
CS:4420 Artificial Intelligence

Spring 2019

Uninformed Search

Cesare Tinelli

The University of Iowa

Copyright 2004–19, Cesare Tinelli and Stuart Russell a

a
These notes were originally developed by Stuart Russell and are used with permission. They are

copyrighted material and may not be used in other course settings outside of the University of Iowa in their

current or modified form without the express written consent of the copyright holders.

CS:4420 Spring 2019 – p.1/28

Readings

• Chap. 3 of [Russell and Norvig, 3rd edition]

CS:4420 Spring 2019 – p.2/28

More on Graphs

A graph is a set of nodes and edges between them

C

S

A

GE

B

D

F

A graph is directed if its edges can be traversed only in a specified
direction

When an edge is directed from ni to nj

• it is uniquely identified by the pair (ni, nj)

• ni is a parent (or predecessor) of nj

• nj is a child (or successor) of ni

CS:4420 Spring 2019 – p.3/28

Directed Graphs

C

S

A

GE

B

D

F

A path, of length k ≥ 0, is a sequence
〈(n1, n2), (n2, n3), . . . , (nk, nk+1)〉 of k successive edges a

Ex: 〈〉, 〈(S,D)〉, 〈(S,D), (D,E), (E,B)〉

For 1 ≤ i < j ≤ k + 1,

• Ni is a ancestor of Nj ; Nj is a descendant of Ni

A graph is cyclic if it has a path starting and ending with the same
node. Ex: 〈(A,D), (D,E), (E,A)〉

a Note that a path of length k > 0 contains k + 1 nodes

CS:4420 Spring 2019 – p.4/28

From Search Graphs to Search Trees

The set of all possible paths of a graph can be represented as a tree

• A tree is a directed acyclic graph all of whose nodes have at
most one parent

• A root of a tree is a node with no parents

• A leaf is a node with no children

• The branching factor of a node is the number of its children

Graphs can be turned into trees by duplicating nodes and breaking
cyclic paths, if any

CS:4420 Spring 2019 – p.5/28

From Graphs to Trees

To unravel a graph into a tree choose a root node and trace every
path from that node until you reach a leaf node or a node already in
that path

G

S

A B
D

D

E

F

S

A

B

F CGA

AD

G

E

G

C

ED

. . . depth 4

depth 2

depth 1

depth 0

depth 3

Note:

• must remember which nodes have been visited
• a node may get duplicated several times in the tree
• the tree has infinite paths if and only if the graph has infinite

non-cyclic paths
CS:4420 Spring 2019 – p.6/28

Tree Search Algorithms

Basic Idea: offline, simulated exploration of state space by generating
successors of already-explored states

function Tree-Search(problem, strategy) returns a solution, or failure

initialize the search tree using the initial state of problem

loop do

if there are no candidates for expansion then

return failure

else

choose a leaf node for expansion according to strategy

if the node contains a goal state then

return the corresponding solution

else

expand the node and add its successors to the tree

done

CS:4420 Spring 2019 – p.7/28

Tree Search Example

Rimnicu Vilcea Lugoj

ZerindSibiu

Arad Fagaras Oradea

Timisoara

AradArad Oradea

Arad

CS:4420 Spring 2019 – p.8/28

Tree Search Example

Rimnicu Vilcea LugojArad Fagaras Oradea AradArad Oradea

Zerind

Arad

Sibiu Timisoara

CS:4420 Spring 2019 – p.8/28

Tree Search Example

Lugoj AradArad OradeaRimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

CS:4420 Spring 2019 – p.8/28

Implementation: states vs. nodes

• A state is a (representation of) a physical configuration

• A node is a data structure constituting part of a search tree
(and includes such info as parent, children, depth, path cost
g(x))

• States do not have parents, children, depth, or path cost!

1

23

45

6

7

81

23

45

6

7

8

State Node depth = 6

g = 6

state

parent, action

CS:4420 Spring 2019 – p.9/28

Search Strategies

A strategy is defined by picking the order of node expansion

Strategies are evaluated along the following dimensions:

• solution completeness: does it always find a solution if one
exists?

• time complexity : number of nodes generated/expanded

• space complexity : maximum number of nodes in memory

• optimality : does it always find a least-cost solution?

