CS:4420 Artificial Intelligence Spring 2019

Probabilistic Reasoning

Cesare Tinelli

The University of Iowa
Copyright 2004-19, Cesare Tinelli and Stuart Russella

[^0]
Readings

- Chap. 14 of [Russell and Norvig, 3rd Edition]

Making Probabilistic Reasoning Feasible

Recall:

- A joint probability distribution (JPD) contains all the relevant information to reason about the various kinds of probabilities of a set $\left\{X_{1}, \ldots, X_{n}\right\}$ of random variables.
- Unfortunately, JPD tables are difficult to create and also very expensive to store.
- One possibility is to work with conditional probabilities and exploit the fact that many random variables are conditionally independent.
- Belief Networks are a successful example of probabilistic systems that exploit conditional independence to reason effectively under uncertainty.

Review of Basic Concepts

The JPD is a collection of probabilities:
$\mathbf{P}\left(X_{1}, \ldots, X_{n}\right)=\left\{P\left(X_{1}=x_{1} \wedge \cdots \wedge X_{n}=x_{n}\right) \mid x_{i} \in \operatorname{Domain}\left(X_{i}\right)\right\}$

Conditional Probability:

$$
P\left(X_{1}=x_{1} \mid X_{2}=x_{2}\right)=\frac{P\left(X_{1}=x_{1} \wedge X_{2}=x_{2}\right)}{P\left(X_{2}=x_{2}\right)}
$$

or
$P\left(X_{1}=x_{1} \wedge X_{2}=x_{2}\right)=P\left(X_{1}=x_{1} \mid X_{2}=x_{2}\right) P\left(X_{2}=x_{2}\right)$

Review of Basic Concepts (2)

Chain rule:

$$
P\left(X_{1}=x_{1} \mid X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right)=\frac{P\left(X_{1}=x_{1} \wedge X_{2}=x_{2} \wedge \cdots \wedge X_{n}=x_{n}\right)}{P\left(X_{2}=x_{2} \wedge \cdots \wedge X_{n}=x_{n}\right)}
$$

or

$$
\begin{aligned}
& P\left(X_{1}=x_{1} \wedge X_{2}=x_{2} \wedge \cdots \wedge X_{n}=x_{n}\right) \\
& \quad=P\left(X_{1}=x_{1} \mid X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right) P\left(X_{2}=x_{2} \wedge \cdots \wedge X_{n}=x_{n}\right) \\
& \quad=\prod_{i=1}^{n} P\left(X_{i}=x_{i} \mid X_{i+1}=x_{i+1}, \ldots, X_{n}=x_{n}\right)
\end{aligned}
$$

Conditional Independence:
If

$$
\begin{aligned}
& P\left(X_{1}=x_{1} \mid X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right)= \\
& \quad P\left(X_{1}=x_{1} \mid X_{2}=x_{2}, \ldots, X_{n-1}=x_{n-1}\right)
\end{aligned}
$$

then $X_{1}=x_{1}$ is conditionally independent from $X_{n}=x_{n}$ given the evidence $X_{2}=x_{2}, \ldots, X_{n-1}=x_{n-1}$

A Belief Network

Belief Networks

Let X_{1}, \ldots, X_{n} be discrete random variables.
A belief network (or Bayesian network) for X_{1}, \ldots, X_{n} is a graph with m nodes such that

- there is a node for each X_{i}
- all the edges between two nodes are directed
- there are no cycles
- each node has a conditional probability table (CPT), given in terms of its parents

The intuitive meaning of an edge from a node X_{i} to a node X_{j} is that X_{i} has a direct influence on X_{j}

Network Semantics

The topology of the network encodes conditional independence assertions

Example:

- Weather is independent from the other variables
- Toothache and Catch are conditionally independent given Cavity

Conditional Probability Tables

Each node X_{i} in a belief network has an associated CPT expressing the probability of X_{i}, given its parents as evidence

Example:

CPT for Alarm:

		Alarm	
Burglary	Earthquake	T	F
T	T	0.950	0.050
T	F	0.940	0.060
F	T	0.290	0.710
F	F	0.001	0.999

$P($ alarm \mid burglary \wedge earthquake $)=0.950$
$P(\neg$ alarm $\mid \neg$ burglary \wedge earthquake $)=0.710$

A Belief Network with CPTs

Note: The tables only show $P(X=$ true $)$ here because $P(X=$ false $)=1-P(X=$ true $)$

The Semantics of Belief Networks

There are two equivalent ways to interpret a belief network for the variables X_{1}, \ldots, X_{n} :

1. The network is a representation of the JPD $\mathbf{P}\left(X_{1}, \ldots, X_{n}\right)$
2. The network is a collection of conditional independence statements about X_{1}, \ldots, X_{n}

Interpretation 1 is helpful when constructing belief networks
Interpretation 2 is helpful in designing inference procedures based on them

Belief Network as JPDs

The whole JPD $\mathbf{P}\left(X_{1}, \ldots, X_{n}\right)$ can be computed from a belief network for X_{1}, \ldots, X_{n} and its CPTs

For each tuple $\left\langle x_{1}, \ldots, x_{n}\right\rangle$ of possible values for $\left\langle X_{1}, \ldots, X_{n}\right\rangle$,

$$
P\left(X_{1}=x_{1} \wedge \cdots \wedge X_{n}=x_{n}\right)=\prod_{i=1}^{n} P\left(X_{i}=x_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)
$$

where

$$
\operatorname{Parents}\left(X_{i}\right)=\left\{X_{j}=x_{j} \mid 1 \leq j \leq n \text { and } X_{j} \text { is a parent of } X_{i}\right\}
$$

