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Readings

• Chap. 3 of [Russell and Norvig, 3rd edition]
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More on Graphs

A graph is a set of nodes and edges between them
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A graph is directed if its edges can be traversed only in a specified
direction

When an edge is directed from ni to nj

• it is uniquely identified by the pair (ni, nj)

• ni is a parent (or predecessor) of nj

• nj is a child (or successor) of ni
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Directed Graphs
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A path, of length k ≥ 0, is a sequence
〈(n1, n2), (n2, n3), . . . , (nk, nk+1)〉 of k successive edges a

Ex: 〈〉, 〈(S,D)〉, 〈(S,D), (D,E), (E,B)〉

For 1 ≤ i < j ≤ k + 1,

• Ni is a ancestor of Nj ; Nj is a descendant of Ni

A graph is cyclic if it has a path starting and ending with the same
node. Ex: 〈(A,D), (D,E), (E,A)〉

a Note that a path of length k > 0 contains k + 1 nodes
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From Search Graphs to Search Trees

The set of all possible paths of a graph can be represented as a tree

• A tree is a directed acyclic graph all of whose nodes have at
most one parent

• A root of a tree is a node with no parents

• A leaf is a node with no children

• The branching factor of a node is the number of its children

Graphs can be turned into trees by duplicating nodes and breaking
cyclic paths, if any
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From Graphs to Trees

To unravel a graph into a tree choose a root node and trace every
path from that node until you reach a leaf node or a node already in
that path
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Note:

• must remember which nodes have been visited
• a node may get duplicated several times in the tree
• the tree has infinite paths if and only if the graph has infinite

non-cyclic paths
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Tree Search Algorithms

Basic Idea: offline, simulated exploration of state space by generating
successors of already-explored states

function Tree-Search( problem, strategy) returns a solution, or failure

initialize the search tree using the initial state of problem

loop do

if there are no candidates for expansion then

return failure

else

choose a leaf node for expansion according to strategy

if the node contains a goal state then

return the corresponding solution

else

expand the node and add its successors to the tree

done

CS:4420 Spring 2019 – p.7/28



Tree Search Example

Rimnicu Vilcea Lugoj

ZerindSibiu

Arad Fagaras Oradea

Timisoara

AradArad Oradea

Arad

CS:4420 Spring 2019 – p.8/28



Tree Search Example

Rimnicu Vilcea LugojArad Fagaras Oradea AradArad Oradea

Zerind

Arad

Sibiu Timisoara
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Tree Search Example

Lugoj AradArad OradeaRimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara
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Implementation: states vs. nodes

• A state is a (representation of) a physical configuration

• A node is a data structure constituting part of a search tree
(and includes such info as parent, children, depth, path cost
g(x))

• States do not have parents, children, depth, or path cost!
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Search Strategies

A strategy is defined by picking the order of node expansion

Strategies are evaluated along the following dimensions:

• solution completeness: does it always find a solution if one
exists?

• time complexity : number of nodes generated/expanded

• space complexity : maximum number of nodes in memory

• optimality : does it always find a least-cost solution?

Time and space complexity are measured in terms of

• b, maximum branching factor of the search tree

• d, depth of the least-cost solution

• m, maximum depth of the state space (may be ∞)
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Search Strategies

Uninformed (or Blind) Search Strategies

• Little or no information about the search space is available

• All we know is how to generate new states and recognize a goal
state

Informed (or Heuristic) Search Strategies

• An estimate of the number of steps or the path cost from
current state to goal state is available

• The estimate is not perfect (otherwise no search is needed!) but
can help prune the search space considerably
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Some Uninformed Search Strategies

• Breadth-first search

• Uniform-cost search

• Depth-first search

• Depth-limited search

• Iterative deepening (depth-first) search
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Breadth-First Search

Strategy: Expand shallowest unexpanded node

Implementation: the current set of unexpanded nodes, the fringe (or
frontier), is processed as FIFO queue, i.e., new successors go at end
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Breadth-First Search

Strategy: Expand shallowest unexpanded node

Implementation: the current set of unexpanded nodes, the fringe (or
frontier), is processed as FIFO queue, i.e., new successors go at end
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Cost of Breadth-First Search

Worst-case Time Complexity (no. of node expansions)

All nodes must be expanded to find a goal state. We must process
these many nodes:

O(1 + b+ b2 + . . .+ bd + b(bd − 1)) = O(bd+1) (exponential time)

where b = maximum branching factor

d = depth of shallowest goal state

Note: The above assumes that the search space if finite. What if it is
not?
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Cost of Breadth-First Search

Worst-case Space Complexity (no. of nodes in memory)

All nodes at depth d of the search tree are in the fringe when the
procedure finds the goal state

The number of nodes at depth d in a tree with branching factor b is

O(bd+1) (exponential space)
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Cost of Breadth-First Search