Time and space complexity are measured in terms of

• b, maximum branching factor of the search tree

• d, depth of the least-cost solution

• m, maximum depth of the state space (may be ∞)

CS:4420 Spring 2019 – p.10/28

Search Strategies

Uninformed (or Blind) Search Strategies

• Little or no information about the search space is available

• All we know is how to generate new states and recognize a goal
state

Informed (or Heuristic) Search Strategies

• An estimate of the number of steps or the path cost from
current state to goal state is available

• The estimate is not perfect (otherwise no search is needed!) but
can help prune the search space considerably

CS:4420 Spring 2019 – p.11/28

Some Uninformed Search Strategies

• Breadth-first search

• Uniform-cost search

• Depth-first search

• Depth-limited search

• Iterative deepening (depth-first) search

CS:4420 Spring 2019 – p.12/28

Breadth-First Search

Strategy: Expand shallowest unexpanded node

Implementation: the current set of unexpanded nodes, the fringe (or
frontier), is processed as FIFO queue, i.e., new successors go at end

A

B C

D E F G

CS:4420 Spring 2019 – p.13/28

Breadth-First Search

Strategy: Expand shallowest unexpanded node

Implementation: the current set of unexpanded nodes, the fringe (or
frontier), is processed as FIFO queue, i.e., new successors go at end

A

B C

D E F G

CS:4420 Spring 2019 – p.13/28

Breadth-First Search

Strategy: Expand shallowest unexpanded node

Implementation: the current set of unexpanded nodes, the fringe (or
frontier), is processed as FIFO queue, i.e., new successors go at end

A

B C

D E F G

CS:4420 Spring 2019 – p.13/28

Breadth-First Search

Strategy: Expand shallowest unexpanded node

Implementation: the current set of unexpanded nodes, the fringe (or
frontier), is processed as FIFO queue, i.e., new successors go at end

A

B C

D E F G

CS:4420 Spring 2019 – p.13/28

Cost of Breadth-First Search

Worst-case Time Complexity (no. of node expansions)

All nodes must be expanded to find a goal state. We must process
these many nodes:

O(1 + b+ b2 + . . .+ bd + b(bd − 1)) = O(bd+1) (exponential time)

where b = maximum branching factor

d = depth of shallowest goal state

Note: The above assumes that the search space if finite. What if it is
not?

CS:4420 Spring 2019 – p.14/28

Cost of Breadth-First Search

Worst-case Space Complexity (no. of nodes in memory)

All nodes at depth d of the search tree are in the fringe when the
procedure finds the goal state

The number of nodes at depth d in a tree with branching factor b is

O(bd+1) (exponential space)

CS:4420 Spring 2019 – p.15/28

Cost of Breadth-First Search

Depth Nodes Time Memory

0 1 1 millisecond 100 bytes
2 111 .1 seconds 11 kilobytes
4 11,111 11 seconds 1 megabyte
6 106 18 minutes 111 megabytes
8 108 31 hours 11 gigabytes

10 1010 128 days 1 terabyte
12 1012 35 years 111 terabytes
14 1014 3500 years 11,111 terabytes

b = 10, time/node=1ms, mem/node= 100bytes

• Exponential complexity problems become soon unmanageable

• Memory requirements are a bigger problem than time
requirements

CS:4420 Spring 2019 – p.16/28

Optimality of Breadth-First Search

Breadth-first search is clearly complete.

CS:4420 Spring 2019 – p.17/28

Optimality of Breadth-First Search

Breadth-first search is clearly complete. Is it optimal?

