
CS:4980	
Founda/ons	of	Embedded	Systems	

Synchronous	Model	
Part	I	

Copyright 20014-16, Rajeev Alur and Cesare Tinelli.
Created by Cesare Tinelli at the University of Iowa from notes originally developed by Rajeev Alur at the University of
Pennsylvania. These notes are copyrighted materials and may not be used in other course settings outside of the
University of Iowa in their current form or modified form without the express written permission of one of the copyright
holders. During this course, students are prohibited from selling notes to or being paid for taking notes by any person
or commercial firm without the express written permission of one of the copyright holders.

Model-Based	Design	

q  Block	Diagrams	
§  Widely	used	in	industrial	design	
§  Tools:	Simulink,	Modelica,	LabView,	Ra/onalRose,	…	

q  Key	ques/on:	what	is	the	execu/on	seman/cs?	
§  What	is	a	base	component?	
§  How	do	we	compose	components	to	form	complex	components?	

Func/onal	vs.	Reac/ve	Computa/on	

q  Func/onal	model	of	computa/on	(classical	one):	
§  Given	inputs,	a	program	produces	outputs	
§  Desired	func/onality	described	by	a	mathema/cal	func/on	
§  Example:	sor/ng	of	names;	shortest	paths	in	a	weighted	graph	
§  Theory	of	computa/on	provides	founda/on		
§  Canonical	model:	Turing	machines	

q  Reac/ve	model	of	computa/on:	
§  System	con/nually	interacts	with	its	environment	via	inputs	and	

outputs	
§  Desired	behavior	described	by	sequences	of	observed	input/output	

interac/ons	
§  Example:	cruise	controller	in	a	car	

Sequen/al	vs.	Concurrent	Computa/on	

q  Sequen/al	model	of	computa/on	(classical):	
§  A	computa/on	is	a	sequence	of	instruc/ons	executed	one	at	a	/me	
§  Well	understood	and	canonical	model:	Turing	machines	

q  Concurrent	model	of	computa/on	
§  Mul/ple	components/processes	exchanging	informa/on	and	evolving	

concurrently	
§  Logical	vs.	physical	concurrency	
§  Broad	range	of	formal	models	for	concurrent	computa/on	
§  Key	dis/nc/on:	synchronous	vs.	asynchronous	

Synchronous	Models	

q  All	components	execute	in	a	sequence	of	(logical)	rounds,	in	lock-step		

q  Example:	Component	blocks	in	digital	hardware	circuit	
§  Clock	drives	all	components	in	a	synchronized	manner	

q  Key	idea	in	synchronous	languages:	
§  Design	system	using	such	a	synchronous	round-based	computa/on	
§  Benefit:	design	is	simpler	(why?)	
§  Challenge:	ensure	synchronous	execu/on	even	if	implementa/on	

pla]orm	is	not	single-chip	hardware	

First	Example:	Delay	

q  Input	variable:	in	of	Boolean	type	({0,1})	

bool	in	 bool	out	bool	x	:=	0	

out	:=	x	;	x	:=	in	

q  Output	variable:	out	of	Boolean	type		

q  State	variable:	x	of	Boolean	type		

q  Ini+aliza+on	of	state	variables	(x	:=	0)	

q  Execu+on:	in	each	round,	in	response	to	an	input,	
§  produce	output	(out	:=	x)	and	
§  update	state	(x	:=	in)	

Delay:	Round-based	Execu/on	

1.  Ini/alize	state	x	to	0	

bool	in	 bool	x	:=	0	

out	:=	x	;	x	:=	in	

2.  Repeatedly	execute	rounds.	In	each	round:	
a.  Read	current	value	of	the	input	variable	in	
b.  Execute	the	update	code	to	produce	output	out	and	change	state	

Sample	execu/on:	

 0

1	/	0	
1	

1	/	1	
1	

0	/	1	
0	

0	/	0	
0	

1	/	0	
1	

bool	out	

Synchrony	Hypothesis	

q  Assump/on:	Time	needed	to	execute	the	update	code	is	negligible	
compared	to	delay	between	successive	input	arrivals	

q  Logical	abstrac/on:	
§  Execu/on	of	update	code	takes	zero	/me	
§  Recep/on	of	inputs	and	produc/on	of	outputs	occur	
simultaneously	

q  Composi/on:	when	mul/ple	components	are	composed,	all	execute	
synchronously	and	simultaneously	