Depth Nodes Time Memory

0 1 1 millisecond 100 bytes
2 111 .1 seconds 11 kilobytes
4 11,111 11 seconds 1 megabyte
6 106 18 minutes 111 megabytes
8 108 31 hours 11 gigabytes

10 1010 128 days 1 terabyte
12 1012 35 years 111 terabytes
14 1014 3500 years 11,111 terabytes

b = 10, time/node=1ms, mem/node= 100bytes

• Exponential complexity problems become soon unmanageable

• Memory requirements are a bigger problem than time
requirements
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Optimality of Breadth-First Search

Breadth-first search is clearly complete.
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Optimality of Breadth-First Search

Breadth-first search is clearly complete. Is it optimal?
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Optimality of Breadth-First Search

Breadth-first search is clearly complete. Is it optimal? It depends

• Breadth-first search always finds the shallowest goal state

• The path to that goal state, however, may have a higher cost
than one to a deeper goal state
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Optimality of Breadth-First Search

Breadth-first search is clearly complete. Is it optimal? It depends

• Breadth-first search always finds the shallowest goal state

• The path to that goal state, however, may have a higher cost
than one to a deeper goal state
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Cost of ABE: 10 + 8 = 18

If we are looking for least-cost solutions, breadth-first is suboptimal
unless all step costs are identical
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Uniform-Cost Search

Assumption: A path cost function g such that g(p)− g(p′) ≥ ǫ > 0 for
all paths p and proper subpaths p′ of p

Strategy: Expand least-cost unexpanded node

Implementation: fringe = priority queue ordered by path cost

CS:4420 Spring 2019 – p.18/28



Uniform-Cost Search

Assumption: A path cost function g such that g(p)− g(p′) ≥ ǫ > 0 for
all paths p and proper subpaths p′ of p

Strategy: Expand least-cost unexpanded node

Implementation: fringe = priority queue ordered by path cost

Equivalent to breadth-first if step costs all equal
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Uniform-Cost Search: Example

Path cost = sum of step costs

Giurgiu

Urziceni
Hirsova

Eforie
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Arad

Timisoara
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Sibiu Fagaras

Pitesti

Vaslui
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Rimnicu Vilcea

Bucharest
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Exercise: Find cheapest route from Sibiu to Bucharest
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Properties of Uniform-Cost Search

Assumption: A path cost function g such that g(p)− g(p′) ≥ ǫ > 0 for
all paths p and proper subpaths p′ of p

Strategy: Expand least-cost unexpanded node

Implementation: fringe = priority queue ordered by path cost

Complete?

Time complexity?

Space complexity?

Optimal?
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Assumption: A path cost function g such that g(p)− g(p′) ≥ ǫ > 0 for
all paths p and proper subpaths p′ of p
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Time complexity?

Space complexity?
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Properties of Uniform-Cost Search

Assumption: A path cost function g such that g(p)− g(p′) ≥ ǫ > 0 for
all paths p and proper subpaths p′ of p

Strategy: Expand least-cost unexpanded node

Implementation: fringe = priority queue ordered by path cost

Complete? Yes (with step cost ≥ ǫ)

Time complexity? # of paths p with g(p) ≤ cost of optimal

solution: O(b⌈C
∗/ǫ⌉) where C∗ is the cost of the optimal solution

Space complexity?

Optimal?
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Properties of Uniform-Cost Search

Assumption: A path cost function g such that g(p)− g(p′) ≥ ǫ > 0 for
all paths p and proper subpaths p′ of p

Strategy: Expand least-cost unexpanded node

Implementation: fringe = priority queue ordered by path cost

Complete? Yes (with step cost ≥ ǫ)

Time complexity? # of paths p with g(p) ≤ cost of optimal

solution: O(b⌈C
∗/ǫ⌉) where C∗ is the cost of the optimal solution

Space complexity? Same as time complexity: O(b⌈C
∗/ǫ⌉)

Optimal?
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Properties of Uniform-Cost Search

Assumption: A path cost function g such that g(p)− g(p′) ≥ ǫ > 0 for
all paths p and proper subpaths p′ of p

Strategy: Expand least-cost unexpanded node

Implementation: fringe = priority queue ordered by path cost

Complete? Yes (with step cost ≥ ǫ)

Time complexity? # of paths p with g(p) ≤ cost of optimal

solution: O(b⌈C
∗/ǫ⌉) where C∗ is the cost of the optimal solution

Space complexity? Same as time complexity: O(b⌈C
∗/ǫ⌉)

Optimal? Yes, since nodes are expanded in increasing order of g
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Depth-First Search

Strategy: Expand deepest unexpanded node

Implementation: fringe = LIFO queue, i.e., put successors at front
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Depth-First Search

Strategy: Expand deepest unexpanded node
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Properties of Depth-First Search

Complete?

Time complexity?

Space complexity?

