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Readings

• Chap. 8 of [Russell and Norvig, 3rd Edition]
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Knowledge Representation and Logic

Recall:

The field of Mathematical Logic provides powerful, formal knowledge
representation languages and inference systems to build reasoning
agents

We will consider two languages, and associated inference systems,
from mathematical logic:

• Propositional Logic

• First-order Logic
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Pros and cons of Propositional Logic

+ PL is declarative: pieces of syntax correspond to facts

+ PL allows partial/disjunctive/negated information
(unlike most data structures and databases)

+ Propositional logic is compositional:
meaning of B1,1 ∧ P1,2 is derived from meaning of B1,1 and of
P1,2

+ Meaning in propositional logic is context-independent
(unlike natural language, where meaning depends on context)

- Propositional logic has very limited expressive power (unlike
natural language)
E.g., cannot say“pits cause breezes in adjacent squares”except
by writing one sentence for each square
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First-order Logic

Whereas propositional logic assumes world contains facts,
first-order logic (like natural language) assumes the world contains

• Objects: people, houses, numbers, theories, Ronald McDonald,
colors, baseball games, wars, centuries, . . .

• Relations: red, round, bogus, prime, brother of, bigger than,
inside, part of, has color, occurred after, owns, comes between,
. . .

• Functions: father of, best friend, third inning of, one more than,
end of, . . .
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Syntax of FOL: Basic elements

Constant symbols KingJohn, 2, Potus , [], . . .

Relation symbols Brothers( , ), > , Red( ), . . .

Function symbols Sqrt( ), LeftLegOf ( ), + , . . .

Variables x, y, a, b, . . .

Connectives ∧ ∨ ¬ ⇒ ⇔

Equality =

Quantifiers ∀ ∃
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Atomic sentences

Atomic sentence = relation(term1, . . . , termn)

or term1 = term2

Term = function(term1, . . . , termn)

or constant or variable

E.g., Brother(KingJohn,RichardTheLionheart),

Length(LeftLegOf (RobinHood)) > Length(LeftLegOf (KingJohn)))
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Complex sentences

Complex sentences are made from atomic sentences using connectives

¬S, S1 ∧ S2, S1 ∨ S2, S1 ⇒ S2, S1 ⇔ S2

E.g. Siblings(KingJohn,Richard)⇒ Siblings(Richard ,KingJohn)

x > 2 ∨ 1 < x

1 > 2 ∧ ¬y > 2
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Language of FOL: Grammar

Sentence ::= AtomicS | ComplexS

AtomicS ::= True | False | RelSymb(Term, . . . ) | Term = Term

ComplexS ::= (Sentence) | Sentence Connective Sentence | ¬Sentence

| Quantifier Sentence

Term ::= FunSymb(Term, . . . ) | ConstSymb | Variable

Connective ::= ∧ | ∨ | ⇒ | ⇔

Quantifier ::= ∀ Variable | ∃ Variable

Variable ::= a | b | · · · | x | y | · · ·

ConstSymb ::= A | B | · · · | John | 0 | 1 | · · · | π | . . .

FunSymb ::= F | G | · · · | Cosine | Height | FatherOf | + | . . .

RelSymb ::= P | Q | · · · | Red | Brother | Apple | > | · · ·
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Truth in FOL

Sentences are true with respect to a model and an interpretation

A model contains ≥ 1 objects (domain elements) and relations and
functions over them them

An interpretation specifies referents for

variables → objects

constant symbols → objects

predicate symbols → relations

function symbols → functional relations

An atomic sentence P (t1, . . . , tn) is true in an interpretation iff
the objects referred to by t1, . . . , tn are in the relation referred to by P
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Models for FOL: Example

R J
$

left leg left leg

on head
brother

brother

person
person
king

crown
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Truth example

Consider the interpretation in which

Richard → Richard the Lionheart
John → the evil King John
Brother → the brotherhood relation

Under this interpretation, Brother(Richard, John) is true
just in case Richard the Lionheart and the evil King John
are in the brotherhood relation in the model
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Semantics of First-Order Logic

(A little) more formally:

An interpretation I is a pair (D, σ) where

• D is a set of objects, the universe (or domain)