q  Implementa/on:	must	ensure	that	this	design-/me	assump/on	is	
valid	

Components	in	an	Automobile	

q  Components	need	to	communicate	and	coordinate	over	a	shared	bus	

q  Design	abstrac/on:	Synchronous	/me-triggered	communica/on	
§  Time	is	divided	into	slots	
§  In	each	slot,	exactly	one	component	sends	a	message	over	the	bus	

q  CAN	protocol	implements	/me-triggered	communica/on	

Model	Defini/on	

q  Syntax:	How	to	describe	a	component?	
§  Variable	declara/ons,	types,	state	updates,	…	

q  Seman/cs:	What	does	the	descrip/on	mean?	
§  Defined	using	mathema/cal	concepts	such	as	sets,	func/ons,	…	

q  Formal	founda/ons:	Seman/cs	is	defined	precisely	
§  Necessary	for	tools	for	analysis,	compila/on,	verifica/on,	…	
§  Defining	formal	seman/cs	for	a	real	language	is	challenging	
§  But	concepts	can	be	illustrated	on	a	toy	modeling	language		

Model	Defini/on	

Our	modeling	language:	Synchronous	Reac/ve	Components	
	

§  Representa/ve	of	many	academic	proposals	
§  Founda/ons	of	Industrial-strength	synchronous	languages:	
	Esterel,	Lustre,	VHDL,	Verilog,	Stateflow,	…	

Synchronous	Reac/ve	Component	

bool	in	
bool	x	:=	0	

out	:=x	;	x	:=	in	

bool	out	

Delay	

State	variables:	
					Declara/on	+	Ini/aliza/on	

Update	code:	
					To	be	executed	in	each	round	

Inputs	 Outputs	

SRC	Defini/on	(1):	Inputs	

bool	in	

q  Each	component	has	a	set	I	of	input	variables	
§  Variables	have	types.	E.g.	bool,	int,	nat,	real,	{on,	off},	…	

q  Input:	Valua/on	of	all	the	input	variables		
§  The	set	of	inputs	is	denoted	QI	

q  For	Delay	
§  I	contains	a	single	variable	in	of	type	bool	
§  The	set	of	inputs	is	{	{in	:=	0},	{in	:=	1}	}	

q  Example:	I	contains	two	variables:	int	x	,	bool	y	
§  Each	input	is	a	pair:	(integer	value	for	x	and	0/1	value	for	y)			

Inputs	Delay	

SRC	Defini/on	(2):	Outputs	

q  Each	component	has	a	set	O	of	typed	output	variables	
q Output:	Valua/on	of	all	the	output	variables		

§  The	set	of	outputs	is	denoted	QO	

q  For	Delay	
§  O	contains	a	single	variable	out	of	type	bool	
§  The	set	of	outputs	is	{	{out	:=	0},	{out	:=	1}	}	

Delay	
bool	out	

Outputs	

SRC	Defini/on	(3):	States	

q  Each	component	has	a	set	S	of	typed	state	variables	
q  State:	Valua/on	of	all	the	state	variables		

§  The	set	of	states	is	denoted	QS	

q  For	Delay	
§  S	contains	a	single	variable	x	of	type	bool	
§  The	set	of	states	is	{	{x	:=	0},	{x	:=	1}	}	

q  State	is	internal	and	maintained	across	rounds	

Delay	
bool	out	bool	x		

State	variables:	
		Declara/on		

SRC	Defini/on	(4):	Ini/aliza/on	

q  Ini/aliza/on	of	state	variables	specified	by	Init	
§  Sequence	of	assignments	to	state	variables	

q  Seman/cs	of	ini/aliza/on:		
§  The	set	[Init]	of	ini/al	states,	which	is	a	subset	of	QS	

q  For	Delay	
§  Init	is	given	by	the	code	fragment	x	:=	0	
§  The	set	[Init]	of	ini/al	states	is	{	{x	:=	0}	}	

q  Component	can	have	mul/ple	(alterna/ve)	ini/al	states	
§  Example:	bool	x	:=	choose	{0,	1}	

Delay	
bool	out	bool	x	:=	0		

State	variables:	
		Declara/on	+	Ini/aliza/on	

SRC	Defini/on	(5):	Reac/ons	

q  Execu/on	in	each	round	given	by	code	fragment	React	
§  Sequence	of	assignments	and	condi/onals	that	assign	output	
variables	and	update	state	variables	

q  Seman/cs	of	update:		
§  The	set	[React]	of	reac/ons,	where	each	reac/on	is	of	the	form	
(old)	state	-	input	/	output	->	(new)	state	

