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Model-Based	Design	

q  Block	Diagrams	
§  Widely	used	in	industrial	design	
§  Tools:	Simulink,	Modelica,	LabView,	Ra/onalRose,	…	

q  Key	ques/on:	what	is	the	execu/on	seman/cs?	
§  What	is	a	base	component?	
§  How	do	we	compose	components	to	form	complex	components?	



Func/onal	vs.	Reac/ve	Computa/on	

q  Func/onal	model	of	computa/on	(classical	one):	
§  Given	inputs,	a	program	produces	outputs	
§  Desired	func/onality	described	by	a	mathema/cal	func/on	
§  Example:	sor/ng	of	names;	shortest	paths	in	a	weighted	graph	
§  Theory	of	computa/on	provides	founda/on		
§  Canonical	model:	Turing	machines	

q  Reac/ve	model	of	computa/on:	
§  System	con/nually	interacts	with	its	environment	via	inputs	and	

outputs	
§  Desired	behavior	described	by	sequences	of	observed	input/output	

interac/ons	
§  Example:	cruise	controller	in	a	car	



Sequen/al	vs.	Concurrent	Computa/on	

q  Sequen/al	model	of	computa/on	(classical):	
§  A	computa/on	is	a	sequence	of	instruc/ons	executed	one	at	a	/me	
§  Well	understood	and	canonical	model:	Turing	machines	

q  Concurrent	model	of	computa/on	
§  Mul/ple	components/processes	exchanging	informa/on	and	evolving	

concurrently	
§  Logical	vs.	physical	concurrency	
§  Broad	range	of	formal	models	for	concurrent	computa/on	
§  Key	dis/nc/on:	synchronous	vs.	asynchronous	



Synchronous	Models	

q  All	components	execute	in	a	sequence	of	(logical)	rounds,	in	lock-step		

q  Example:	Component	blocks	in	digital	hardware	circuit	
§  Clock	drives	all	components	in	a	synchronized	manner	

q  Key	idea	in	synchronous	languages:	
§  Design	system	using	such	a	synchronous	round-based	computa/on	
§  Benefit:	design	is	simpler	(why?)	
§  Challenge:	ensure	synchronous	execu/on	even	if	implementa/on	

pla]orm	is	not	single-chip	hardware	



First	Example:	Delay	

q  Input	variable:	in	of	Boolean	type	(	{0,1}	)	

bool	in	 bool	out	bool	x	:=	0	

out	:=	x	;	x	:=	in	

q  Output	variable:	out	of	Boolean	type		

q  State	variable:	x	of	Boolean	type		

q  Ini+aliza+on	of	state	variables	(	x	:=	0	)	

q  Execu+on:	in	each	round,	in	response	to	an	input,	
§  produce	output	(	out	:=	x	)	and	
§  update	state	(	x	:=	in	)	



Delay:	Round-based	Execu/on	

1.  Ini/alize	state	x	to	0	

bool	in	 bool	x	:=	0	

out	:=	x	;	x	:=	in	

2.  Repeatedly	execute	rounds.	In	each	round:	
a.  Read	current	value	of	the	input	variable	in	
b.  Execute	the	update	code	to	produce	output	out	and	change	state	

Sample	execu/on:	
   
 0  

1	/	0	
1	

1	/	1	
1	

0	/	1	
0	

0	/	0	
0	

1	/	0	
1	

bool	out	



Synchrony	Hypothesis	

q  Assump/on:	Time	needed	to	execute	the	update	code	is	negligible	
compared	to	delay	between	successive	input	arrivals	

q  Logical	abstrac/on:	
§  Execu/on	of	update	code	takes	zero	/me	
§  Recep/on	of	inputs	and	produc/on	of	outputs	occur	
simultaneously	

q  Composi/on:	when	mul/ple	components	are	composed,	all	execute	
synchronously	and	simultaneously	

q  Implementa/on:	must	ensure	that	this	design-/me	assump/on	is	
valid	



Components	in	an	Automobile	

q  Components	need	to	communicate	and	coordinate	over	a	shared	bus	

q  Design	abstrac/on:	Synchronous	/me-triggered	communica/on	
§  Time	is	divided	into	slots	
§  In	each	slot,	exactly	one	component	sends	a	message	over	the	bus	

q  CAN	protocol	implements	/me-triggered	communica/on	



Model	Defini/on	

q  Syntax:	How	to	describe	a	component?	
§  Variable	declara/ons,	types,	state	updates,	…	

q  Seman/cs:	What	does	the	descrip/on	mean?	
§  Defined	using	mathema/cal	concepts	such	as	sets,	func/ons,	…	

q  Formal	founda/ons:	Seman/cs	is	defined	precisely	
§  Necessary	for	tools	for	analysis,	compila/on,	verifica/on,	…	
§  Defining	formal	seman/cs	for	a	real	language	is	challenging	
§  But	concepts	can	be	illustrated	on	a	toy	modeling	language		