• σ is mapping from variables to objects in D

• cI is an object in D for every constant symbol c

• fI is a function from Dn to D for every function symbol f of
arity n

• rI is a relation over Dn for every relation symbol r of arity n
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An Interpretation I in the Blocks World

Constant Symbols: A,B,C,D,E, T

Function Symbols: Support

Relation Symbols: On,Above,Clear

a

b

c

d

e

t

AI = a, BI = b, CI = c, DI = d, EI = e, T I = t

SupportI = {〈a, b〉, 〈b, c〉, 〈c, t〉, 〈d, e〉, 〈e, t〉, 〈t, t〉}

OnI = {〈a, b〉, 〈b, c〉, 〈c, t〉, 〈d, e〉, 〈e, t〉}

AboveI = {〈a, b〉, 〈a, c〉, 〈a, t〉, . . .}

ClearI = {〈a〉, 〈d〉}
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Semantics of First-Order Logic

Let I = (D, σ) be an interpretation and E an expression of FOL

We write [[e]]I to denote the meaning of e in I

The meaning [[t]]I of a term t is an object of D, inductively defined as
follows:

[[x]]I := σ(x) for all variables x

[[c]]I := cI for all constant symbols c

[[f(t1, . . . , tn)]]
I := fI([[t1]]

I , . . . , [[tn]]
I) for all n-ary function symbols f
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Example

Consider the symbols MotherOf , SpouseOf and the interpretation

I = (D, σ) where

MotherOf I is a unary fn mapping people to their mother

SpouseOf I is a unary fn mapping people to their spouse

σ := {x 7→ Bart, y 7→ Homer, . . .}

What is the meaning of SpouseOf (MotherOf (x)) in I?

[[SpouseOf (MotherOf (x))]]I = SpouseOf I([[MotherOf (x)]]I)

= SpouseOf I(MotherOf I([[x]]I))

= SpouseOf I(MotherOf I(σ(x)))

= SpouseOf I(MotherOf I(Bart))

= SpouseOf I(Marge)

= Homer
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Semantics of First-Order Logic

Let I = (D, σ) be an interpretation

The meaning [[ϕ]]I of a formula ϕ is either True or False

It is inductively defined as follows:

[[t1 = t2]]
I := True iff [[t1]]

I is the same as [[t2]]
I

[[r(t1, . . . , tn)]]
I := True iff 〈[[t1]]

I , . . . , [[tn]]
I〉 ∈ rI

[[¬ϕ]]I := True/False iff [[ϕ]]I = False/True

[[ϕ1 ∨ ϕ2]]
I := True iff [[ϕ1]]

I = True or [[ϕ2]]
I = True

[[∃x ϕ]]I := True iff [[ϕ]]I
σ
′ = True for some σ′ that

disagrees with σ at most on x

CS:4420 Spring 2019 – p.17/43



Semantics of First-Order Logic

Let I = (D, σ) be an interpretation

The meaning of formulas built with the other logical symbols:

[[ϕ1 ∧ ϕ2]]
I := [[¬(¬ϕ1 ∨ ¬ϕ2)]]

I

[[ϕ1 ⇒ ϕ2]]
I := [[¬ϕ1 ∨ ϕ2]]

I

[[ϕ1 ⇔ ϕ2]]
I := [[(ϕ1 ⇒ ϕ2) ∧ (ϕ2 ⇒ ϕ1)]]

I

[[∀xϕ]]I := [[¬∃x ¬ϕ]]I

If a sentence is closed , i.e., it has no free variables, its meaning does
not depend on the the variable assignment—although it may depend
on the domain:

[[∀x ∃y R(x, y)]]I = [[∀x ∃y R(x, y)]]I
′

for any I ′ = (D, σ′)
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Models, Validity, etc. for Sentences

An interpretation I = (D, σ) satisfies a sentence ϕ, or is a model of

ϕ, if [[ϕ]]I = True

A sentence is satisfiable if it has at least one model

Ex: ∀x x ≥ y, P (x)

A sentence is unsatisfiable if it has no models

Ex: P (x)∧¬P (x), ¬(x = x), (∀xQ(x, y))⇒ ¬Q(a, b)

