
CS:4420 Artificial Intelligence

Spring 2019

First-Order Logic

Cesare Tinelli

The University of Iowa

Copyright 2004–19, Cesare Tinelli and Stuart Russell a

a
These notes were originally developed by Stuart Russell and are used with permission. They are

copyrighted material and may not be used in other course settings outside of the University of Iowa in their

current or modified form without the express written consent of the copyright holders.

CS:4420 Spring 2019 – p.1/43

Readings

• Chap. 8 of [Russell and Norvig, 3rd Edition]

CS:4420 Spring 2019 – p.2/43

Knowledge Representation and Logic

Recall:

The field of Mathematical Logic provides powerful, formal knowledge
representation languages and inference systems to build reasoning
agents

We will consider two languages, and associated inference systems,
from mathematical logic:

• Propositional Logic

• First-order Logic

CS:4420 Spring 2019 – p.3/43

Pros and cons of Propositional Logic

+ PL is declarative: pieces of syntax correspond to facts

+ PL allows partial/disjunctive/negated information
(unlike most data structures and databases)

+ Propositional logic is compositional:
meaning of B1,1 ∧ P1,2 is derived from meaning of B1,1 and of
P1,2

+ Meaning in propositional logic is context-independent
(unlike natural language, where meaning depends on context)

- Propositional logic has very limited expressive power (unlike
natural language)
E.g., cannot say“pits cause breezes in adjacent squares”except
by writing one sentence for each square

CS:4420 Spring 2019 – p.4/43

First-order Logic

Whereas propositional logic assumes world contains facts,
first-order logic (like natural language) assumes the world contains

• Objects: people, houses, numbers, theories, Ronald McDonald,
colors, baseball games, wars, centuries, . . .

• Relations: red, round, bogus, prime, brother of, bigger than,
inside, part of, has color, occurred after, owns, comes between,
. . .

• Functions: father of, best friend, third inning of, one more than,
end of, . . .

CS:4420 Spring 2019 – p.5/43

Syntax of FOL: Basic elements

Constant symbols KingJohn, 2, Potus , [], . . .

Relation symbols Brothers(,), > , Red(), . . .

Function symbols Sqrt(), LeftLegOf (), + , . . .

Variables x, y, a, b, . . .

Connectives ∧ ∨ ¬ ⇒ ⇔

Equality =

Quantifiers ∀ ∃

CS:4420 Spring 2019 – p.6/43

Atomic sentences

Atomic sentence = relation(term1, . . . , termn)

or term1 = term2

Term = function(term1, . . . , termn)

or constant or variable

E.g., Brother(KingJohn,RichardTheLionheart),

Length(LeftLegOf (RobinHood)) > Length(LeftLegOf (KingJohn)))

CS:4420 Spring 2019 – p.7/43

Complex sentences

Complex sentences are made from atomic sentences using connectives

¬S, S1 ∧ S2, S1 ∨ S2, S1 ⇒ S2, S1 ⇔ S2

E.g. Siblings(KingJohn,Richard)⇒ Siblings(Richard ,KingJohn)

x > 2 ∨ 1 < x

1 > 2 ∧ ¬y > 2

CS:4420 Spring 2019 – p.8/43

Language of FOL: Grammar

Sentence ::= AtomicS | ComplexS

AtomicS ::= True | False | RelSymb(Term, . . .) | Term = Term

ComplexS ::= (Sentence) | Sentence Connective Sentence | ¬Sentence

| Quantifier Sentence

Term ::= FunSymb(Term, . . .) | ConstSymb | Variable

Connective ::= ∧ | ∨ | ⇒ | ⇔

Quantifier ::= ∀ Variable | ∃ Variable

Variable ::= a | b | · · · | x | y | · · ·

ConstSymb ::= A | B | · · · | John | 0 | 1 | · · · | π | . . .

FunSymb ::= F | G | · · · | Cosine | Height | FatherOf | + | . . .