CS:4420 Spring 2019 – p.17/28

Optimality of Breadth-First Search

Breadth-first search is clearly complete. Is it optimal? It depends

CS:4420 Spring 2019 – p.17/28

Optimality of Breadth-First Search

Breadth-first search is clearly complete. Is it optimal? It depends

• Breadth-first search always finds the shallowest goal state

• The path to that goal state, however, may have a higher cost
than one to a deeper goal state

CS:4420 Spring 2019 – p.17/28

Optimality of Breadth-First Search

Breadth-first search is clearly complete. Is it optimal? It depends

• Breadth-first search always finds the shallowest goal state

• The path to that goal state, however, may have a higher cost
than one to a deeper goal state

A

B C

D

2410

811

E Cost of AC: 24

Cost of ABE: 10 + 8 = 18

If we are looking for least-cost solutions, breadth-first is suboptimal
unless all step costs are identical

CS:4420 Spring 2019 – p.17/28

Uniform-Cost Search

Assumption: A path cost function g such that g(p)− g(p′) ≥ ǫ > 0 for
all paths p and proper subpaths p′ of p

Strategy: Expand least-cost unexpanded node

Implementation: fringe = priority queue ordered by path cost

CS:4420 Spring 2019 – p.18/28

Uniform-Cost Search

Assumption: A path cost function g such that g(p)− g(p′) ≥ ǫ > 0 for
all paths p and proper subpaths p′ of p

Strategy: Expand least-cost unexpanded node

Implementation: fringe = priority queue ordered by path cost

Equivalent to breadth-first if step costs all equal

CS:4420 Spring 2019 – p.18/28

Uniform-Cost Search: Example

Path cost = sum of step costs

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Exercise: Find cheapest route from Sibiu to Bucharest

CS:4420 Spring 2019 – p.19/28

Properties of Uniform-Cost Search

Assumption: A path cost function g such that g(p)− g(p′) ≥ ǫ > 0 for
all paths p and proper subpaths p′ of p

Strategy: Expand least-cost unexpanded node

Implementation: fringe = priority queue ordered by path cost

Complete?

Time complexity?

Space complexity?

Optimal?

CS:4420 Spring 2019 – p.20/28

Properties of Uniform-Cost Search

Assumption: A path cost function g such that g(p)− g(p′) ≥ ǫ > 0 for
all paths p and proper subpaths p′ of p

Strategy: Expand least-cost unexpanded node

Implementation: fringe = priority queue ordered by path cost

Complete? Yes (with step cost ≥ ǫ)

Time complexity?

Space complexity?

Optimal?

CS:4420 Spring 2019 – p.20/28

Properties of Uniform-Cost Search

Assumption: A path cost function g such that g(p)− g(p′) ≥ ǫ > 0 for
all paths p and proper subpaths p′ of p

Strategy: Expand least-cost unexpanded node

Implementation: fringe = priority queue ordered by path cost

Complete? Yes (with step cost ≥ ǫ)

Time complexity? # of paths p with g(p) ≤ cost of optimal

solution: O(b⌈C
∗/ǫ⌉) where C∗ is the cost of the optimal solution

Space complexity?

Optimal?

CS:4420 Spring 2019 – p.20/28

Properties of Uniform-Cost Search

Assumption: A path cost function g such that g(p)− g(p′) ≥ ǫ > 0 for
all paths p and proper subpaths p′ of p

Strategy: Expand least-cost unexpanded node

Implementation: fringe = priority queue ordered by path cost

Complete? Yes (with step cost ≥ ǫ)

Time complexity? # of paths p with g(p) ≤ cost of optimal

solution: O(b⌈C
∗/ǫ⌉) where C∗ is the cost of the optimal solution

Space complexity? Same as time complexity: O(b⌈C
∗/ǫ⌉)

Optimal?

CS:4420 Spring 2019 – p.20/28

Properties of Uniform-Cost Search

Assumption: A path cost function g such that g(p)− g(p′) ≥ ǫ > 0 for
all paths p and proper subpaths p′ of p

Strategy: Expand least-cost unexpanded node

Implementation: fringe = priority queue ordered by path cost

Complete? Yes (with step cost ≥ ǫ)

Time complexity? # of paths p with g(p) ≤ cost of optimal

solution: O(b⌈C
∗/ǫ⌉) where C∗ is the cost of the optimal solution

Space complexity? Same as time complexity: O(b⌈C
∗/ǫ⌉)