A sentence ϕ is valid if every interpretation is a model of it

Ex: P (x)⇒ P (x), x = x, (∀x P (x))⇒ ∃x P (x)

Note: ϕ is valid/unsatisfiable iff ¬ϕ is unsatisfiable/valid
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Models, Validity, etc. for Sets of Sentences

An interpretation (D, σ) satisfies a set Γ of sentences, or is a model

of Γ, if it is a model for every sentence in Γ

A set Γ of sentences is satisfiable if it has at least one model

Ex: {∀x x ≥ 0, ∀x x+ 1 > x}

Γ is unsatisfiable, or inconsistent, if it has no models

Ex: {P (x), ¬P (x)}

Γ entails a sentence ϕ (Γ |= ϕ), if every model for Γ is also a

model for ϕ

Ex: {∀x P (x)⇒ Q(x), P (A10)} |= Q(A10)

Note: As in propositional logic, Γ |= ϕ iff Γ ∧ ¬ϕ is unsatisfiable
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Possible Interpretations Semantics

Sentences can be seen as constraints on the set S of all possible
interpretations.

A sentence denotes all the possible interpretations that satisfy it (the
models of ϕ):

If ϕ1 denotes a set of interpretations S1 and ϕ2 denotes a set S2, then

• ϕ1 ∨ ϕ2 denotes S1 ∪ S2,

• ϕ1 ∧ ϕ2 denotes S1 ∩ S2,

• ¬ϕ1 denotes S \S1,

• ϕ1 |= ϕ2 iff S1 ⊆ S2.
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Possible Interpretations Semantics

Sentences can be seen as constraints on the set S of all possible
interpretations.

A sentence denotes all the possible interpretations that satisfy it (the
models of ϕ):

If ϕ1 denotes a set of interpretations S1 and ϕ2 denotes a set S2, then

• ϕ1 ∨ ϕ2 denotes S1 ∪ S2,

• ϕ1 ∧ ϕ2 denotes S1 ∩ S2,

• ¬ϕ1 denotes S \S1,

• ϕ1 |= ϕ2 iff S1 ⊆ S2.

Note 1: A sentence denotes either no interpretations or an infinite
number of them!

Note 2: Valid sentences do not tell us anything about the world.
They are satisfied by every possible interpretation!
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Models for FOL: Lots!

We can enumerate the models for a given FOL sentence:

For each number of universe elements n from 1 to ∞
For each k-ary predicate Pk in the sentence

For each possible k-ary relation on n objects
For each constant symbol C in the sentence

For each one of n objects mapped to C
. . .

Enumerating models is not going to be easy!
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Universal quantification

∀ 〈variables〉 〈sentence〉

Everyone at Berkeley is smart:
∀x At(x,Berkeley)⇒ Smart(x)

∀x P is true in an interpretation I iff P is true with x being
each possible object in I’s domain

Roughly speaking, equivalent to the conjunction of instantiations of P

(At(KingJohn,Berkeley)⇒ Smart(KingJohn))

∧ (At(Richard,Berkeley)⇒ Smart(Richard))

∧ (At(Berkeley,Berkeley)⇒ Smart(Berkeley))

∧ . . .
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Existential quantification

∃ 〈variables〉 〈sentence〉

Someone at Stanford is smart:
∃x At(x, Stanford) ∧ Smart(x)

∃x P is true in an interpretation I iff P is true with x being
some possible object in I’s domain

Roughly speaking, equivalent to the disjunction of instantiations of P

(At(KingJohn, Stanford) ∧ Smart(KingJohn))

∨ (At(Richard, Stanford) ∧ Smart(Richard))

∨ (At(Stanford, Stanford) ∧ Smart(Stanford))

∨ . . .
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Properties of quantifiers

∀x ∀ y ϕ is equivalent to ∀ y ∀x ϕ (why?)

∃x ∃ y ϕ is equivalent to ∃ y ∃x ϕ (why?)

∃x ∀ y ϕ is not equivalent to ∀ y ∃x ϕ

Ex.

