CS:4980
Foundations of Embedded Systems

Introduction

Copyright 20014-16, Rajeev Alur and Cesare Tinelll.

Created by Cesare Tinelli at the University of lowa from notes originally developed by Rajeev Alur at the University of
Pennsylvania. These notes are copyrighted materials and may not be used in other course settings outside of the
University of lowa in their current form or modified form without the express written permission of one of the copyright
holders. During this course, students are prohibited from selling notes to or being paid for taking notes by any person or
commercial firm without the express written permission of one of the copyright holders.

Embedded Software Systems Everywhere!

Software Inside

From Desktops to Cyber-Physical Systems

 Traditional computers: Stand-alone device running software
applications (e.g., data processing)

 Traditional controllers: Devices interacting with physical world
via sensors and actuators (e.g., thermostat)

d Embedded (aka Cyber-physical) Systems
= Special-purpose system with integrated microcontroller/software
= Cameras, watches, washing machines, ...

Cyber-Physical Systems

Coordinating robots

Cyber-Physical Systems

Control Computation

Process information
to make decisions

Monitor and influence
physical world

Communication

Exchange data
to collaborate

Design of Cyber-Physical Systems

Systems that integrate control, computation, and communication
can do cool things

and useful things

Lots of promise and potential: medicine, transportation, energy, ...

So what’s the main challenge?

Ariane 5 Explosion

“It took the European Space Agency 10 years and $7 billion to produce Ariane
5. All it took to explode that rocket less than a minute into its maiden voyage
last June, scattering fiery rubble across the mangrove swamps of French

Guiana, was a small computer program trying to stuff a 64-bit number into a
16-bit space”

A bug and a crash, J. Gleick, New York Times, Dec 1996

Prius Brake Problems Blamed on Software Glitches

MOST

L

Winlow Lift
X Universal Ligin
—_.—.- T . =
{ || LUl ’
iy
p L

g . 3 £ - : i N I
PIX08) T i
- BRI '
. - L, ~ Pl
) l\
MO | e %‘““‘“’“’ Fancl

“Toyota officials described the problem as a "disconnect" in the vehicle's
complex anti-lock brake system (ABS) that causes less than a one-second lag.
With the delay, a vehicle going 60 mph will have traveled nearly another 90
feet before the brakes begin to take hold”

CNN Feb 4, 2010

Software: The Achilles’ Heel

Software everywhere means bugs everywhere
2002 study by NIST:

Software bugs cost US economy $60 billion annually (0.6% of GDP)

Lack of trust in software as technology barrier

Would you use an autonomous software-controlled round-the-clock monitoring and
drug-delivery device?

Software: The Achilles’ Heel

Software everywhere means bugs everywhere
2002 study by NIST:

Software bugs cost US econoritdgui: Application Error Reporting

You chose to end the nonresponsive program, Microsoft
Application Error Reporting.

Lack of trust in software as technc the progiam s not responding.

Wou | d you use an a utonomol Please tell Microsoft about this problem.

. . P We have created an error report that you can send to help us improve
dru g-d elive ry devicer Microsoft Application Error Reporting. We will treat this report as

confidential and anonymous.

To see what data this error report contains, click here.

Sznd Enor Reoost ! 1+ Dont Serd

s 1 i e i

A grand challenge for computer science:

Technology for designing reliable cyber-physical systems

Designing a Cruise Controller

What’s the goal of a cruise controller?

Automatically adjust the speed of the car so that it matches the speed
desired by the driver

Block Diagrams of High-Level Design

CruiseController <

How does this component interact with the rest of the world ?

Interfaces for Components: Inputs and Outputs

cruise
<—
, pause ,
CruiseController — Driver
inc/dec
<—

Driver interacts with the system using 4 buttons:
Cruise button to turn the cruise on or off
Pause button to suspend/restart its operation

Inc and Dec buttons to increment or decrement desired speed

Interfaces for Components: Inputs and Outputs

Tachometer

speed

What other information does the cruise controller need ?

And who supplies it?

CruiseController

cruise

pause

inc/dec

Driver

Interfaces for Components: Inputs and Outputs

Tachometer

speed

CruiseController

cruise

pause

inc/dec

What should be the outputs of the cruise controller?

And who needs these outputs?

Driver

cruise
=

speed pause :
Tachometer > CruiseController [€ Driver

inc/dec

DesiredSpeed

Compositional Design

A
Force
cruise
<
speed _ pause
> CruiseController [€
inc/dec
<
DesiredSpeed l lspeed

How to break up the computation of the cruise controller into subtasks?

Decomposing the Cruise Controller

A

Force

speed

ControlSpeed

[1

SetSpeed

DesiredSpeed

speed

cruise
pause

inc/dec

Desighing SetSpeed Component

cruise

speed > SetSpeed

<—-
< pause
e——

DesiredSpeed v

inc/dec

Goal: Compute the desired cruising speed in response

to the commands from the driver

Designing SetSpeed: State Machines

pause, inc: r:=r+l

inc, dec

cruise: r := speed

cruise

pause

cruise pause

DesiredSpeed corresponds
to the variable r

inc, dec U

Designing ControlSpeed Component

speed

>| ControlSpeed |e«——— DesiredSpeed

Goal: Determine the force to be applied to throttle so that speed
becomes equal to DesiredSpeed

Capturing Requirements

speed
P >| ControlSpeed |e«——— DesiredSpeed

Force

v
Requirements: Mathematically precise description of what a system is
supposed to do.
Writing requirements is key to ensuring reliability of systems
Requirement 1: Actual speed eventually converges to desired speed

Requirement 2: Speed of the car stays stable

A bit of Physics: Modeling a car

Velocity v

_—

___—7 Force ¥

Weight m.g

Friction k.v

Newton’s law of motion gives

F —k-v—m-.g.sin @ =m-.a

a=v

ControlSpeed Component

ControlSpeed

F =Ky (v—r)

<«——— DesiredSpeed r

Force K T Velocity v

F —kev —me-g-sin 0 = m-a
a=v

Angle 0 of the road with
horizontal (disturbance)

Car

Control Theory: Mathematical techniques to compute force (F) as a
function of velocity (v) and desired speed (r)

Does our controller work ?