§  [React]	is	a	subset	of	QS	×	QI	×	QO	×	QS	

q  For	Delay:	
§  React	is	given	by	the	code	fragment	out	:=	x	;	x	:=	in	
§  There	are	4	reac/ons:	0	-	0/0	->	0;		0	-	1/0	->	1;		1	-	0/1	->	0;		1	-	1/1	->	1	

Delay	
bool	out	

out	:=x	;	x:=	in	 Update	code:	
			To	be	executed	in		
			each	round	

Mul/ple	Reac/ons	

bool	in	 bool	x	:=	0	

out	:=	x	;	x	:=	choose	{	in,	x	}	

bool	out	

q  During	update,	x	is	either	updated	to	input	in	or	is	lep	unchanged	
§  Mo/va/on:	models	the	possibility	that	an	input	may	be	lost	

q  Nondeterminis/c	reac/ons	
§  Given	(old)	state	and	input,	output/new	state	need	not	be	
unique	

§  The	set	[React]	of	reac/ons	now	contains	
	 	0	-	0/0	->	0	
	 	0	-	1/0	->	1;		0	-	1/0	->	0	
	 	1	-	0/1	->	0;		1	-	0/1	->	1	
	 	1	-	1/1	->	1	

Mul/ple	Reac/ons	

bool	in	 bool	x	:=	0	

if	x	!=	in	then		
			{	out	:=	x	;	x	:=	in	}	

bool	out	

q  A	component	may	not	accept	all	inputs	in	all	states	
§  Mo/va/on:	blocking	communica/on	

q  Possible	set	of	reac/ons	in	certain	state/input	combina/ons	may	
be	empty	
§  The	set	[React]	of	reac/ons	now	contains	
	 	0	-	1/0	->	1	
	 	1	-	0/1	->	1	

Syntax	Errors	

bool	in	 bool	x	:=	0	

x	:=	out;	out	:=	in	

bool	out	

q  Update	code	expected	to	sa/sfy	a	number	of	requirements:	
§  Types	of	variables	and	expressions	should	match	
§  Output	variables	must	first	be	wriren	before	being	read	
§  Output	variable	must	be	explicitly	assigned	a	value	

q Otherwise,	then	no	reac/on	possible	
§  In	above:	set	[React]	of	reac/ons	is	the	empty	set	

Seman/c	Equivalence	

q  Both	have	iden/cal	sets	of	reac/ons	

q  Syntac/cally	different	but	seman/cally	equivalent	

q  Compiler	can	op/mize	code	as	long	as	seman/cs	is	preserved!	

int	in1	

out	:=	in12	–	in22	
int	out	

int	in2	

DiffSquare	 int	in1	 local	int	x,	y	;	
				x	:=	in1	+	in2	;	
				y	:=	in1	–	in2	;	
				out	:=	x	*	y		

int	out	

int	in2	

DiffSquare1	

Synchronous	Reac/ve	Component	Defini/on	

q  Set	I	of	typed	input	variables:	gives	set	QI	of	inputs	
q  Set	O	of	typed	output	variables:	gives	set	QO	of	outputs	
q  Set	S	of	typed	state	variables:	gives	set	QS	of	states	
q  Ini/aliza/on	code	Init:	defines	set	[Init]	of	ini/al	states	
q  Reac/on	descrip/on	React:	defines	set	[React]	of	reac/ons	of	the	

form	s	–	i/o	->	t,	where	s,	t	are	states,	i	is	an	input,	and	o	is	an	output	

Synchronous	languages	in	prac/ce:	
	Richer	syntac/c	features	to	describe	React	
	Key	to	understanding:	what		happens	in	a	single	reac/on?	

	
Formal	seman/cs:	Necessary	for	development	of	tools!	

Defini/on	of	Execu/ons	

q  Ini/alize	state	to	some	state	s0	in	[Init]	

q  Repeatedly	execute	rounds.	In	each	round	n	=	1,	2,	3,	…	
			Choose	an	input	value	in	in	QI	

			Execute	React	to	produce	output	on	and	change	state	to	sn	
					 	that	is,	sn-1	-	in	/	on	->	sn	must	be	in	[React]	

q  Sample	execu/on:	
	 		
	s0		

q  Given	component	C	=	(I,	O,	S,	Init,	React),	what	are	its	execu/ons?	

i1	/	o1	 s1	
i2	/	o2	 s2	

i3	/	o3	 s3	

What	does	this	component	do	?	

bool	in	

bool	x	:=	0	;	y	:=	0	

if	y	then	out	:=	x	
else	out	:=	0	;	
x	:=	in	;	
y	:=	¬y	

bool	out	

Extended	State	Machines	

Input:	bool	press	

off	 on	
int	x	:=	0	

(press	=	0)	?	