Model	Defini/on	

Our	modeling	language:	Synchronous	Reac/ve	Components	
	

§  Representa/ve	of	many	academic	proposals	
§  Founda/ons	of	Industrial-strength	synchronous	languages:	
	Esterel,	Lustre,	VHDL,	Verilog,	Stateflow,	…	



Synchronous	Reac/ve	Component	

bool	in	
bool	x	:=	0	

out	:=x	;	x	:=	in	

bool	out	

Delay	

State	variables:	
					Declara/on	+	Ini/aliza/on	

Update	code:	
					To	be	executed	in	each	round	

Inputs	 Outputs	



SRC	Defini/on	(1):	Inputs	

bool	in	

q  Each	component	has	a	set	I	of	input	variables	
§  Variables	have	types.	E.g.	bool,	int,	nat,	real,	{on,	off},	…	

q  Input:	Valua/on	of	all	the	input	variables		
§  The	set	of	inputs	is	denoted	QI	

q  For	Delay	
§  I	contains	a	single	variable	in	of	type	bool	
§  The	set	of	inputs	is	{	{in	:=	0},	{in	:=	1}	}	

q  Example:	I	contains	two	variables:	int	x	,	bool	y	
§  Each	input	is	a	pair:	(integer	value	for	x	and	0/1	value	for	y)			

Inputs	Delay	



SRC	Defini/on	(2):	Outputs	

q  Each	component	has	a	set	O	of	typed	output	variables	
q Output:	Valua/on	of	all	the	output	variables		

§  The	set	of	outputs	is	denoted	QO	

q  For	Delay	
§  O	contains	a	single	variable	out	of	type	bool	
§  The	set	of	outputs	is	{	{out	:=	0},	{out	:=	1}	}	

Delay	
bool	out	

Outputs	



SRC	Defini/on	(3):	States	

q  Each	component	has	a	set	S	of	typed	state	variables	
q  State:	Valua/on	of	all	the	state	variables		

§  The	set	of	states	is	denoted	QS	

q  For	Delay	
§  S	contains	a	single	variable	x	of	type	bool	
§  The	set	of	states	is	{	{x	:=	0},	{x	:=	1}	}	

q  State	is	internal	and	maintained	across	rounds	

Delay	
bool	out	bool	x		

State	variables:	
		Declara/on		



SRC	Defini/on	(4):	Ini/aliza/on	

q  Ini/aliza/on	of	state	variables	specified	by	Init	
§  Sequence	of	assignments	to	state	variables	

q  Seman/cs	of	ini/aliza/on:		
§  The	set	[Init]	of	ini/al	states,	which	is	a	subset	of	QS	

q  For	Delay	
§  Init	is	given	by	the	code	fragment	x	:=	0	
§  The	set	[Init]	of	ini/al	states	is	{	{x	:=	0}	}	

q  Component	can	have	mul/ple	(alterna/ve)	ini/al	states	
§  Example:	bool	x	:=	choose	{0,	1}	

Delay	
bool	out	bool	x	:=	0		

State	variables:	
		Declara/on	+	Ini/aliza/on	



SRC	Defini/on	(5):	Reac/ons	

q  Execu/on	in	each	round	given	by	code	fragment	React	
§  Sequence	of	assignments	and	condi/onals	that	assign	output	
variables	and	update	state	variables	

q  Seman/cs	of	update:		
§  The	set	[React]	of	reac/ons,	where	each	reac/on	is	of	the	form	
(old)	state	-	input	/	output	->	(new)	state	

§  [React]	is	a	subset	of	QS	×	QI	×	QO	×	QS	

q  For	Delay:	
§  React	is	given	by	the	code	fragment	out	:=	x	;	x	:=	in	
§  There	are	4	reac/ons:	0	-	0/0	->	0;		0	-	1/0	->	1;		1	-	0/1	->	0;		1	-	1/1	->	1	