ControlSpeed
F =Ky (v—r) < r
A -—
Force F l Velocity v %
$

F—lfov—m-g-sin 6 =me-a : 5
a=yv

Car

1 1 1
14 16 18 20

Verification Tools: Allow you to check if system model indeed works as

expected, that is, satisfies requirements

Model-based design != Coding

A ~ 1
. AC’) [2 #make sure that we are allowed to recurse many times
"W, = 3 import sys
gl 4 sys.setrecursionlimit(20000)
Integrator2 k Saturation Integrator1 5
t 6 def probOfStreak(numCoins, minHeads, headProb, saved=None):
7 #Computes the probability (i.e. S[n,k]) of getting a run of minHeads
8 #(i.e. K) or more heads in a row out of numCoins
9 #(i.e. N) independent coin tosses where the probability of getting a
[OX 10 #heads each time is headProb (i.e. p) and the
2 v 11 #probability of a tails is 1-headProb (i.e. q).
n 12 #We will be using the recursion:
% 3 #S[N,K] = p°K + sum_{j=1,K} p~(j-1) (1-p) SIN-j,KI
14 #As well as the base cases S[e,k] =@ and SI[N,K] = @ for K=N
15
16 #if it's our first call, allocate a hash table to store saved values
17 if saved == None: saved =
I e P heta 1 18
outt 3 » 7l N 19 #get a unique identifier for the value that they want to compute
2 Clark Error “:ql 5? ID = (numCoins, minHeads, headProb)
» 2
s LEERGTg) (i it 22 #if it has been computed before, just return the precomputed value.
2 u y 23 #there is no point in wasting time computing the same thing again.
\r. Leaming rate Fundamental block 24 if ID in saved: return saved%ID] ? o
(U) 25 else: #if it's never been computed before
Cle —(Zﬂ Uﬁ _dq' / P Theta 26 #handle the base case where we have no coins or where we have
K o _ 27 #more heads we are looking for than we have coins
P Error 2ne 28 if minHeads > numCoins or numCoins <= 0:
o 29 result = @
| Learning rate = =
31 #use our recursive relationship to compute S[n,k] by
2nd harmonic 32 #breaking it into a sum of terms involving S[n-j,k] for l<=j<=k
33 result = headProbx*minHeads #S[n,k] = p*k + ...
P heta ". 34 #S[n,k] = ... + sum_{j=1,k} p~(j-1) (1-p) SI[n-j,kl]
596 35 for firstTail in xrange(1l, minHeads+1):
P Error 6th 36 pr = probOfStreak(numCoins-firstTail, minHeads, headProb, saved)
N 37 result += (headProb*x(firstTail-1))*(1-headProb)*pr

Learning rate

6th harmonic

38

#save the resulting value so that we can use it later, if need be
saved[ID] = result

#return the computed value
return result

Design using high-level block diagrams and state machines gets
automatically compiled into low-level code!

Models not only of system being designed, but also of its environment

Verification != Simulation/Testing

Model/Program —— . yes/proof
Verifier
Requirement — > no/bug

Program testing can be used to show the presence
of bugs, but never their absence!

Edsger W. Dijkstra

Formal Verification

Model/Program —— . yes/proof
Verifier
Requirement — > no/bug

) Goal: Establish that model satisfies requirements under all
possible scenarios

) First challenge: Need formal definitions of model and
requirement to make the problem mathematically precise

) Second challenge: Need verification techniques and tools

Course Topics

1 Goal: Introduction to principles of design, specification, analysis
and implementation of CPS

 Disciplines

= Model-based design

= Concurrency theory

= Distributed algorithms

= Formal specification

= Verification techniques and tools

= Control theory

= Real-time systems

= Hybrid systems
J Emphasis on mathematical concepts

Theme 1: Formal Models

d Mathematical abstractions to describe system designs

J Modeling formalisms

Synchronous models (Chapter 2 of textbook)
Asynchronous models (Chapter 4)

Continuous-time dynamical systems (Chapter 5)
Timed models (Chapter 7)
Hybrid systems (Chapter 9)

d Modeling concepts

Syntax vs. semantics
Composition

Input/output interfaces
Nondeterminism, fairness, ...

Theme 2: Specification and Analysis

1 Formal techniques to ensure correctness at design time

d Requirements

Safety (invariants, monitors)

Liveness (temporal logic, automata over infinite sequences)
Stability

Schedulability

1 Analysis techniques

Deductive: Inductive invariants and ranking functions
Enumerative and symbolic search for state-space exploration
Model checking

Linear-algebra-based analysis of dynamical systems
Verification of timed and hybrid systems

Theme 3: Model-based Design

1 Design and analysis of illustrative computing problems

J Design methodology
= Structured modeling (bottom-up, top-down)

Requirements-based design and design-space exploration

(1 Case studies

Distributed coordination: mutual exclusion, consensus, leader election
Communication: Reliable transmission, synchronization
Control design: PID, cruise controller

CPS: Pacemaker, obstacle avoidance for robots, multi-hop control
network

