	



Execu/ons	of	Car:	Example	1	

Suppose	force	is	always	0,	and	ini/al	posi/on	is	0.	We	need	to	
solve:	

§  	x(0)	=	0	
§  	v(0)	=	v0	
§  	dx/dt	=	v	
§  	dv/dt	=	–	k	v	/	m	

Solu/on:	

q  Velocity	decreases	exponen/ally	fast,	converging	to		0	
	v(t)	=	v0	e–k	t	/	m	

	

q  	Posi/on	converges	exponen/ally	fast	to		m	v0	/	k	
	x(t)	=	(m	v0	/	k)	(1	–	e–k	t	/	m)	



Suppose	ini/al	posi/on	is	0,	ini/al	velocity	is	0,	and	force	is	
constant	F0.	Then,	to	get	execu/ons,	we	need	to	solve:	

§  	x(0)	=	0	
§  	v(0)	=	0	
§  	dx/dt	=	v	
§  	dv/dt	=	(F0	–	k	v)	/	m	

Compute	the	solu/on	using	MATLAB	
§  	Mass	m	=	1000kg	

§  	Coefficient	of	fric/on	k	=	50	

§  	Force	F0	=	500	Newton	
§  	Velocity	converges	to	10	m/s	

Execu/ons	of	Car:	Example	2	



Con/nuous-Time	Component	Defini/on	

q  Set	I	of	real-valued	input	variables;	type	is	either	real	or	interval	
of	real,	real[L,	U]	

q  Set	O	of	real-valued	output	variables	
q  Set	S	of	real-valued	state	variables	
q  Ini0aliza0on	Init	specifying	set	[Init]	of	ini/al	states	
q  For	each	output	var	y,	a	real-valued	expression	hy	over	I	∪	S	
q  For	each	state	variable	x,	a	real-valued	expression	fx	over	I	∪	S	
	

Execu8on	

Given	an	input-signal	I(t)	:	real>=0	→	real|I|,	an	execu0on	consists	of	
a	differen/able	state	signal	S(t)	and	output	signal	O(t)	such	that	

1.  	S(0)	is	in	[Init]	
2.  	For	each	output	var	y	and	/me	t,	y(t)	=	hy(I(t),	S(t))	

3.  	For	each	state	var	x,		dx(t)/dt	=	fx(I(t),	S(t))	



Existence	and	Uniqueness	

q  Given	an	input	signal	I(t),	when	are	we	guaranteed	that	the	
system	has	at	least/exactly	one	execu/on?		

q  The	input	signal	should	be	con/nuous	(or	at	least	piecewise	
con/nuous),	but	answer	also	depends	on	right-hand-sides	of	
equa/ons	defining	state	and	output	dynamics	

q  Related	to	classical	theory	of	Ordinary	Differen/al	Equa/ons	
(ODEs)	

q  Consider	the	ini/al	value	problem	

	dx/dt	=	F(x)	;				x(0)	=	x0	,						x	is	k-dimensional	vector	
	

q When	does	there	exist	a	unique	differen/able	func/on	x(t)	as	a	
solu/on?	



Solu/on	Existence	

Ini/al	value	problem:	
	dx/dt	=	F(x)	;			x(0)	=	x0	,		x	is	k-dimensional	vector	

q  The	problem	has	a	solu/on	x(t)	if	func/on	F	is	con/nuous	

q  Example	when	solu/on	does	not	exist:	
dx/dt	=	if	(x	=	0)	then	1	else	0	

	

q  It	is	natural	to	require	all	right-hand-side	expressions	hy	and	fx	in	
defini/on	of	a	con/nuous-/me	component	to	be	con/nuous	

§  Discon/nuous	case	->	Hybrid	Systems	



Con/nuous	Func/on	

	
Defini/on	of	con/nuity	relies	on	a	given	no/on	of	distance	||_||	
between	points	(e.g.,	Euclidean	distance)	

