
CS:4980	
Founda/ons	of	Embedded	Systems	

Copyright 20014-16, Rajeev Alur and Cesare Tinelli.
Created by Cesare Tinelli at the University of Iowa from notes originally developed by Rajeev Alur at the University of
Pennsylvania. These notes are copyrighted materials and may not be used in other course settings outside of the
University of Iowa in their current form or modified form without the express written permission of one of the copyright
holders. During this course, students are prohibited from selling notes to or being paid for taking notes by any person or
commercial firm without the express written permission of one of the copyright holders.

Safety	Requirements	
Part	II	

Requirements-based	Design	

	
q  Systema/c	approach	to	design	of	systems	

q  Given:	
§  Input/output	interface	of	system/component	C	to	be	

designed	
§  Model	E	of	the	environment	
§  Safety	proper/es	P1,…,	Pn	of	the	composite	system	

q  Design	problem:		
§  Fill	in	details	of	C	(state	variables,	ini/aliza/on,	and	update)	

so	that		P1,…,	Pn		are	invariant	for		C	||	E	

Railroad	Controller	Example	

Train	Model	

q  Each	train	is	ini/ally	away	from	bridge	
q  Train	can	be	in	away	state	for	an	arbitrarily	long	period	
q  When	the	train	gets	close,	it	communicates	with	the	traffic	controller	

via	an	event,	say,	arrive,	and	now	it	is	in	a	different	state,	say,	wait	
q  When	near,	train	is	monitoring	the	signal	on	the	bridge:	

§  If	the	signal	is	green,	it	enters	the	bridge	
§  If	the	signal	is	red,	it	con/nues	to	wait	

q  A	train	can	stay	on	bridge	for	a	dura/on	that	is	no	exactly	known	(and	
not	directly	under	the	control	of	the	traffic	controller)	

q  When	the	train	leaves	the	bridge,	it	communicates	with	the	controller	
via	an	event,	say,	leave,	and	goes	back	to	away	state	

q  This	behavior	repeats:	an	away	train	may	again	request	entry	
q  The	two	trains	have	symmetric	behavior	

{green,	red}	signalE	
TrainE	

event({arrive,	leave})	outE	

Controller	

{green,	red}	signalW	
TrainW	

event({arrive,	leave})	outW	

Controller	Design	Problem	

Safety	Requirement:	Trains	should	not	be	on	bridge	simultaneously	
	Formally,	the	following	should	be	an	invariant:	

~(modeW	=	bridge		&		modeE	=	bridge)	
	

Synchronous	Component	Train	

First	A]empt	at	Controller	Design	

q  Controller	maintains	state	variables	east,	west	to	track	the	
state	of	each	signal	

q  Both	state	variables	are	ini/ally	green	
q  Set	the	output	for	the	signals	is	based	on	the	corresponding	

state	vars	
q  If	a	train	arrives,	then	update	the	opposite	signal	var	to	red	to	

block	the	other	train	from	entering	the	bridge	
q  If	a	train	leaves,	reset	the	opposite	signal	var	to	green	
q  What	happens	if	both	trains	arrive	simultaneously?	

Give	priority	to	east	train:	set	west	signal	var	to	red	

Synchronous	Component	Controller1	

west 	 	east 	 	modeW 	 	modeE	

green 	 	green 	 	away 	 	away	
arrive! 				 arrive! 		

red 	 	 	green 	 	wait 	 	wait	

		red	 leave! 		

		red	 green	

red 	 	 	green 	 	wait 	 	bridge	

green 	 	green 	 	wait 	 	away	
		green	 arrive! 		