(press	=	1)	?	

(press	=	0	&	x	<	10)		->		x	:=	x+1	

(press	=	1	|	x	>=	10)		->		x	:=	0	

mode	is	an	implicit	state	variable	ranging	over	{on,	off}	

Reac/on	corresponds	to	execu/ng	a	mode-switch	
Example	mode-switch:	from	on	to	off	with		

	 	guard	(press	=	1	|	x	>=	10)	and	update	x	:=	0	

Execu/ng	ESMs:	Switch	

Input:	bool	press	

off	 on	
int	x	:=	0	

(press	=	0)	?	

(press	=	1)	?	

(press	=	0	&	x	<	10)		->		x	:=	x+1	

(press	=	1	|	x	>=	10)		->		x	:=	0	

q  	State	of	the	component	Switch	assigns	values	to	mode	and	x	

q  	Ini/al	state:	(off,	0)		(i.e.,	{mode	:=	off,	x	:=	0})	

q  Sample	Execu/on:	
	(off,0)	-	0	->	(off,0)	-	1	->	(on,	0)	-	0	->	(on,1)	-	0	->	(on,2)	…	-	0	->	(on,10)	-	0	->	(off,0)	

Modified	Switch:	What	execu/ons	are	possible?	

Input:	bool	press	

off	 on	
int	x	:=	0	

(press	=	0)	?	

(press	=	1)	?	

(press	=	0	&	x	<=	10)		->		x	:=	x+1	

(press	=	1	|	x	>=	10)		->		x	:=	0	

Exercise:	ESM	to	SRC	

Rewrite	this	ESM	as	a	synchronous	reac/ve	component	

Input:	bool	press	

off	 on	
int	x	:=	0	

(press	=	0)	?	

(press	=	1)	?	

(press	=	0	&	x	<	10)		->		x	:=	x+1	

(press	=	1	|	x	>=	10)		->		x	:=	0	

Finite-State	Components	

bool	in	 bool	x	:=	0	

out	:=	x	;	x	:=	in	

bool	out	

Delay	
int	in1	

out	:=	in12	–	in22	
int	out	

int	in2	

DiffSquare	

A	component	is	finite-state	if	all	its	variables	range	over	finite	types	
§  Finite	types:	bool,	enumerated	types	(e.g.	{on,	off},	int[-5..5])	
§  Delay	is	finite-state,	but	DiffSquare	is	not	

Mealy	Machines	(for	finite-state	components)	

bool	in	 bool	x	:=	0	

out	:=	x	;	x	:=	in	

bool	out	

Delay	

0	 1	

0	/	0	

1	/	0	

1	/	1	

0	/	1	

Finite-state	components	are	amenable	to	exact,	algorithmic	analysis	

Switch:	Is	it	finite-state?	

Input:	bool	press	

off	 on	
int	x	:=	0	

(press	=	0)	?	

(press	=	1)	?	

(press	=	0	&	x	<	10)		->		x	:=	x+1	

(press	=	1	|	x	>=	10)		->		x	:=	0	
int[0,10]		x	:=	0	

Combina/onal	Components	

bool	in	 bool	x	:=	0	

out	:=	x	;	x	:=	in	

bool	out	

Delay	
int	in1	

out	:=	in12	–	in22	
int	out	

int	in2	

DiffSquare	

A	component	is	combina+onal	if	it	has	no	state	variables	
§  DiffSquare	is	combina/onal,	but	Delay	is	not	
§  Hardware	gates	are	combina/onal	components	

Events	

q  Input/output	variable	can	be	of	type	event	
q  Mo/va/on:	no/on	of	clock	can	be	different	for	different	components	

q  An	event	can	be	absent,	or	present,	in	which	case	it	has	a	value	
§  event	x	means	x	ranges	over	{present,	⊥}	
§  event(bool)	x	means	x	ranges	over	{0,	1,	⊥}	
§  event(nat)	x	means	x	ranges	over	{⊥,	0,	1,	2,	…}	

q  Syntax:	x?	is	a	short	form	for	the	test	(x	!=	⊥)	

q  Syntax:	x!v	is	a	short	form	for	the	assignment	x	:=	v	

q  Event-based	communica/on:	
§  If	no	value	is	assigned	to	an	output	event,	then	it	is	absent	(by	default)	
§  Event-triggered	component	executes	only	in	those	rounds	where	input	

events	are	present	(actual	defini/on	slightly	more	general,	see	textbook)	