Delay	
bool	out	

out	:=x	;	x:=	in	 Update	code:	
			To	be	executed	in		
			each	round	



Mul/ple	Reac/ons	

bool	in	 bool	x	:=	0	

out	:=	x	;	x	:=	choose	{	in,	x	}	

bool	out	

q  During	update,	x	is	either	updated	to	input	in	or	is	lep	unchanged	
§  Mo/va/on:	models	the	possibility	that	an	input	may	be	lost	

q  Nondeterminis/c	reac/ons	
§  Given	(old)	state	and	input,	output/new	state	need	not	be	
unique	

§  The	set	[React]	of	reac/ons	now	contains	
	 	0	-	0/0	->	0	
	 	0	-	1/0	->	1;		0	-	1/0	->	0	
	 	1	-	0/1	->	0;		1	-	0/1	->	1	
	 	1	-	1/1	->	1	



Mul/ple	Reac/ons	

bool	in	 bool	x	:=	0	

if	x	!=	in	then		
			{	out	:=	x	;	x	:=	in	}	

bool	out	

q  A	component	may	not	accept	all	inputs	in	all	states	
§  Mo/va/on:	blocking	communica/on	

q  Possible	set	of	reac/ons	in	certain	state/input	combina/ons	may	
be	empty	
§  The	set	[React]	of	reac/ons	now	contains	
	 	0	-	1/0	->	1	
	 	1	-	0/1	->	1	



Syntax	Errors	

bool	in	 bool	x	:=	0	

x	:=	out;	out	:=	in	

bool	out	

q  Update	code	expected	to	sa/sfy	a	number	of	requirements:	
§  Types	of	variables	and	expressions	should	match	
§  Output	variables	must	first	be	wriren	before	being	read	
§  Output	variable	must	be	explicitly	assigned	a	value	

q Otherwise,	then	no	reac/on	possible	
§  In	above:	set	[React]	of	reac/ons	is	the	empty	set	



Seman/c	Equivalence	

q  Both	have	iden/cal	sets	of	reac/ons	

q  Syntac/cally	different	but	seman/cally	equivalent	

q  Compiler	can	op/mize	code	as	long	as	seman/cs	is	preserved!	

int	in1	

out	:=	in12	–	in22	
int	out	

int	in2	

DiffSquare	 int	in1	 local	int	x,	y	;	
				x	:=	in1	+	in2	;	
				y	:=	in1	–	in2	;	
				out	:=	x	*	y		

int	out	

int	in2	

DiffSquare1	



Synchronous	Reac/ve	Component	Defini/on	

q  Set	I	of	typed	input	variables:	gives	set	QI	of	inputs	
q  Set	O	of	typed	output	variables:	gives	set	QO	of	outputs	
q  Set	S	of	typed	state	variables:	gives	set	QS	of	states	
q  Ini/aliza/on	code	Init:	defines	set	[Init]	of	ini/al	states	
q  Reac/on	descrip/on	React:	defines	set	[React]	of	reac/ons	of	the	

form	s	–	i/o	->	t,	where	s,	t	are	states,	i	is	an	input,	and	o	is	an	output	

Synchronous	languages	in	prac/ce:	
	Richer	syntac/c	features	to	describe	React	
	Key	to	understanding:	what		happens	in	a	single	reac/on?	

	
Formal	seman/cs:	Necessary	for	development	of	tools!	



Defini/on	of	Execu/ons	

q  Ini/alize	state	to	some	state	s0	in	[Init]	

q  Repeatedly	execute	rounds.	In	each	round	n	=	1,	2,	3,	…	
			Choose	an	input	value	in	in	QI	

			Execute	React	to	produce	output	on	and	change	state	to	sn	
					 	that	is,	sn-1	-	in	/	on	->	sn	must	be	in	[React]	

q  Sample	execu/on:	
	 		
	s0		

q  Given	component	C	=	(I,	O,	S,	Init,	React),	what	are	its	execu/ons?	

i1	/	o1	 s1	
i2	/	o2	 s2	

i3	/	o3	 s3	



What	does	this	component	do	?	

bool	in	

bool	x	:=	0	;	y	:=	0	

if	y	then	out	:=	x	
else	out	:=	0	;	
x	:=	in	;	
y	:=	¬y	

bool	out	



Extended	State	Machines	

Input:	bool	press	

off	 on	
int	x	:=	0	

(press	=	0)	?	