RelSymb ::= P | Q | · · · | Red | Brother | Apple | > | · · ·

CS:4420 Spring 2019 – p.9/43

Truth in FOL

Sentences are true with respect to a model and an interpretation

A model contains ≥ 1 objects (domain elements) and relations and
functions over them them

An interpretation specifies referents for

variables → objects

constant symbols → objects

predicate symbols → relations

function symbols → functional relations

An atomic sentence P (t1, . . . , tn) is true in an interpretation iff
the objects referred to by t1, . . . , tn are in the relation referred to by P

CS:4420 Spring 2019 – p.10/43

Models for FOL: Example

R J
$

left leg left leg

on head
brother

brother

person
person
king

crown

CS:4420 Spring 2019 – p.11/43

Truth example

Consider the interpretation in which

Richard → Richard the Lionheart
John → the evil King John
Brother → the brotherhood relation

Under this interpretation, Brother(Richard, John) is true
just in case Richard the Lionheart and the evil King John
are in the brotherhood relation in the model

CS:4420 Spring 2019 – p.12/43

Semantics of First-Order Logic

(A little) more formally:

An interpretation I is a pair (D, σ) where

• D is a set of objects, the universe (or domain)

• σ is mapping from variables to objects in D

• cI is an object in D for every constant symbol c

• fI is a function from Dn to D for every function symbol f of
arity n

• rI is a relation over Dn for every relation symbol r of arity n

CS:4420 Spring 2019 – p.13/43

An Interpretation I in the Blocks World

Constant Symbols: A,B,C,D,E, T

Function Symbols: Support

Relation Symbols: On,Above,Clear

a

b

c

d

e

t

AI = a, BI = b, CI = c, DI = d, EI = e, T I = t

SupportI = {〈a, b〉, 〈b, c〉, 〈c, t〉, 〈d, e〉, 〈e, t〉, 〈t, t〉}

OnI = {〈a, b〉, 〈b, c〉, 〈c, t〉, 〈d, e〉, 〈e, t〉}

AboveI = {〈a, b〉, 〈a, c〉, 〈a, t〉, . . .}

ClearI = {〈a〉, 〈d〉}
CS:4420 Spring 2019 – p.14/43

Semantics of First-Order Logic

Let I = (D, σ) be an interpretation and E an expression of FOL

We write [[e]]I to denote the meaning of e in I

The meaning [[t]]I of a term t is an object of D, inductively defined as
follows:

[[x]]I := σ(x) for all variables x

[[c]]I := cI for all constant symbols c

[[f(t1, . . . , tn)]]
I := fI([[t1]]

I , . . . , [[tn]]
I) for all n-ary function symbols f

CS:4420 Spring 2019 – p.15/43

Example

Consider the symbols MotherOf , SpouseOf and the interpretation

I = (D, σ) where

MotherOf I is a unary fn mapping people to their mother

SpouseOf I is a unary fn mapping people to their spouse

σ := {x 7→ Bart, y 7→ Homer, . . .}

What is the meaning of SpouseOf (MotherOf (x)) in I?

[[SpouseOf (MotherOf (x))]]I = SpouseOf I([[MotherOf (x)]]I)

= SpouseOf I(MotherOf I([[x]]I))

= SpouseOf I(MotherOf I(σ(x)))

= SpouseOf I(MotherOf I(Bart))

= SpouseOf I(Marge)

= Homer
CS:4420 Spring 2019 – p.16/43

Semantics of First-Order Logic

Let I = (D, σ) be an interpretation

The meaning [[ϕ]]I of a formula ϕ is either True or False

It is inductively defined as follows:

[[t1 = t2]]
I := True iff [[t1]]

I is the same as [[t2]]
I

[[r(t1, . . . , tn)]]
I := True iff 〈[[t1]]

I , . . . , [[tn]]
I〉 ∈ rI

[[¬ϕ]]I := True/False iff [[ϕ]]I = False/True

[[ϕ1 ∨ ϕ2]]
I := True iff [[ϕ1]]

I = True or [[ϕ2]]
I = True

[[∃x ϕ]]I := True iff [[ϕ]]I
σ
′ = True for some σ′ that

disagrees with σ at most on x

CS:4420 Spring 2019 – p.17/43

Semantics of First-Order Logic

Let I = (D, σ) be an interpretation

The meaning of formulas built with the other logical symbols:

[[ϕ1 ∧ ϕ2]]
I := [[¬(¬ϕ1 ∨ ¬ϕ2)]]