Second-To-Minute	

event	second	

int	x	:=	0	

if	second?	then	{	
			x	:=	x+1	;	
			if	x	==	60	then	{	
								minute!	;	
								x	:=	0	}	
}	
				

event	minute	

Desired	behavior	(spec):	
	Issue	the	output	event	every	60th	/me	the	input	event	is	present	

Event-Triggered	Components	
§  No	need	to	execute	in	a	round	where	triggering	input	events	absent	
§  See	textbook	for	formal	defini/on	

Determinis/c	Components	

bool	in	 bool	x	:=	0	

out	:=	x	;	
	x	:=	in	

bool	out	

Delay	

A	component	is	determinis+c	if		
1.  it	has	a	single	ini/al	state,	and	
2.  for	every	state	s	and	input	i,	there	is	a	unique	state	t	and	output	o	

such	that	s	–	i/o	->	t	is	a	reac/on	

bool	in	
bool	x	:=	0	
out	:=	x	;		
x	:=	choose	{	in,	x	}	

bool	out	

LossyDelay	

Delay	is	determinis/c,	but	LossyDelay	is	not	
	

Determinis/c	Components	

bool	in	 bool	x	:=	0	

out	:=	x;	
	x	:=	in	

bool	out	

Delay	

q  Determinis/c:	same	sequence	of	inputs	supplied,	same	outputs	
observed	(predictable,	repeatable	behavior)	

q  Nondeterminism	is	useful	in	modeling	uncertainty	/unknown/
abstrac/on	

q  Nondeterminism	is	different	from	probabilis/c	(or	random)	choice	

bool	in	
bool	x	:=	0	
out	:=	x	;		
x	:=	choose	{	in,	x	}	

bool	out	

LossyDelay	

What	does	this	component	do?	

event	req1	

Arbiter	

req1?	->	grant1!	

req2?	->	grant2!	

¬req1?	&	¬req2?	

event	req2	

event	grant1	

event	grant2	

Input	Enabled	Components	

bool	in	 bool	x	:=	0	

out	:=	x	;	x	:=	in	

bool	out	

Delay	

q  A	component	is	input-enabled	if	for	every	state	s	and	input	i,	there	
exists	a	state	t	and	an	output	o	such	that	s	–	i/o	->	t	is	a	reac/on	
§  Delay	is	input-enabled,	but	BlockingDelay	is	not	

q  Not	input-enabled	means	component	is	making	assump/ons	about	
the	context	in	which	it	is	going	to	be	used	
§  When	rest	of	system	is	designed,	must	check	that	it	indeed	

sa/sfies	these	assump/ons	

BlockingDelay	

bool	in	 bool	x	:=	0	

if	x	!=	in	then		
			{	out	:=	x	;	x	:=	in	}	

bool	out	

Splizng	Reac/on	Code	into	Tasks	

bool	in	

bool	x	:=	0	

out	:=	x		

bool	out	

SplitDelay	

q  A1	and	A2	are	tasks	(atomic	blocks	of	code)	
§  Each	task	specifies	variables	it	reads	and	writes	
§  A1	reads	x	and	writes	out	

q  Task	Graph:	Ver/ces	are	tasks	and	edges	denote	precedence	(<)	
§  A1	<	A2	means	that	A1	should	be	executed	before	A2	
§  Graph	should	be	acyclic	

A1:	x	↦	out	 A2:	in	↦	x	

x	:=	in		<	

Example	Task	Graph	

bool	in1	

out1	:=	in1		

bool	out1	

ParallelRelay	

q  Tasks	A1	and	A2	are	unordered	
§  Possible	schedules	(linear	ordering	of	tasks):	A1,	A2	and	A2,	A1	
§  All	consistent	schedules	give	the	same	result	

q  I/O	await	dependencies:	out1	awaits	in1,	out2	awaits	in2	

A1:	in1	↦	out1	 A2:	in2	↦	out2	

out2	:=	in2		bool	in2	 bool	out2	

Example	Task	Graph	

in1	 out1	

A1:	x1,in1	↦	y,x1	

in2	

out2	

out3	

x1,	x2		

local	y	

A2:	x2	↦	out2	

A3:	x1,in1	↦	out1,x1	

A4:	in2,y,out2	↦	x2,out3	

q  What	are	possible	schedules	consistent	with	precedence	constraints?	
q  What	are	I/O	await	dependencies?	