(press	=	1)	?	

(press	=	0	&	x	<	10)		->		x	:=	x+1	

(press	=	1	|	x	>=	10)		->		x	:=	0	

mode	is	an	implicit	state	variable	ranging	over	{on,	off}	

Reac/on	corresponds	to	execu/ng	a	mode-switch	
Example	mode-switch:	from	on	to	off	with		

	 	guard	(press	=	1	|	x	>=	10)	and	update	x	:=	0	



Execu/ng	ESMs:	Switch	

Input:	bool	press	

off	 on	
int	x	:=	0	

(press	=	0)	?	

(press	=	1)	?	

(press	=	0	&	x	<	10	)		->		x	:=	x+1	

(press	=	1	|	x	>=	10)		->		x	:=	0	

q  	State	of	the	component	Switch	assigns	values	to	mode	and	x	

q  	Ini/al	state:	(off,	0)		(i.e.,	{mode	:=	off,	x	:=	0})	

q  Sample	Execu/on:	
	(off,0)	-	0	->	(off,0)	-	1	->	(on,	0)	-	0	->	(on,1)	-	0	->	(on,2)	…	-	0	->	(on,10)	-	0	->	(off,0)	



Modified	Switch:	What	execu/ons	are	possible?	

Input:	bool	press	

off	 on	
int	x	:=	0	

(press	=	0)	?	

(press	=	1)	?	

(press	=	0	&	x	<=	10	)		->		x	:=	x+1	

(press	=	1	|	x	>=	10)		->		x	:=	0	



Exercise:	ESM	to	SRC	

Rewrite	this	ESM	as	a	synchronous	reac/ve	component	

Input:	bool	press	

off	 on	
int	x	:=	0	

(press	=	0)	?	

(press	=	1)	?	

(press	=	0	&	x	<	10	)		->		x	:=	x+1	

(press	=	1	|	x	>=	10)		->		x	:=	0	



Finite-State	Components	

bool	in	 bool	x	:=	0	

out	:=	x	;	x	:=	in	

bool	out	

Delay	
int	in1	

out	:=	in12	–	in22	
int	out	

int	in2	

DiffSquare	

A	component	is	finite-state	if	all	its	variables	range	over	finite	types	
§  Finite	types:	bool,	enumerated	types	(e.g.	{on,	off},	int[-5..5]	)	
§  Delay	is	finite-state,	but	DiffSquare	is	not	



Mealy	Machines	(for	finite-state	components)	

bool	in	 bool	x	:=	0	

out	:=	x	;	x	:=	in	

bool	out	

Delay	

0	 1	

0	/	0	

1	/	0	

1	/	1	

0	/	1	

Finite-state	components	are	amenable	to	exact,	algorithmic	analysis	



Switch:	Is	it	finite-state?	

Input:	bool	press	

off	 on	
int	x	:=	0	

(press	=	0)	?	

(press	=	1)	?	

(press	=	0	&	x	<	10)		->		x	:=	x+1	

(press	=	1	|	x	>=	10)		->		x	:=	0	
int[0,10]		x	:=	0	



Combina/onal	Components	

bool	in	 bool	x	:=	0	

out	:=	x	;	x	:=	in	

bool	out	

Delay	
int	in1	

out	:=	in12	–	in22	
int	out	

int	in2	

DiffSquare	

A	component	is	combina+onal	if	it	has	no	state	variables	
§  DiffSquare	is	combina/onal,	but	Delay	is	not	
§  Hardware	gates	are	combina/onal	components	



Events	

q  Input/output	variable	can	be	of	type	event	
q  Mo/va/on:	no/on	of	clock	can	be	different	for	different	components	

q  An	event	can	be	absent,	or	present,	in	which	case	it	has	a	value	
§  event	x	means	x	ranges	over	{present,	⊥}	
§  event(bool)	x	means	x	ranges	over	{0,	1,	⊥}	
§  event(nat)	x	means	x	ranges	over	{⊥,	0,	1,	2,	…}	

q  Syntax:	x?	is	a	short	form	for	the	test	(x	!=	⊥)	

q  Syntax:	x!v	is	a	short	form	for	the	assignment	x	:=	v	

q  Event-based	communica/on:	
§  If	no	value	is	assigned	to	an	output	event,	then	it	is	absent	(by	default)	
§  Event-triggered	component	executes	only	in	those	rounds	where	input	

events	are	present	(actual	defini/on	slightly	more	general,	see	textbook)	