I

[[ϕ1 ⇒ ϕ2]]
I := [[¬ϕ1 ∨ ϕ2]]

I

[[ϕ1 ⇔ ϕ2]]
I := [[(ϕ1 ⇒ ϕ2) ∧ (ϕ2 ⇒ ϕ1)]]

I

[[∀xϕ]]I := [[¬∃x ¬ϕ]]I

If a sentence is closed , i.e., it has no free variables, its meaning does
not depend on the the variable assignment—although it may depend
on the domain:

[[∀x ∃y R(x, y)]]I = [[∀x ∃y R(x, y)]]I
′

for any I ′ = (D, σ′)

CS:4420 Spring 2019 – p.18/43

Models, Validity, etc. for Sentences

An interpretation I = (D, σ) satisfies a sentence ϕ, or is a model of

ϕ, if [[ϕ]]I = True

A sentence is satisfiable if it has at least one model

Ex: ∀x x ≥ y, P (x)

A sentence is unsatisfiable if it has no models

Ex: P (x)∧¬P (x), ¬(x = x), (∀xQ(x, y))⇒ ¬Q(a, b)

A sentence ϕ is valid if every interpretation is a model of it

Ex: P (x)⇒ P (x), x = x, (∀x P (x))⇒ ∃x P (x)

Note: ϕ is valid/unsatisfiable iff ¬ϕ is unsatisfiable/valid

CS:4420 Spring 2019 – p.19/43

Models, Validity, etc. for Sets of Sentences

An interpretation (D, σ) satisfies a set Γ of sentences, or is a model

of Γ, if it is a model for every sentence in Γ

A set Γ of sentences is satisfiable if it has at least one model

Ex: {∀x x ≥ 0, ∀x x+ 1 > x}

Γ is unsatisfiable, or inconsistent, if it has no models

Ex: {P (x), ¬P (x)}

Γ entails a sentence ϕ (Γ |= ϕ), if every model for Γ is also a

model for ϕ

Ex: {∀x P (x)⇒ Q(x), P (A10)} |= Q(A10)

Note: As in propositional logic, Γ |= ϕ iff Γ ∧ ¬ϕ is unsatisfiable

CS:4420 Spring 2019 – p.20/43

Possible Interpretations Semantics

Sentences can be seen as constraints on the set S of all possible
interpretations.

A sentence denotes all the possible interpretations that satisfy it (the
models of ϕ):

If ϕ1 denotes a set of interpretations S1 and ϕ2 denotes a set S2, then

• ϕ1 ∨ ϕ2 denotes S1 ∪ S2,

• ϕ1 ∧ ϕ2 denotes S1 ∩ S2,

• ¬ϕ1 denotes S \S1,

• ϕ1 |= ϕ2 iff S1 ⊆ S2.

CS:4420 Spring 2019 – p.21/43

Possible Interpretations Semantics

Sentences can be seen as constraints on the set S of all possible
interpretations.

A sentence denotes all the possible interpretations that satisfy it (the
models of ϕ):

If ϕ1 denotes a set of interpretations S1 and ϕ2 denotes a set S2, then

• ϕ1 ∨ ϕ2 denotes S1 ∪ S2,

• ϕ1 ∧ ϕ2 denotes S1 ∩ S2,

• ¬ϕ1 denotes S \S1,

• ϕ1 |= ϕ2 iff S1 ⊆ S2.

Note 1: A sentence denotes either no interpretations or an infinite
number of them!

Note 2: Valid sentences do not tell us anything about the world.
They are satisfied by every possible interpretation!

CS:4420 Spring 2019 – p.21/43

Models for FOL: Lots!

We can enumerate the models for a given FOL sentence:

For each number of universe elements n from 1 to ∞
For each k-ary predicate Pk in the sentence

For each possible k-ary relation on n objects
For each constant symbol C in the sentence

For each one of n objects mapped to C
. . .

Enumerating models is not going to be easy!