Optimal?
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Properties of Depth-First Search

Complete? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path ⇒ complete in finite
spaces

Time complexity?

Space complexity?

Optimal?
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Properties of Depth-First Search

Complete? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path ⇒ complete in finite
spaces

Time complexity? O(bm): terrible if m is much larger than d but if
solutions are dense, may be much faster than breadth-first

Space complexity?

Optimal?
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Properties of Depth-First Search

Complete? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path ⇒ complete in finite
spaces

Time complexity? O(bm): terrible if m is much larger than d but if
solutions are dense, may be much faster than breadth-first

Space complexity? O(bm), i.e., linear space!

Optimal?
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Properties of Depth-First Search

Complete? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path ⇒ complete in finite
spaces

Time complexity? O(bm): terrible if m is much larger than d but if
solutions are dense, may be much faster than breadth-first

Space complexity? O(bm), i.e., linear space!

Optimal? No
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Depth-Limited Search

= depth-first search with depth limit l, i.e., nodes at depth l have no
successors

function Depth-Limited-Search (problem, limit) return soln/fail/cutoff

return Recursive-DLS(Make-Node(Initial-State(problem)), problem, limit)

end function

function Recursive-DLS (node, problem, limit) return soln/fail/cutoff

cutoff-occurred := false;

if (Goal-State(problem, State(node))) then return node;

else if (Depth(node) == limit) then return cutoff;

else for each successor in Expand(node, problem) do

result := Recursive-DLS(successor, problem, limit)

if (result == cutoff) then cutoff-occurred := true;

else if (result != fail) then return result;

end for

if (cutoff-occurred) then return cutoff; else return fail;

end function
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Iterative Deepening Search

function Iterative-Deepening-Search (problem) return soln

for limit from 0 to MAX-INT do

result := Depth-Limited-Search(problem, limit)

if (result != cutoff) then return result

end for

end function
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Iterative Deepening Search

Limit = 0 A A
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Iterative Deepening Search
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Iterative Deepening Search
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Iterative Deepening Search

Limit = 3
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Properties of Iterative Deepening Search

Complete?

Time complexity?

Space complexity?

Optimal?
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Properties of Iterative Deepening Search

Complete? Yes

Time complexity?

Space complexity?

Optimal?

CS:4420 Spring 2019 – p.26/28



Properties of Iterative Deepening Search

Complete? Yes

Time complexity? db1 + (d− 1)b2 + . . .+ bd = O(bd)

Space complexity?

Optimal?
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Properties of Iterative Deepening Search

Complete? Yes

Time complexity? db1 + (d− 1)b2 + . . .+ bd = O(bd)

Space complexity? O(bd)

Optimal?
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Properties of Iterative Deepening Search

Complete? Yes

Time complexity? db1 + (d− 1)b2 + . . .+ bd = O(bd)

Space complexity? O(bd)

Optimal? Only if step costs are all identical
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Properties of Iterative Deepening Search

Complete? Yes

Time complexity? db1 + (d− 1)b2 + . . .+ bd = O(bd)

Space complexity? O(bd)

Optimal? Only if step costs are all identical

Numerical comparison between Iterative Deepening and Breadth First,
with b = 10, d = 5, and solution at ”far right”of search tree:

N(ID) = 50 + 400 + 3, 000 + 20, 000 + 100, 000 = 123, 450

N(BF) = 10 + 100 + 1, 000 + 10, 000 + 100, 000 + 999, 990 = 1, 111, 100

Iterative deepening search is actually faster than breadth-first search!
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Properties of Iterative Deepening Search

Complete? Yes

Time complexity? db1 + (d− 1)b2 + . . .+ bd = O(bd)

Space complexity? O(bd)

Optimal? Only if step costs are all identical

Numerical comparison between Iterative Deepening and Breadth First,
with b = 10, d = 5, and solution at ”far right”of search tree:

N(ID) = 50 + 400 + 3, 000 + 20, 000 + 100, 000 = 123, 450

N(BF) = 10 + 100 + 1, 000 + 10, 000 + 100, 000 + 999, 990 = 1, 111, 100

Iterative deepening search is actually faster than breadth-first search!

It does better because other nodes at depth d are not expanded
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Summary of Algorithms

Criterion Breadth- Uniform- Depth- Depth- Iterative

First Cost First Limited Deepening

Complete? Yesa Yesa, b No Yes, if l ≥ d Yesa

Time bd+1 b⌈C
∗/ǫ⌉ bm bl bd

Space bd+1 b⌈C
∗/ǫ⌉ bm bl bd

Optimal? Yesc Yes No No Yesc

b, branching factor d, depth of shallowest solution l, depth limit

m, depth of search tree C∗, cost of optimal solution

a if b is finite

b is step costs > ǫ for some ǫ > 0

c is all step costs are the same
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Repeated States

Failure to detect repeated states can turn a linear problem into an
exponential one!
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