∃x ∀ y Loves(x, y)
“There is a person who loves everyone in the world”

∀ y ∃x Loves(x, y)
“Everyone in the world is loved by at least one person”

Quantifier duality: each can be expressed using the other

∀x Likes(x, IceCream) ¬∃x ¬Likes(x, IceCream)

∃x Likes(x,Broccoli) ¬∀x ¬Likes(x,Broccoli)
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From English prepositions

to FOL connectives

English Logic

A and B | A but B A ∧B

A if B | A when B | A whenever B B ⇒ A

if A, then B | A implies B | A forces B A⇒ B

only if A, B | B only if A | B ⇒ A

A precisely when B | A if and only if B B ⇔ A | A⇔ B

A or B (or both) | A unless B A ∨B (logical or)

either A or B (but not both) A⊕B (exclusive or)
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A common mistake to avoid

Typically, ⇒ is the main connective with ∀

Common mistake: using ∧ as the main connective with ∀:

∀x At(x,Berkeley) ∧ Smart(x)

means“Everyone is at Berkeley and everyone is smart”
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A common mistake to avoid

Typically, ⇒ is the main connective with ∀

Common mistake: using ∧ as the main connective with ∀:

∀x At(x,Berkeley) ∧ Smart(x)

means“Everyone is at Berkeley and everyone is smart”

Compare with

∀x At(x,Berkeley)⇒ Smart(x)

“Everyone at Berkeley is smart”
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Another common mistake to avoid

Typically, ∧ is the main connective with ∃

Common mistake: using ⇒ as the main connective with ∃:

∃x At(x, Stanford)⇒ Smart(x)

is true if there is anyone who is not at Stanford!
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Another common mistake to avoid

Typically, ∧ is the main connective with ∃

Common mistake: using ⇒ as the main connective with ∃:

∃x At(x, Stanford)⇒ Smart(x)

is true if there is anyone who is not at Stanford!

Compare with

∃x At(x, Stanford) ∧ Smart(x)

“Someone at Stanford is smart”
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Fun with sentences

Brothers are siblings
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Fun with sentences

Brothers are siblings

∀x, y Brothers(x, y)⇒ Siblings(x, y)
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Fun with sentences

Brothers are siblings

∀x, y Brothers(x, y)⇒ Siblings(x, y)

“Siblings” is symmetric

CS:4420 Spring 2019 – p.29/43



Fun with sentences

Brothers are siblings

∀x, y Brothers(x, y)⇒ Siblings(x, y)

“Siblings” is symmetric

∀x, y Siblings(x, y) ⇔ Siblings(y, x)
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Fun with sentences

Brothers are siblings

∀x, y Brothers(x, y)⇒ Siblings(x, y)

“Siblings” is symmetric

∀x, y Siblings(x, y) ⇔ Siblings(y, x)

One’s mother is one’s female parent
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Fun with sentences

Brothers are siblings

∀x, y Brothers(x, y)⇒ Siblings(x, y)

“Siblings” is symmetric

∀x, y Siblings(x, y) ⇔ Siblings(y, x)

One’s mother is one’s female parent

∀x, y Mother(x, y) ⇔ (Female(x) ∧ Parent(x, y))
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Fun with sentences

Brothers are siblings

∀x, y Brothers(x, y)⇒ Siblings(x, y)

“Siblings” is symmetric

∀x, y Siblings(x, y) ⇔ Siblings(y, x)

One’s mother is one’s female parent

∀x, y Mother(x, y) ⇔ (Female(x) ∧ Parent(x, y))

A first cousin is a child of a parent’s sibling
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Fun with sentences

Brothers are siblings

∀x, y Brothers(x, y)⇒ Siblings(x, y)

“Siblings” is symmetric

∀x, y Siblings(x, y) ⇔ Siblings(y, x)

One’s mother is one’s female parent

∀x, y Mother(x, y) ⇔ (Female(x) ∧ Parent(x, y))

A first cousin is a child of a parent’s sibling

∀x1, x2 FirstCousin(x1, x2) ⇔
∃ p1, p2 Siblings(p1, p2) ∧ Parent(p1, x1) ∧ Parent(p2, x2)
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Fun with sentences