CS:4420 Spring 2019 – p.22/43

Universal quantification

∀ 〈variables〉 〈sentence〉

Everyone at Berkeley is smart:
∀x At(x,Berkeley)⇒ Smart(x)

∀x P is true in an interpretation I iff P is true with x being
each possible object in I’s domain

Roughly speaking, equivalent to the conjunction of instantiations of P

(At(KingJohn,Berkeley)⇒ Smart(KingJohn))

∧ (At(Richard,Berkeley)⇒ Smart(Richard))

∧ (At(Berkeley,Berkeley)⇒ Smart(Berkeley))

∧ . . .

CS:4420 Spring 2019 – p.23/43

Existential quantification

∃ 〈variables〉 〈sentence〉

Someone at Stanford is smart:
∃x At(x, Stanford) ∧ Smart(x)

∃x P is true in an interpretation I iff P is true with x being
some possible object in I’s domain

Roughly speaking, equivalent to the disjunction of instantiations of P

(At(KingJohn, Stanford) ∧ Smart(KingJohn))

∨ (At(Richard, Stanford) ∧ Smart(Richard))

∨ (At(Stanford, Stanford) ∧ Smart(Stanford))

∨ . . .

CS:4420 Spring 2019 – p.24/43

Properties of quantifiers

∀x ∀ y ϕ is equivalent to ∀ y ∀x ϕ (why?)

∃x ∃ y ϕ is equivalent to ∃ y ∃x ϕ (why?)

∃x ∀ y ϕ is not equivalent to ∀ y ∃x ϕ

Ex.

∃x ∀ y Loves(x, y)
“There is a person who loves everyone in the world”

∀ y ∃x Loves(x, y)
“Everyone in the world is loved by at least one person”

Quantifier duality: each can be expressed using the other

∀x Likes(x, IceCream) ¬∃x ¬Likes(x, IceCream)

∃x Likes(x,Broccoli) ¬∀x ¬Likes(x,Broccoli)

CS:4420 Spring 2019 – p.25/43

From English prepositions

to FOL connectives

English Logic

A and B | A but B A ∧B

A if B | A when B | A whenever B B ⇒ A

if A, then B | A implies B | A forces B A⇒ B

only if A, B | B only if A | B ⇒ A

A precisely when B | A if and only if B B ⇔ A | A⇔ B

A or B (or both) | A unless B A ∨B (logical or)

either A or B (but not both) A⊕B (exclusive or)

CS:4420 Spring 2019 – p.26/43

A common mistake to avoid

Typically, ⇒ is the main connective with ∀

Common mistake: using ∧ as the main connective with ∀:

∀x At(x,Berkeley) ∧ Smart(x)

means“Everyone is at Berkeley and everyone is smart”

CS:4420 Spring 2019 – p.27/43

A common mistake to avoid

Typically, ⇒ is the main connective with ∀

Common mistake: using ∧ as the main connective with ∀:

∀x At(x,Berkeley) ∧ Smart(x)

means“Everyone is at Berkeley and everyone is smart”

Compare with

∀x At(x,Berkeley)⇒ Smart(x)

“Everyone at Berkeley is smart”

CS:4420 Spring 2019 – p.27/43

Another common mistake to avoid

Typically, ∧ is the main connective with ∃

Common mistake: using ⇒ as the main connective with ∃:

∃x At(x, Stanford)⇒ Smart(x)

is true if there is anyone who is not at Stanford!

CS:4420 Spring 2019 – p.28/43

Another common mistake to avoid

Typically, ∧ is the main connective with ∃

Common mistake: using ⇒ as the main connective with ∃:

∃x At(x, Stanford)⇒ Smart(x)

is true if there is anyone who is not at Stanford!

Compare with

∃x At(x, Stanford) ∧ Smart(x)

“Someone at Stanford is smart”

CS:4420 Spring 2019 – p.28/43

Fun with sentences

Brothers are siblings

CS:4420 Spring 2019 – p.29/43

Fun with sentences

Brothers are siblings

∀x, y Brothers(x, y)⇒ Siblings(x, y)

CS:4420 Spring 2019 – p.29/43

Fun with sentences

Brothers are siblings

∀x, y Brothers(x, y)⇒ Siblings(x, y)

“Siblings” is symmetric

CS:4420 Spring 2019 – p.29/43

Fun with sentences

Brothers are siblings

∀x, y Brothers(x, y)⇒ Siblings(x, y)