Optimal? Yes, since nodes are expanded in increasing order of g

CS:4420 Spring 2019 – p.20/28

Depth-First Search

Strategy: Expand deepest unexpanded node

Implementation: fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

CS:4420 Spring 2019 – p.21/28

Depth-First Search

Strategy: Expand deepest unexpanded node

Implementation: fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

CS:4420 Spring 2019 – p.21/28

Depth-First Search

Strategy: Expand deepest unexpanded node

Implementation: fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

CS:4420 Spring 2019 – p.21/28

Depth-First Search

Strategy: Expand deepest unexpanded node

Implementation: fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

CS:4420 Spring 2019 – p.21/28

Depth-First Search

Strategy: Expand deepest unexpanded node

Implementation: fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

CS:4420 Spring 2019 – p.21/28

Depth-First Search

Strategy: Expand deepest unexpanded node

Implementation: fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

CS:4420 Spring 2019 – p.21/28

Depth-First Search

Strategy: Expand deepest unexpanded node

Implementation: fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

CS:4420 Spring 2019 – p.21/28

Depth-First Search

Strategy: Expand deepest unexpanded node

Implementation: fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

CS:4420 Spring 2019 – p.21/28

Depth-First Search

Strategy: Expand deepest unexpanded node

Implementation: fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

CS:4420 Spring 2019 – p.21/28

Depth-First Search

Strategy: Expand deepest unexpanded node

Implementation: fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

CS:4420 Spring 2019 – p.21/28

Depth-First Search

Strategy: Expand deepest unexpanded node

Implementation: fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

CS:4420 Spring 2019 – p.21/28

Depth-First Search

Strategy: Expand deepest unexpanded node

Implementation: fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

CS:4420 Spring 2019 – p.21/28

Properties of Depth-First Search

Complete?

Time complexity?

Space complexity?

Optimal?

CS:4420 Spring 2019 – p.22/28

Properties of Depth-First Search

Complete? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path ⇒ complete in finite
spaces

Time complexity?

Space complexity?

Optimal?

CS:4420 Spring 2019 – p.22/28

Properties of Depth-First Search

Complete? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path ⇒ complete in finite
spaces

Time complexity? O(bm): terrible if m is much larger than d but if
solutions are dense, may be much faster than breadth-first

Space complexity?

Optimal?

CS:4420 Spring 2019 – p.22/28

Properties of Depth-First Search

Complete? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path ⇒ complete in finite
spaces

Time complexity? O(bm): terrible if m is much larger than d but if
solutions are dense, may be much faster than breadth-first

Space complexity? O(bm), i.e., linear space!

Optimal?

CS:4420 Spring 2019 – p.22/28

Properties of Depth-First Search

Complete? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path ⇒ complete in finite
spaces

Time complexity? O(bm): terrible if m is much larger than d but if
solutions are dense, may be much faster than breadth-first

Space complexity? O(bm), i.e., linear space!

Optimal? No

CS:4420 Spring 2019 – p.22/28

Depth-Limited Search

= depth-first search with depth limit l, i.e., nodes at depth l have no
successors

function Depth-Limited-Search (problem, limit) return soln/fail/cutoff

return Recursive-DLS(Make-Node(Initial-State(problem)), problem, limit)

end function

function Recursive-DLS (node, problem, limit) return soln/fail/cutoff

cutoff-occurred := false;

if (Goal-State(problem, State(node))) then return node;

else if (Depth(node) == limit) then return cutoff;

else for each successor in Expand(node, problem) do

result := Recursive-DLS(successor, problem, limit)

if (result == cutoff) then cutoff-occurred := true;

else if (result != fail) then return result;

end for

if (cutoff-occurred) then return cutoff; else return fail;

end function

CS:4420 Spring 2019 – p.23/28

Iterative Deepening Search

function Iterative-Deepening-Search (problem) return soln

for limit from 0 to MAX-INT do

result := Depth-Limited-Search(problem, limit)

if (result != cutoff) then return result

end for

end function

CS:4420 Spring 2019 – p.24/28

Iterative Deepening Search

Limit = 0 A A

CS:4420 Spring 2019 – p.25/28

Iterative Deepening Search

Limit = 1 A

B C

A

B C

A

B C

A

B C

CS:4420 Spring 2019 – p.25/28

Iterative Deepening Search

Limit = 2 A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

CS:4420 Spring 2019 – p.25/28

Iterative Deepening Search

Limit = 3

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H J K L M N OI

A

B C

D E F G

H I J K L M N O

CS:4420 Spring 2019 – p.25/28

Properties of Iterative Deepening Search

Complete?