Second-To-Minute	

event	second	

int	x	:=	0	

if	second?	then	{	
			x	:=	x+1	;	
			if	x	==	60	then	{	
								minute!	;	
								x	:=	0	}	
}	
				

event	minute	

Desired	behavior	(spec):	
	Issue	the	output	event	every	60th	/me	the	input	event	is	present	

Event-Triggered	Components	
§  No	need	to	execute	in	a	round	where	triggering	input	events	absent	
§  See	textbook	for	formal	defini/on	



Determinis/c	Components	

bool	in	 bool	x	:=	0	

out	:=	x	;	
	x	:=	in	

bool	out	

Delay	

A	component	is	determinis+c	if		
1.  it	has	a	single	ini/al	state,	and	
2.  for	every	state	s	and	input	i,	there	is	a	unique	state	t	and	output	o	

such	that	s	–	i/o	->	t	is	a	reac/on	

bool	in	
bool	x	:=	0	
out	:=	x	;		
x	:=	choose	{	in,	x	}	

bool	out	

LossyDelay	

Delay	is	determinis/c,	but	LossyDelay	is	not	
	



Determinis/c	Components	

bool	in	 bool	x	:=	0	

out	:=	x;	
	x	:=	in	

bool	out	

Delay	

q  Determinis/c:	same	sequence	of	inputs	supplied,	same	outputs	
observed	(predictable,	repeatable	behavior)	

q  Nondeterminism	is	useful	in	modeling	uncertainty	/unknown/
abstrac/on	

q  Nondeterminism	is	different	from	probabilis/c	(or	random)	choice	

bool	in	
bool	x	:=	0	
out	:=	x	;		
x	:=	choose	{	in,	x	}	

bool	out	

LossyDelay	



What	does	this	component	do?	

event	req1	

Arbiter	

req1?	->	grant1!	

req2?	->	grant2!	

¬req1?	&	¬req2?	

event	req2	

event	grant1	

event	grant2	



Input	Enabled	Components	

bool	in	 bool	x	:=	0	

out	:=	x	;	x	:=	in	

bool	out	

Delay	

q  A	component	is	input-enabled	if	for	every	state	s	and	input	i,	there	
exists	a	state	t	and	an	output	o	such	that	s	–	i/o	->	t	is	a	reac/on	
§  Delay	is	input-enabled,	but	BlockingDelay	is	not	

q  Not	input-enabled	means	component	is	making	assump/ons	about	
the	context	in	which	it	is	going	to	be	used	
§  When	rest	of	system	is	designed,	must	check	that	it	indeed	

sa/sfies	these	assump/ons	

BlockingDelay	

bool	in	 bool	x	:=	0	

if	x	!=	in	then		
			{	out	:=	x	;	x	:=	in	}	

bool	out	



Splizng	Reac/on	Code	into	Tasks	

bool	in	

bool	x	:=	0	

out	:=	x		

bool	out	

SplitDelay	

q  A1	and	A2	are	tasks	(atomic	blocks	of	code)	
§  Each	task	specifies	variables	it	reads	and	writes	
§  A1	reads	x	and	writes	out	

q  Task	Graph:	Ver/ces	are	tasks	and	edges	denote	precedence	(<)	
§  A1	<	A2	means	that	A1	should	be	executed	before	A2	
§  Graph	should	be	acyclic	

A1:	x	↦	out	 A2:	in	↦	x	

x	:=	in		<	



Example	Task	Graph	

bool	in1	

out1	:=	in1		

bool	out1	

ParallelRelay	

q  Tasks	A1	and	A2	are	unordered	
§  Possible	schedules	(linear	ordering	of	tasks):	A1,	A2	and	A2,	A1	
§  All	consistent	schedules	give	the	same	result	

q  I/O	await	dependencies:	out1	awaits	in1,	out2	awaits	in2	

A1:	in1	↦	out1	 A2:	in2	↦	out2	

out2	:=	in2		bool	in2	 bool	out2	



Example	Task	Graph	

in1	 out1	

A1:	x1,in1	↦	y,x1	

in2	

out2	

out3	

x1,	x2		

local	y	

A2:	x2	↦	out2	

A3:	x1,in1	↦	out1,x1	

A4:	in2,y,out2	↦	x2,out3	

q  What	are	possible	schedules	consistent	with	precedence	constraints?	
q  What	are	I/O	await	dependencies?	