“Siblings” is symmetric

∀x, y Siblings(x, y) ⇔ Siblings(y, x)

CS:4420 Spring 2019 – p.29/43

Fun with sentences

Brothers are siblings

∀x, y Brothers(x, y)⇒ Siblings(x, y)

“Siblings” is symmetric

∀x, y Siblings(x, y) ⇔ Siblings(y, x)

One’s mother is one’s female parent

CS:4420 Spring 2019 – p.29/43

Fun with sentences

Brothers are siblings

∀x, y Brothers(x, y)⇒ Siblings(x, y)

“Siblings” is symmetric

∀x, y Siblings(x, y) ⇔ Siblings(y, x)

One’s mother is one’s female parent

∀x, y Mother(x, y) ⇔ (Female(x) ∧ Parent(x, y))

CS:4420 Spring 2019 – p.29/43

Fun with sentences

Brothers are siblings

∀x, y Brothers(x, y)⇒ Siblings(x, y)

“Siblings” is symmetric

∀x, y Siblings(x, y) ⇔ Siblings(y, x)

One’s mother is one’s female parent

∀x, y Mother(x, y) ⇔ (Female(x) ∧ Parent(x, y))

A first cousin is a child of a parent’s sibling

CS:4420 Spring 2019 – p.29/43

Fun with sentences

Brothers are siblings

∀x, y Brothers(x, y)⇒ Siblings(x, y)

“Siblings” is symmetric

∀x, y Siblings(x, y) ⇔ Siblings(y, x)

One’s mother is one’s female parent

∀x, y Mother(x, y) ⇔ (Female(x) ∧ Parent(x, y))

A first cousin is a child of a parent’s sibling

∀x1, x2 FirstCousin(x1, x2) ⇔
∃ p1, p2 Siblings(p1, p2) ∧ Parent(p1, x1) ∧ Parent(p2, x2)

CS:4420 Spring 2019 – p.29/43

Fun with sentences

Brothers are siblings

∀x, y Brothers(x, y)⇒ Siblings(x, y)

“Siblings” is symmetric

∀x, y Siblings(x, y) ⇔ Siblings(y, x)

One’s mother is one’s female parent

∀x, y Mother(x, y) ⇔ (Female(x) ∧ Parent(x, y))

A first cousin is a child of a parent’s sibling

∀x1, x2 FirstCousin(x1, x2) ⇔
∃ p1, p2 Siblings(p1, p2) ∧ Parent(p1, x1) ∧ Parent(p2, x2)

Dogs are mammals

CS:4420 Spring 2019 – p.29/43

Fun with sentences

Brothers are siblings

∀x, y Brothers(x, y)⇒ Siblings(x, y)

“Siblings” is symmetric

∀x, y Siblings(x, y) ⇔ Siblings(y, x)

One’s mother is one’s female parent

∀x, y Mother(x, y) ⇔ (Female(x) ∧ Parent(x, y))

A first cousin is a child of a parent’s sibling

∀x1, x2 FirstCousin(x1, x2) ⇔
∃ p1, p2 Siblings(p1, p2) ∧ Parent(p1, x1) ∧ Parent(p2, x2)

Dogs are mammals

∀x Dog(x)⇒Mammal(x)

CS:4420 Spring 2019 – p.29/43

Equality

Recall that t1 = t2 is true under a given interpretation
if and only if t1 and t2 refer to the same object

E.g., 1 = 2 and x ∗ x = x are satisfiable

2 = 2 is valid

E.g., definition of (full) Sibling in terms of Parent:

∀x, y Siblings(x, y) ⇔ [¬(x= y) ∧ ∃m, f ¬(m= f) ∧
Parent(m,x) ∧ Parent(f, x) ∧ Parent(m, y) ∧ Parent(f, y)]

CS:4420 Spring 2019 – p.30/43

More fun with sentences

1. No one is his/her own sibling

2. Sisters are female, brothers are male

3. Every one is male or female but not both

4. Every married person has a spouse

5. Married people have spouses

6. Only married people have spouses

7. People cannot be married to their siblings

8. Not everybody has a spouse

9. Everybody has a mother

10. Everybody has a mother and only one

CS:4420 Spring 2019 – p.31/43

More fun with sentences

1. ∀x ¬Siblings(x,x)