Brothers are siblings

∀x, y Brothers(x, y)⇒ Siblings(x, y)

“Siblings” is symmetric

∀x, y Siblings(x, y) ⇔ Siblings(y, x)

One’s mother is one’s female parent

∀x, y Mother(x, y) ⇔ (Female(x) ∧ Parent(x, y))

A first cousin is a child of a parent’s sibling

∀x1, x2 FirstCousin(x1, x2) ⇔
∃ p1, p2 Siblings(p1, p2) ∧ Parent(p1, x1) ∧ Parent(p2, x2)

Dogs are mammals
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Fun with sentences

Brothers are siblings

∀x, y Brothers(x, y)⇒ Siblings(x, y)

“Siblings” is symmetric

∀x, y Siblings(x, y) ⇔ Siblings(y, x)

One’s mother is one’s female parent

∀x, y Mother(x, y) ⇔ (Female(x) ∧ Parent(x, y))

A first cousin is a child of a parent’s sibling

∀x1, x2 FirstCousin(x1, x2) ⇔
∃ p1, p2 Siblings(p1, p2) ∧ Parent(p1, x1) ∧ Parent(p2, x2)

Dogs are mammals

∀x Dog(x)⇒Mammal(x)
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Equality

Recall that t1 = t2 is true under a given interpretation
if and only if t1 and t2 refer to the same object

E.g., 1 = 2 and x ∗ x = x are satisfiable

2 = 2 is valid

E.g., definition of (full) Sibling in terms of Parent:

∀x, y Siblings(x, y) ⇔ [¬(x= y) ∧ ∃m, f ¬(m= f) ∧
Parent(m,x) ∧ Parent(f, x) ∧ Parent(m, y) ∧ Parent(f, y)]
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More fun with sentences

1. No one is his/her own sibling

2. Sisters are female, brothers are male

3. Every one is male or female but not both

4. Every married person has a spouse

5. Married people have spouses

6. Only married people have spouses

7. People cannot be married to their siblings

8. Not everybody has a spouse

9. Everybody has a mother

10. Everybody has a mother and only one
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More fun with sentences

1. ∀x ¬Siblings(x,x)

2.
∀x, y (Sisters(x, y) ⇒ Female(x) ∧ Female(y)) ∧

(Brothers(x, y) ⇒ Male(x) ∧Male(y))

3.
∀x Person(x) ⇒ (Male(x) ∨ Female(x)) ∧

¬(Male(x) ∧ Female(x))

4. ∀x (Person(x) ∧Married(x)) ⇒ ∃ y Spouse(x, y)

5. ∀x (Person(x) ∧Married(x)) ⇒ ∃ y Spouse(x, y)

6. ∀x, y (Person(x) ∧ Person(y) ∧ Spouse(x, y)) ⇒ Married(x) ∧Married(y)

7. ∀x, y Spouse(x, y) ⇒ ¬Siblings(x, y)

8. ¬∀x Person(x) ⇒ ∃ y Spouse(x, y)

Alter.: ∃ x Person(x) ∧ ¬∃ y Spouse(x, y)

9. ∀x Person(x) ⇒ ∃ y Mother(y, x)

10.
∀x Person(x) ⇒ ∃ y Mother(y, x) ∧

¬∃ z ¬(y = z) ∧Mother(z, x)
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The Wumpus World in FOL

Breeze Breeze

Breeze

Breeze
Breeze

Stench

Stench

Breeze
PIT

PIT

PIT

1 2 3 4

1

2

3

4

START

Gold

Stench
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Interacting with FOL KBs

Suppose a wumpus-world agent is using an FOL KB
and perceives a stench and a breeze (but no glitter) at time t = 5:

Tell(KB,Percept([Stench,Breeze,None], 5))
Ask(KB,∃aAction(a, 5))

I.e., does the KB entail any particular actions at time t = 5?