Task	Graphs:	Defini/on	

For	a	synchronous	reac/ve	component	C	with		
§  input	vars	I									output	vars	O	
§  state	vars	S									local	vars	L		

the	reac/on	descrip/on	is	given	by		
§  a	set	of	tasks,	and		
§  precedence	edges	<	over	these	tasks	

	
Each	task	A	is	specified	by:	

1.  Read-set	R	
§  must	be	a	subset	of		I	∪	S	∪	O	∪	L	

2.  Write-set	W	
§  must	be	a	subset	of	O	∪	S	∪	L	

3.  Update:	code	to	write	vars	in	W	based	on	values	of	vars	in	R	
§  [Update]	is	a	subset	of	QR	×	QW	

	

Requirements	on	Task	Graph	(1)	

The	precedence	rela/on	<	must	be	acyclic	
	
q  Nota/on:	A	<+	A’	means	that	there	is	a	path	from	task	A	to	task	A’	in	

the	task	graph	using	precedence	edges	
q  Rela/on	<+	is	the	transi+ve	closure	of	the	rela/on	<	
q  Task	schedule:	Total	ordering	A1,	A2,	…,	An	of	all	the	tasks	that	is	

consistent	with	the	precedence	edges	
§  If	A	<	A’,	then	A	must	appear	before	A’	in	the	ordering	
§  Mul/ple	schedules	are	possible	
§  If	A	<+	A’	then	A	must	appear	before	A’	in	every	schedule	

q  Acyclicity	implies	that	there	is	at	least	one	task	schedule	

Requirements	on	Task	Graph	(2)	

Each	output	variable	is	in	the	write-set	of	exactly	one	task	
	
q  If	output	y	is	in	write-set	of	task	A,	then	as	soon	as	A	executes	the	

output	y	is	available	to	the	rest	of	the	system	

q  If	task	A	writes	output	y,	then	y	awaits	an	input	variable	x,	wriren	
y	>	x,		if 		
	 	either	the	task	A	reads	x	
	 	some	another	task	A’	such	that	A’	<+	A	reads	x		

	
Note:	y	awaits	x	means	that	y	cannot	be	produced	before	x	is	supplied	

Requirements	on	Task	Graph	(3)	

Output/local	variables	are	wriren	before	being	read	
	
q  If	an	output	or	a	local	variable	y	is	in	the	read-set	of	a	task	A,	

then	y	must	be	in	the	write-set	of	some	task	A’	such	that	A’	<+	A	

Requirements	on	Task	Graph	(4)	

Tasks	with	a	write	conflict	must	be	ordered	

q  There	is	a	write-conflict	between	tasks	A	and	A’	
if	a	variable	wriren	by	A	is	read	or	wriren	by	A’	

q  If	A	and	A’	have	a	write-conflict,	the	result	depends	on	whether	A	
executes	before	A’	or	vice	versa.	
§  Example:		A	update	is	x	:=	x+1;		A’	update	is	out	:=	x		

q  If	tasks	A	and	A’	have	a	write-conflict	then	they	must	be	ordered:	
either	A	<+	A’	or	A’	<+	A	

q  This	way,	set	of	reac/ons	resul/ng	from	execu/ng	all	the	tasks	do	not	
depend	on	the	task	schedule	

Task	Proper/es	

q  Task	A	=	(R,	W,	Update)	is	determinis+c	if	for	every	value	u	∈	QR	there	
is	a	unique	value	v	∈	QW	such	that	(u,v)	∈	[Update]	

q  If	all	tasks	of	a	component	are	determinis/c,	what	can	we	conclude	
about	the	component	itself?	

q  Task	A	=	(R,	W,	Update)	is	input-enabled	if	for	every	value	u	∈	QR	
there	exists	at	least	one	value	v	∈	QW	such	that	(u,v)	∈	[Update]	

q  If	all	tasks	of	a	component	are	input-enabled,	what	can	we	conclude	
about	the	component	itself?	

Credits	

Notes	based	on	Chapter	2	of	
	
Principles	of	Cyber-Physical	Systems	
by	Rajeev	Alur	
MIT	Press,	2015	
	