2.
∀x, y (Sisters(x, y) ⇒ Female(x) ∧ Female(y)) ∧

(Brothers(x, y) ⇒ Male(x) ∧Male(y))

3.
∀x Person(x) ⇒ (Male(x) ∨ Female(x)) ∧

¬(Male(x) ∧ Female(x))

4. ∀x (Person(x) ∧Married(x)) ⇒ ∃ y Spouse(x, y)

5. ∀x (Person(x) ∧Married(x)) ⇒ ∃ y Spouse(x, y)

6. ∀x, y (Person(x) ∧ Person(y) ∧ Spouse(x, y)) ⇒ Married(x) ∧Married(y)

7. ∀x, y Spouse(x, y) ⇒ ¬Siblings(x, y)

8. ¬∀x Person(x) ⇒ ∃ y Spouse(x, y)

Alter.: ∃ x Person(x) ∧ ¬∃ y Spouse(x, y)

9. ∀x Person(x) ⇒ ∃ y Mother(y, x)

10.
∀x Person(x) ⇒ ∃ y Mother(y, x) ∧

¬∃ z ¬(y = z) ∧Mother(z, x)

CS:4420 Spring 2019 – p.32/43

The Wumpus World in FOL

Breeze Breeze

Breeze

Breeze
Breeze

Stench

Stench

Breeze
PIT

PIT

PIT

1 2 3 4

1

2

3

4

START

Gold

Stench

CS:4420 Spring 2019 – p.33/43

Interacting with FOL KBs

Suppose a wumpus-world agent is using an FOL KB
and perceives a stench and a breeze (but no glitter) at time t = 5:

Tell(KB,Percept([Stench,Breeze,None], 5))
Ask(KB,∃aAction(a, 5))

I.e., does the KB entail any particular actions at time t = 5?

Answer: Yes, {a/Shoot} ← substitution (binding list)

Given a sentence ϕ and a substitution σ,
ϕσ denotes the result of plugging σ into ϕ

Ex: ϕ = Smarter(x, y) σ = {x/Bart, y/Homer}
ϕσ = Smarter(Bart,Homer)

AskV ar(KB,∃xϕ) returns some/all σ such that KB |= ϕσ

CS:4420 Spring 2019 – p.34/43

Knowledge base for the wumpus world

“Perception”

∀ b, g, t Percept([Stench, b, g], t)⇒ Smelt(t)
∀ s, b, t Percept([s, b,Glitter], t)⇒ AtGold(t)

Reflex:

∀ t AtGold(t)⇒ Action(Grab, t)

Reflex with internal state: do we have the gold already?

∀ t AtGold(t) ∧ ¬Holding(Gold, t)⇒ Action(Grab, t)

Note: Holding(Gold, t) cannot be observed, hence keeping track of
change is essential

CS:4420 Spring 2019 – p.35/43

Deducing hidden properties

Properties of locations:

∀x, t At(Agent, x, t) ∧ Smelt(t)⇒ Smelly(x)
∀x, t At(Agent, x, t) ∧Breeze(t)⇒ Breezy(x)

Squares are breezy near a pit:

• Diagnostic rule — infer cause from effect

∀ y Breezy(y)⇒ ∃x Pit(x) ∧Adjacent(x, y)

• Causal rule — infer effect from cause

∀x, y P it(x) ∧Adjacent(x, y)⇒ Breezy(y)

• Neither of these is complete — e.g., the causal rule doesn’t say
whether squares far away from pits can be breezy

• Definition for the Breezy predicate:

∀ y Breezy(y) ⇔ (∃x Pit(x) ∧Adjacent(x, y))

CS:4420 Spring 2019 – p.36/43

Keeping Track of Change

Some facts hold in situations, rather than eternally

E.g.,
Holding(Gold,Now) rather than just Holding(Gold)
At(Agent, [1, 1], t) rather than just At(Agent, [1, 1])