red 	 	 	green 	 	bridge 	 	wait	
		red	 green	

red 	 	 	green 	 	bridge 	 	bridge	

Controller	 Train	W	 Train	E	

Second	A]empt	at	Controller	Design	
q  What	went	wrong	the	first	/me?	Controller	did	not	remember	

whether	a	train	was	wai/ng	at	each	entrance	
q  Boolean	variable	nearW	remembers	whether	the	west	train	wants	

to	use	the	bridge	
§  Ini/ally	0	
§  When	the	west	train	issues	arrive,	changed	to	1	
§  When	the	west	train	issues	leave,	reset	back	to	0	

q  Invariant:	modeW	=	away		<=>		nearW	=	0	
q  Variable	nearE	is	symmetric	
q  Let’s	also	start	with	both	signals	red	
q  A	signal	is	changed	to	green	if	the	corresponding	train	is	near	and	

the	other	signal	is	red;	it	is	changed	back	to	red	when	train	is	
away	

q  Need	s/ll	to	resolve	simultaneous	arrivals	by	preferring	one	train	

Second	A]empt	at	Controller	Design	

Proper/es	of	Controller2	
q  The	system	RailRoadSystem2	=	Controller2	||	TrainW	||	TrainE	

sa/sfies	the	safety	property		
~(modeW	=	bridge		&		modeE	=	bridge)	

q  What	about	some	addi/onal	proper/es?	
1.  If	the	west	train	is	wai/ng	then	west	signal	will	eventually	

become	green	
2.  If	the	west	train	is	wai/ng	for	its	signal	to	turn	green,	other	

train	should	not	be	allowed	on	bridge	more	than	once	
q  Requirement	1	is	a	liveness	requirement		(see	Chap.	4	of	text)	
q  Requirement	2	is	a	safety	requirement	

§  Its	viola/on	can	demonstrated	by	a	(finite)	execu/on	in	
which	east	train	enters,	leaves,	and	enters	again	while	west	
train	keeps	wai/ng	with	its	signal	red	

§  But	it	cannot	be	encoded	as	an	invariant	on	system	state	
variables!	

	

Safety	Monitor	

q  Monitor	M	for	a	system		observes	its	inputs/outputs,	and	enters	
an	error	state	if	undesirable	behavior	is	detected	

q  Monitor	M	is	specified	as	extended	state	machine	
1.  The	set	of	input	variables	of	M	=	input/output	variables	of	

system	being	monitored	
2.  An	output	of	M	cannot	be	an	input	to	system	(monitor	does	

not	influence	what	the	system	does)	
3.  A	subset	F	of	modes	of	state-machine	declared	as	accep/ng	

q  Undesirable	behavior:	An	execu/on	that	leads	monitor	state	to	F	

q  Safety	verifica/on:	Check	whether	(M.mode	not	in	F)	is	an	
invariant	of	system	C	||	M	

	

{green,	red}	signalE	TrainE	

event({arrive,	leave})	outE	

Controller	

{green,	red}	signalW	
TrainW	

event({arrive,	leave})	outW	

Safety	Monitors	

Monitor	

Monitor	to	check	fairness	for	railroad	

outW	

0

else	

outW	?	arrive		

Error	execu/on:		
	As	west	train	waits,	east	train	is	allowed	on	bridge	twice	

outE	

signalW	

signalE	

1
signalW	?	green		

2

outE	?	leave		

else	

signalW	?	green		

3
outE	?	leave		

else	

Exercise:	Leader	Elec/on	

q  Suppose	we	want	to	check	that	at	most	one	of	the	nodes	declares	
itself	to	be	the	leader	

q  Design	a	monitor	M	
§  Input	variables:	{undecided,	leader,	follower}	statusn,	for	each	

node	n	
§  M	should	enter	error	state	iff	for	two	dis/nct	nodes	m	and	n	

1.  there	exists	a	round	r1	in	which	statusm	=	leader	and		
2.  there	exists	a	round	r2	in	which	statusn	=	leader	

q  Consider	the	requirement:	eventually	statusn	!=	undecided	

Why	can’t	we	design	a	monitor	that	enters	an	error	state	if	this	
requirement	is	violated?	

Credits	

Notes	based	on	Chapter	3	of	
	
Principles	of	Cyber-Physical	Systems	
by	Rajeev	Alur	
MIT	Press,	2015	
	