Time complexity?

Space complexity?

Optimal?

CS:4420 Spring 2019 – p.26/28

Properties of Iterative Deepening Search

Complete? Yes

Time complexity?

Space complexity?

Optimal?

CS:4420 Spring 2019 – p.26/28

Properties of Iterative Deepening Search

Complete? Yes

Time complexity? db1 + (d− 1)b2 + . . .+ bd = O(bd)

Space complexity?

Optimal?

CS:4420 Spring 2019 – p.26/28

Properties of Iterative Deepening Search

Complete? Yes

Time complexity? db1 + (d− 1)b2 + . . .+ bd = O(bd)

Space complexity? O(bd)

Optimal?

CS:4420 Spring 2019 – p.26/28

Properties of Iterative Deepening Search

Complete? Yes

Time complexity? db1 + (d− 1)b2 + . . .+ bd = O(bd)

Space complexity? O(bd)

Optimal? Only if step costs are all identical

CS:4420 Spring 2019 – p.26/28

Properties of Iterative Deepening Search

Complete? Yes

Time complexity? db1 + (d− 1)b2 + . . .+ bd = O(bd)

Space complexity? O(bd)

Optimal? Only if step costs are all identical

Numerical comparison between Iterative Deepening and Breadth First,
with b = 10, d = 5, and solution at ”far right”of search tree:

N(ID) = 50 + 400 + 3, 000 + 20, 000 + 100, 000 = 123, 450

N(BF) = 10 + 100 + 1, 000 + 10, 000 + 100, 000 + 999, 990 = 1, 111, 100

Iterative deepening search is actually faster than breadth-first search!

CS:4420 Spring 2019 – p.26/28

Properties of Iterative Deepening Search

Complete? Yes

Time complexity? db1 + (d− 1)b2 + . . .+ bd = O(bd)

Space complexity? O(bd)

Optimal? Only if step costs are all identical

Numerical comparison between Iterative Deepening and Breadth First,
with b = 10, d = 5, and solution at ”far right”of search tree:

N(ID) = 50 + 400 + 3, 000 + 20, 000 + 100, 000 = 123, 450

N(BF) = 10 + 100 + 1, 000 + 10, 000 + 100, 000 + 999, 990 = 1, 111, 100

Iterative deepening search is actually faster than breadth-first search!

It does better because other nodes at depth d are not expanded

CS:4420 Spring 2019 – p.26/28

Summary of Algorithms

Criterion Breadth- Uniform- Depth- Depth- Iterative

First Cost First Limited Deepening

Complete? Yesa Yesa, b No Yes, if l ≥ d Yesa

Time bd+1 b⌈C
∗/ǫ⌉ bm bl bd

Space bd+1 b⌈C
∗/ǫ⌉ bm bl bd

Optimal? Yesc Yes No No Yesc

b, branching factor d, depth of shallowest solution l, depth limit

m, depth of search tree C∗, cost of optimal solution

a if b is finite

b is step costs > ǫ for some ǫ > 0

c is all step costs are the same
CS:4420 Spring 2019 – p.27/28

Repeated States

Failure to detect repeated states can turn a linear problem into an
exponential one!

A

B

C

D

A

B

CC

B

CC

A

(c)(b)(a)

CS:4420 Spring 2019 – p.28/28

	Readings
	More on Graphs
	Directed Graphs
	From Search Graphs to Search Trees
	From Graphs to Trees
	Tree Search Algorithms
	Tree Search Example
	Implementation: states vs.~nodes
	Search Strategies
	Search Strategies
	Some Uninformed Search Strategies
	Breadth-First Search
	Cost of Breadth-First Search
	Cost of Breadth-First Search
	Cost of Breadth-First Search
	Optimality of Breadth-First Search
	Uniform-Cost Search
	Uniform-Cost Search: Example
	Properties of Uniform-Cost Search
	Depth-First Search
	Properties of Depth-First Search
	Depth-Limited Search
	Iterative Deepening Search
	Iterative Deepening Search
	Properties of Iterative Deepening Search
	Summary of Algorithms
	Repeated States