PIT

PIT

PIT

Gold

PIT

PIT

PIT

Gold

S0

Forward

S1

CS:4420 Spring 2019 – p.37/43

Situation Calculus

Situation calculus is one way to represent change in FOL:
Adds a situation argument to each fluent, i.e., non-eternal predicate

E.g.,
Now in Holding(Gold,Now) denotes a situation (or a time stamp)

Situations are connected by the Result function:

Result(a, s) is the situation that results from doing a in s

CS:4420 Spring 2019 – p.38/43

Describing Actions

Effect axioms: describe changes due to action

∀ s AtGold(s)⇒ Holding(Gold,Result(Grab, s))

Frame axiom: describe non-changes due to action

∀ s HaveArrow(s)⇒ HaveArrow(Result(Grab, s))

CS:4420 Spring 2019 – p.39/43

Frame, Qualification, and Ramification

Frame problem: find an elegant way to handle non-change

• representation—avoid frame axioms

• inference—avoid repeated“copy-overs” to keep track of state

Qualification problem: true descriptions of real actions require endless
caveats—what if gold is slippery or nailed down or . . .

Ramification problem: real actions have many secondary
consequences—what about the dust on the gold, wear and tear on
gloves, . . .

CS:4420 Spring 2019 – p.40/43

Describing Actions

Successor-state axioms solve the representational frame problem

Each axiom is about a predicate, not an action per se:

P true afterwards ⇔ (an action made P true ∨

P true already and no action made P false)

Example: For holding the gold:

∀ a, s Holding(Gold,Result(a, s)) ⇔

[AtGold(s) ∧ (a=Grab) ∨

Holding(Gold, s) ∧ (a 6= Release)]

CS:4420 Spring 2019 – p.41/43

Making Plans

Example

Initial condition in KB:

At(Agent, [1, 1], S0)

At(Gold, [2, 1], S0)

Query: Ask(KB,∃sHolding(Gold, s))

i.e., in what situation will I be holding the gold?

Answer: {s/Result(Grab,Result(Forward, S0))}

i.e., go forward and then grab the gold

This assumes that the agent is interested in plans starting at S0 and
that S0 is the only situation described in the KB

CS:4420 Spring 2019 – p.42/43

Making plans: A better way

Represent plans as action sequences [a1, a2, . . . , an]

• PlanResult(p, s) is the result of executing p in s

• Then the query
Ask(KB,∃ p Holding(Gold, P lanResult(p, S0)))
has the solution {p/[Forward,Grab]}

• Definition of PlanResult in terms of Result:
∀ s P lanResult([], s) = s
∀ a, p, s P lanResult(a :: p, s) = PlanResult(p,Result(a, s))

Planning systems are special-purpose reasoners designed to do this
type of inference more efficiently than a general-purpose reasoner

CS:4420 Spring 2019 – p.43/43

	Readings
	Knowledge Representation and Logic
	{Pros and cons of Propositional Logic}
	{First-order Logic}
	{Syntax of FOL: Basic elements}
	{Atomic sentences}
	{Complex sentences}
	{Language of FOL: Grammar}
	{Truth in FOL}
	{Models for FOL: Example}
	{Truth example}
	{Semantics of First-Order Logic}
	{An Interpretation $I $ in the Blocks World}
	{Semantics of First-Order Logic}
	{Example}
	{Semantics of First-Order Logic}
	{Semantics of First-Order Logic}
	{Models, Validity, etc. for Sentences}
	{Models, Validity, etc. for Sets of Sentences}
	Possible Interpretations Semantics
	Models for FOL: Lots!
	{Universal quantification}
	{Existential quantification}
	{Properties of quantifiers}
	{ �egin {tabular}{l} From English prepositions \[0ex] to FOL connectives end {tabular} }
	A common mistake to avoid
	Another common mistake to avoid
	Fun with sentences
	Equality
	{More fun with sentences}
	{More fun with sentences}
	{The Wumpus World in FOL}
	{Interacting with FOL KBs}
	{Knowledge base for the wumpus world}
	{Deducing hidden properties}
	{Keeping Track of Change}
	{Situation Calculus}
	{Describing Actions}
	{Frame, Qualification, and Ramification}
	{Describing Actions}
	{Making Plans}
	{Making plans: A better way}

