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Embedded Software Systems Everywhere!

Software Inside




From Desktops to Cyber-Physical Systems

 Traditional computers: Stand-alone device running software
applications (e.g., data processing)

 Traditional controllers: Devices interacting with physical world
via sensors and actuators (e.g., thermostat)

d Embedded (aka Cyber-physical) Systems
= Special-purpose system with integrated microcontroller/software
= Cameras, watches, washing machines, ...



Cyber-Physical Systems

Coordinating robots



Cyber-Physical Systems

Control Computation

Process information
to make decisions

Monitor and influence
physical world

Communication

Exchange data
to collaborate



Design of Cyber-Physical Systems

Systems that integrate control, computation, and communication
can do cool things

and useful things

Lots of promise and potential: medicine, transportation, energy, ...

So what’s the main challenge?



Ariane 5 Explosion

“It took the European Space Agency 10 years and $7 billion to produce Ariane
5. All it took to explode that rocket less than a minute into its maiden voyage
last June, scattering fiery rubble across the mangrove swamps of French

Guiana, was a small computer program trying to stuff a 64-bit number into a
16-bit space”

A bug and a crash, J. Gleick, New York Times, Dec 1996



Prius Brake Problems Blamed on Software Glitches
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“Toyota officials described the problem as a "disconnect" in the vehicle's
complex anti-lock brake system (ABS) that causes less than a one-second lag.
With the delay, a vehicle going 60 mph will have traveled nearly another 90
feet before the brakes begin to take hold”

CNN Feb 4, 2010



Software: The Achilles’ Heel

Software everywhere means bugs everywhere
2002 study by NIST:

Software bugs cost US economy $60 billion annually (0.6% of GDP)

Lack of trust in software as technology barrier

Would you use an autonomous software-controlled round-the-clock monitoring and
drug-delivery device?



Software: The Achilles’ Heel

Software everywhere means bugs everywhere
2002 study by NIST:

Software bugs cost US econoritdgui: Application Error Reporting

You chose to end the nonresponsive program, Microsoft
Application Error Reporting.

Lack of trust in software as technc  the progiam s not responding.

Wou | d you use an a utonomol Please tell Microsoft about this problem.

. . P We have created an error report that you can send to help us improve
dru g-d elive ry devicer Microsoft Application Error Reporting. We will treat this report as

confidential and anonymous.

To see what data this error report contains, click here.
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A grand challenge for computer science:

Technology for designing reliable cyber-physical systems



Designing a Cruise Controller

What’s the goal of a cruise controller?

Automatically adjust the speed of the car so that it matches the speed
desired by the driver



Block Diagrams of High-Level Design

CruiseController <

How does this component interact with the rest of the world ?



Interfaces for Components: Inputs and Outputs

cruise
<—
, pause ,
CruiseController — Driver
inc/dec
<—

Driver interacts with the system using 4 buttons:
Cruise button to turn the cruise on or off
Pause button to suspend/restart its operation

Inc and Dec buttons to increment or decrement desired speed



Interfaces for Components: Inputs and Outputs

Tachometer

speed

What other information does the cruise controller need ?

And who supplies it?

CruiseController

cruise

pause

inc/dec

Driver




Interfaces for Components: Inputs and Outputs

Tachometer

speed

CruiseController

cruise

pause

inc/dec

What should be the outputs of the cruise controller?

And who needs these outputs?

Driver




cruise
=

speed pause :
Tachometer >  CruiseController [€ Driver

inc/dec

DesiredSpeed




Compositional Design

A
Force
cruise
<
speed _ pause
> CruiseController [€
inc/dec
<
DesiredSpeed l lspeed

How to break up the computation of the cruise controller into subtasks?



Decomposing the Cruise Controller

A

Force

speed

ControlSpeed

[ 1

SetSpeed

DesiredSpeed

speed

cruise
pause

inc/dec



Desighing SetSpeed Component

cruise

speed > SetSpeed

<—-
< pause
e——

DesiredSpeed v

inc/dec

Goal: Compute the desired cruising speed in response

to the commands from the driver



Designing SetSpeed: State Machines

pause, inc: r:=r+l

inc, dec

cruise: r := speed

cruise

pause

cruise pause

DesiredSpeed corresponds
to the variable r

inc, dec U



Designing ControlSpeed Component

speed

>| ControlSpeed |e«——— DesiredSpeed

Goal: Determine the force to be applied to throttle so that speed
becomes equal to DesiredSpeed



Capturing Requirements

speed
P >| ControlSpeed |e«——— DesiredSpeed

Force

v
Requirements: Mathematically precise description of what a system is
supposed to do.
Writing requirements is key to ensuring reliability of systems
Requirement 1: Actual speed eventually converges to desired speed

Requirement 2: Speed of the car stays stable



A bit of Physics: Modeling a car

Velocity v

_—

___—7 Force ¥

Weight m.g

Friction k.v

Newton’s law of motion gives

F —k-v—m-.g.sin @ =m-.a

a=v



ControlSpeed Component

ControlSpeed

F =Ky (v—r)

<«——— DesiredSpeed r

Force K T Velocity v

F —kev —me-g-sin 0 = m-a
a=v

Angle 0 of the road with
horizontal (disturbance)

Car

Control Theory: Mathematical techniques to compute force (F) as a
function of velocity (v) and desired speed (r)



Does our controller work ?