Answer: Yes, {a/Shoot} ← substitution (binding list)

Given a sentence ϕ and a substitution σ,
ϕσ denotes the result of plugging σ into ϕ

Ex: ϕ = Smarter(x, y) σ = {x/Bart, y/Homer}
ϕσ = Smarter(Bart,Homer)

AskV ar(KB,∃xϕ) returns some/all σ such that KB |= ϕσ
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Knowledge base for the wumpus world

“Perception”

∀ b, g, t Percept([Stench, b, g], t)⇒ Smelt(t)
∀ s, b, t Percept([s, b,Glitter], t)⇒ AtGold(t)

Reflex:

∀ t AtGold(t)⇒ Action(Grab, t)

Reflex with internal state: do we have the gold already?

∀ t AtGold(t) ∧ ¬Holding(Gold, t)⇒ Action(Grab, t)

Note: Holding(Gold, t) cannot be observed, hence keeping track of
change is essential
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Deducing hidden properties

Properties of locations:

∀x, t At(Agent, x, t) ∧ Smelt(t)⇒ Smelly(x)
∀x, t At(Agent, x, t) ∧Breeze(t)⇒ Breezy(x)

Squares are breezy near a pit:

• Diagnostic rule — infer cause from effect

∀ y Breezy(y)⇒ ∃x Pit(x) ∧Adjacent(x, y)

• Causal rule — infer effect from cause

∀x, y P it(x) ∧Adjacent(x, y)⇒ Breezy(y)

• Neither of these is complete — e.g., the causal rule doesn’t say
whether squares far away from pits can be breezy

• Definition for the Breezy predicate:

∀ y Breezy(y) ⇔ (∃x Pit(x) ∧Adjacent(x, y))
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Keeping Track of Change

Some facts hold in situations, rather than eternally

E.g.,
Holding(Gold,Now) rather than just Holding(Gold)
At(Agent, [1, 1], t) rather than just At(Agent, [1, 1])

PIT

PIT

PIT

Gold

PIT

PIT

PIT

Gold

S0

Forward

S1
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Situation Calculus

Situation calculus is one way to represent change in FOL:
Adds a situation argument to each fluent, i.e., non-eternal predicate

E.g.,
Now in Holding(Gold,Now) denotes a situation (or a time stamp)

Situations are connected by the Result function:

Result(a, s) is the situation that results from doing a in s
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Describing Actions

Effect axioms: describe changes due to action

∀ s AtGold(s)⇒ Holding(Gold,Result(Grab, s))

Frame axiom: describe non-changes due to action

∀ s HaveArrow(s)⇒ HaveArrow(Result(Grab, s))
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Frame, Qualification, and Ramification

Frame problem: find an elegant way to handle non-change

• representation—avoid frame axioms

• inference—avoid repeated“copy-overs” to keep track of state

Qualification problem: true descriptions of real actions require endless
caveats—what if gold is slippery or nailed down or . . .

Ramification problem: real actions have many secondary
consequences—what about the dust on the gold, wear and tear on
gloves, . . .
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Describing Actions

Successor-state axioms solve the representational frame problem

Each axiom is about a predicate, not an action per se:

P true afterwards ⇔ (an action made P true ∨

P true already and no action made P false)

Example: For holding the gold:

∀ a, s Holding(Gold,Result(a, s)) ⇔

[AtGold(s) ∧ (a=Grab) ∨

Holding(Gold, s) ∧ (a 6= Release)]
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Making Plans

Example

Initial condition in KB:

At(Agent, [1, 1], S0)

At(Gold, [2, 1], S0)

Query: Ask(KB,∃sHolding(Gold, s))

i.e., in what situation will I be holding the gold?

Answer: {s/Result(Grab,Result(Forward, S0))}

i.e., go forward and then grab the gold

This assumes that the agent is interested in plans starting at S0 and
that S0 is the only situation described in the KB
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Making plans: A better way

Represent plans as action sequences [a1, a2, . . . , an]

• PlanResult(p, s) is the result of executing p in s

• Then the query
Ask(KB,∃ p Holding(Gold, P lanResult(p, S0)))
has the solution {p/[Forward,Grab]}

• Definition of PlanResult in terms of Result:
∀ s P lanResult([ ], s) = s
∀ a, p, s P lanResult(a :: p, s) = PlanResult(p,Result(a, s))

Planning systems are special-purpose reasoners designed to do this
type of inference more efficiently than a general-purpose reasoner
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