Task	Graphs:	Defini/on	

For	a	synchronous	reac/ve	component	C	with		
§  input	vars	I									output	vars	O	
§  state	vars	S									local	vars	L		

the	reac/on	descrip/on	is	given	by		
§  a	set	of	tasks,	and		
§  precedence	edges	<	over	these	tasks	

	
Each	task	A	is	specified	by:	

1.  Read-set	R	
§  must	be	a	subset	of		I	∪	S	∪	O	∪	L	

2.  Write-set	W	
§  must	be	a	subset	of	O	∪	S	∪	L	

3.  Update:	code	to	write	vars	in	W	based	on	values	of	vars	in	R	
§  [Update]	is	a	subset	of	QR	×	QW	

	



Requirements	on	Task	Graph	(1)	

The	precedence	rela/on	<	must	be	acyclic	
	
q  Nota/on:	A	<+	A’	means	that	there	is	a	path	from	task	A	to	task	A’	in	

the	task	graph	using	precedence	edges	
q  Rela/on	<+	is	the	transi+ve	closure	of	the	rela/on	<	
q  Task	schedule:	Total	ordering	A1,	A2,	…,	An	of	all	the	tasks	that	is	

consistent	with	the	precedence	edges	
§  If	A	<	A’,	then	A	must	appear	before	A’	in	the	ordering	
§  Mul/ple	schedules	are	possible	
§  If	A	<+	A’	then	A	must	appear	before	A’	in	every	schedule	

q  Acyclicity	implies	that	there	is	at	least	one	task	schedule	



Requirements	on	Task	Graph	(2)	

Each	output	variable	is	in	the	write-set	of	exactly	one	task	
	
q  If	output	y	is	in	write-set	of	task	A,	then	as	soon	as	A	executes	the	

output	y	is	available	to	the	rest	of	the	system	

q  If	task	A	writes	output	y,	then	y	awaits	an	input	variable	x,	wriren	
y	>	x,		if 		
	 	either	the	task	A	reads	x	
	 	some	another	task	A’	such	that	A’	<+	A	reads	x		

	
Note:	y	awaits	x	means	that	y	cannot	be	produced	before	x	is	supplied	



Requirements	on	Task	Graph	(3)	

Output/local	variables	are	wriren	before	being	read	
	
q  If	an	output	or	a	local	variable	y	is	in	the	read-set	of	a	task	A,	

then	y	must	be	in	the	write-set	of	some	task	A’	such	that	A’	<+	A	



Requirements	on	Task	Graph	(4)	

Tasks	with	a	write	conflict	must	be	ordered	

q  There	is	a	write-conflict	between	tasks	A	and	A’	
if	a	variable	wriren	by	A	is	read	or	wriren	by	A’	

q  If	A	and	A’	have	a	write-conflict,	the	result	depends	on	whether	A	
executes	before	A’	or	vice	versa.	
§  Example:		A	update	is	x	:=	x+1;		A’	update	is	out	:=	x		

q  If	tasks	A	and	A’	have	a	write-conflict	then	they	must	be	ordered:	
either	A	<+	A’	or	A’	<+	A	

q  This	way,	set	of	reac/ons	resul/ng	from	execu/ng	all	the	tasks	do	not	
depend	on	the	task	schedule	



Task	Proper/es	

q  Task	A	=	(R,	W,	Update)	is	determinis+c	if	for	every	value	u	∈	QR	there	
is	a	unique	value	v	∈	QW	such	that	(u,v)	∈	[Update]	

q  If	all	tasks	of	a	component	are	determinis/c,	what	can	we	conclude	
about	the	component	itself?	

q  Task	A	=	(R,	W,	Update)	is	input-enabled	if	for	every	value	u	∈	QR	
there	exists	at	least	one	value	v	∈	QW	such	that	(u,v)	∈	[Update]	

q  If	all	tasks	of	a	component	are	input-enabled,	what	can	we	conclude	
about	the	component	itself?	
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