ControlSpeed
F =Ky (v—r) < r
A -—
Force F l Velocity v %
$

F—lfov—m-g-sin 6 =me-a : 5
a=yv

Car

1 1 1
14 16 18 20

Verification Tools: Allow you to check if system model indeed works as

expected, that is, satisfies requirements



Model-based design != Coding

A ~ 1
. AC’) [ 2 #make sure that we are allowed to recurse many times
"W, = 3 import sys
gl 4 sys.setrecursionlimit(20000)
Integrator2 k Saturation Integrator1 5
t 6 def probOfStreak(numCoins, minHeads, headProb, saved=None):
7 #Computes the probability (i.e. S[n,k]) of getting a run of minHeads
8 #(i.e. K) or more heads in a row out of numCoins
9 #(i.e. N) independent coin tosses where the probability of getting a
[OX 10 #heads each time is headProb (i.e. p) and the
2 v 11 #probability of a tails is 1-headProb (i.e. q).
n 12 #We will be using the recursion:
% 3 #S[N,K] = p°K + sum_{j=1,K} p~(j-1) (1-p) SIN-j,KI
14 #As well as the base cases S[e,k] =@ and SI[N,K] = @ for K=N
15
16 #if it's our first call, allocate a hash table to store saved values
17 if saved == None: saved =
I e P heta 1 18
outt 3 » 7l N 19 #get a unique identifier for the value that they want to compute
2 Clark Error “:ql 5? ID = (numCoins, minHeads, headProb)
» 2
s LEERGTg) (i it 22 #if it has been computed before, just return the precomputed value.
2 u y 23 #there is no point in wasting time computing the same thing again.
\r. Leaming rate Fundamental block 24 if ID in saved: return saved%ID] ? o
(U) 25 else: #if it's never been computed before
Cle —(Zﬂ Uﬁ _dq' / P Theta 26 #handle the base case where we have no coins or where we have
K o _ 27 #more heads we are looking for than we have coins
P Error 2ne 28 if minHeads > numCoins or numCoins <= 0:
o 29 result = @
| Learning rate = =
31 #use our recursive relationship to compute S[n,k] by
2nd harmonic 32 #breaking it into a sum of terms involving S[n-j,k] for l<=j<=k
33 result = headProbx*minHeads #S[n,k] = p*k + ...
P heta ". 34 #S[n,k] = ... + sum_{j=1,k} p~(j-1) (1-p) SI[n-j,kl]
596 35 for firstTail in xrange(1l, minHeads+1):
P Error 6th 36 pr = probOfStreak(numCoins-firstTail, minHeads, headProb, saved)
N 37 result += (headProb*x(firstTail-1))*(1-headProb)*pr

Learning rate

6th harmonic

38

#save the resulting value so that we can use it later, if need be
saved[ID] = result

#return the computed value
return result

Design using high-level block diagrams and state machines gets
automatically compiled into low-level code!

Models not only of system being designed, but also of its environment




Verification != Simulation/Testing

Model/Program —— . yes/proof
Verifier
Requirement — > no/bug

Program testing can be used to show the presence
of bugs, but never their absence!

Edsger W. Dijkstra




Formal Verification

Model/Program —— . yes/proof
Verifier
Requirement — > no/bug

) Goal: Establish that model satisfies requirements under all
possible scenarios

) First challenge: Need formal definitions of model and
requirement to make the problem mathematically precise

) Second challenge: Need verification techniques and tools



Course Topics

1 Goal: Introduction to principles of design, specification, analysis
and implementation of CPS

 Disciplines

= Model-based design

= Concurrency theory

= Distributed algorithms

= Formal specification

= Verification techniques and tools

= Control theory

= Real-time systems

= Hybrid systems
J Emphasis on mathematical concepts



Theme 1: Formal Models

d Mathematical abstractions to describe system designs

J Modeling formalisms

Synchronous models (Chapter 2 of textbook)
Asynchronous models (Chapter 4)

Continuous-time dynamical systems (Chapter 5)
Timed models (Chapter 7)
Hybrid systems (Chapter 9)

d Modeling concepts

Syntax vs. semantics
Composition

Input/output interfaces
Nondeterminism, fairness, ...



Theme 2: Specification and Analysis

1 Formal techniques to ensure correctness at design time

d Requirements

Safety (invariants, monitors)

Liveness (temporal logic, automata over infinite sequences)
Stability

Schedulability

1 Analysis techniques

Deductive: Inductive invariants and ranking functions
Enumerative and symbolic search for state-space exploration
Model checking

Linear-algebra-based analysis of dynamical systems
Verification of timed and hybrid systems



Theme 3: Model-based Design

1 Design and analysis of illustrative computing problems

J Design methodology
= Structured modeling (bottom-up, top-down)

Requirements-based design and design-space exploration

(1 Case studies

Distributed coordination: mutual exclusion, consensus, leader election
Communication: Reliable transmission, synchronization
Control design: PID, cruise controller

CPS: Pacemaker, obstacle avoidance for robots, multi-hop control
network