A	func/on	f:	realm	→	realn		is	(uniformly)	con0nuous	if	

for	all	ε	>	0,	
		there	is	a	δ	>	0	such	that		

				for	all	u,	v	∈	realm,			

						if	||	u	–	v||		<	δ	then	||	f(u)	-	f(v)||		<	ε	



Solu/on	Uniqueness	

Ini/al	value	problem:	
	dx/dt	=	G(x)	;			x(0)	=	x0,				x	is	k-dimensional	vector	

q  There	exists	a	unique	solu/on	x(t)	if	the	func/on	G	is	Lipschitz-
con/nuous	

	

q  Examples:	
§  A	linear	func/on	such	as	(F	–	k	v)	/	m	is	Lip-con/nuous	

§  Quadra/c	func/on	x2	is	Lip-con/nuous	if	domain	of	x	is	
bounded	

q  Counterexamples:	
§  	x1/3	is	not	Lip-con/nuous:	dx/dt	=	x1/3;	x(0)	=	0	has	mul/ple	
solu/ons:	
1.  	x(t)	=	0	
2.  	x(t)	=	(2t/3)3/2	



Lipschitz-Con/nuous	Func/on	

Informally,	Lipschitz-con/nuous	means	that	there	is	a	constant	
upper	bound	on	how	fast	a	func/on	changes	
	

A	func/on	f:	realm	→	realn	is	Lipschitz-con0nuous	if	there	exists	a	
constant	c	such	that		
		for	all	u,	v	in	realm,		

				||	f(u)	–	f(v)||			<=		c	||	u	–	v||		



Lipschitz-Con/nuous	Component	

q  A	con/nuous-/me	component	has	Lipschitz-con0nuous	
dynamics	if	
§  each	expression	hy	corresponding	to	output	variable	y	is	a	
Lipschitz-con/nuous	func/on	of	I	∪	S	

§  Each	expression	fx	corresponding	to	state	variable	x	is	a	
Lipschitz-con/nuous	func/on	over	I	∪	S	

q  Given	a	con/nuous	input	signal	I(t),	a	component	with	Lipschitz-
con/nuous	dynamics	has	unique,	and	con/nuous,	response	
signals	S(t)	and	O(t)	

q  Note:	con/nuity	of	output	signals	means	that	these	can	be	fed	
to	other	components	in	a	block	diagram	

q  Henceforth,	we	will	consider	only	Lipschitz-con/nuous	
components	



Car	on	a	graded	road	

Posi/on	x	

Velocity	v	

Force	F	

Fric/on	k	v	

Newton’s	law	of	mo/on	gives		
	

F	–	k	v	–	m	g	sin(θ)  =		m	d2x/dt	

Angle	θ

Weight	m	g	



Con/nuous-/me	Component	Car	2	

v	F	

	dx	=	v	
	dv	=	(F	–	k	v	–	m	g	sin(θ))	/	m	

	real	xL	<=	x	<=	xU	
									vL	<=	v	<=	vU	

q  The	slope	of	the	road,	denoted	by	θ,	models	disturbance,	or	an	
uncontrolled	input	

q  Design	problem:	Find	a	controller	with	v	as	input	and	F	as	output	such	
that	the	composed	system	works	correctly	for	all	con/nuous	input	
signals	q(t)	for	θ,	with	q(t)	always	in	[–π/6,	π/6]	

θ



Simple	Pendulum	

q  External	torque	applied	by	the	motor	at	the	pivot:	u	

q  Dynamics	captured	by	the	second-order	non-linear	differen/al	
equa/on:	

m	l2	(d2ϕ/dt2)		=		u	–	m	g	l	sin(ϕ)

Length	l	

Torque	u	

Weight	m	g	

Displacement	ϕ

m	g	sin(ϕ)



Pendulum	Model	

ϕu	

	dϕ	=	ν	

	dν	=	–	(g/l)	sin(ϕ)	+	u/(ml2)	

	real	–π	<=	ϕ	<	π	
	real	ν	=	0	



Angular	Displacement	

q  External	torque	=	0;	Ini/al	
displacement	=	π/4	

q  Oscillatory	mo/on	plored	by	
MATLAB	

q  What	are	the	equilibria	of	this	
pendulum	?	
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