Belief Network as JPDs

$$
P\left(X_{1}=x_{1} \wedge \cdots \wedge X_{n}=x_{n}\right)=\prod_{i=1}^{n} P\left(X_{i}=x_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)
$$

$$
\begin{aligned}
P(j & \wedge m \wedge a \wedge \neg b \wedge \neg e) \\
& =P(j \mid a) P(m \mid a) P(a \mid \neg b \wedge \neg e) P(\neg b) P(\neg e) \\
& =0.9 \times 0.7 \times 0.001 \times 0.999 \times 0.998=0.00062
\end{aligned}
$$

Belief Networks and Cond. Independence

Let $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ be any set of nodes in the network such that

- all the parents of X_{1} are in $\left\{X_{2}, \ldots, X_{n}\right\}$
- no node in $\left\{X_{2}, \ldots, X_{n}\right\}$ is a descendant of X_{1}

Let $\left\langle x_{1}, \ldots, x_{n}\right\rangle$ be a value assignment for $\left\langle X_{1}, \ldots, X_{n}\right\rangle$
From the equation

$$
P\left(X_{1}=x_{1} \wedge \cdots \wedge X_{n}=x_{n}\right)=\prod_{i=1}^{n} P\left(X_{i}=x_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)
$$

we can show that

$$
P\left(X_{1}=x_{1} \mid X_{2}=x_{2} \wedge \cdots \wedge X_{n}=x_{n}\right)=P\left(X_{1}=x_{1} \mid \operatorname{Parents}\left(X_{1}\right)\right)
$$

Belief Networks and Cond. Independence

A consequence of the last equation is:
Given all its parents as evidence, each node in the network is conditionally independent from its non-descendants

Belief Networks and Cond. Independence

Another consequence is:
Given all its parents, children, and children's parents as evidence, each node in the network is conditionally independent from all the other nodes

Belief Networks and Cond. Independence

$$
P\left(X_{1}=x_{1} \mid X_{2}=x_{2} \wedge \cdots \wedge X_{n}=x_{n}\right)=P\left(X_{1}=x_{1} \mid \operatorname{Parents}\left(X_{1}\right)\right)
$$

Examples:

$$
\begin{aligned}
& P(b \mid e)=P(b) \\
& P(j \mid m \wedge a)=P(j \mid a) \\
& P(j \mid a \wedge e)=P(j \mid a) \\
& P(j \mid a \wedge b \wedge e)=P(j \mid a) \\
& P(j \mid m \wedge a \wedge b \wedge e)=P(j \mid a)
\end{aligned}
$$

Exercise: Find all the conditional independences holding in this network

Constructing Belief Networks

General Procedure

1. Identify a set of random variables $\left\{X_{i}\right\}_{i}$ that describe the domain
2. Choose an ordering X_{1}, \ldots, X_{n} of the variables
3. Start with an empty network
4. For $i=1 \ldots n$:
(a) add X_{i} to the network
(b) select as parents of X_{i} nodes from X_{1}, \ldots, X_{i-1} such that $\mathbf{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)=\mathbf{P}\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)$
(c) fill in the CPT for X_{i}

Constructing Belief Networks

General Procedure

1. Identify a set of random variables $\left\{X_{i}\right\}_{i}$ that describe the domain
2. Choose an ordering X_{1}, \ldots, X_{n} of the variables
3. Start with an empty network
4. For $i=1 \ldots n$:
(a) add X_{i} to the network
(b) select as parents of X_{i} nodes from X_{1}, \ldots, X_{i-1} such that $\mathbf{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)=\mathbf{P}\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)$
(c) fill in the CPT for X_{i}

This choice of parents guarantees the network semantics:

$$
\begin{aligned}
\mathbf{P}\left(X_{1}, \ldots, X_{n}\right) & =\prod_{i=1}^{n} \mathbf{P}\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right) \quad \text { (chain rule) } \\
& =\prod_{i=1}^{n} \mathbf{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right) \quad \text { (by construction) }
\end{aligned}
$$

Example

Suppose we choose the ordering MaryCalls, JohnCalls, Alarm, Burglary, Earthquake

MaryCalls

$P(j \mid m)=P(j) ?$

Example

Suppose we choose the ordering MaryCalls, JohnCalls, Alarm, Burglary, Earthquake

$$
\begin{aligned}
& P(j \mid m)=P(j) ? \quad \text { ?o } \\
& P(a \mid j, m)=P(a \mid j) ? \\
& P(a \mid j, m)=P(a) ?
\end{aligned}
$$

Example

Suppose we choose the ordering MaryCalls, JohnCalls, Alarm, Burglary, Earthquake

$$
\begin{aligned}
& P(j \mid m)=P(j) ? \quad \text { ? } \\
& P(a \mid j, m)=P(a \mid j) ? \quad \text { ?o } \\
& P(a \mid j, m)=P(a) ? \quad \text { No } \\
& P(b \mid a, j, m)=P(b \mid a) ? \\
& P(b \mid a, j, m)=P(b) ?
\end{aligned}
$$

Example

Suppose we choose the ordering MaryCalls, JohnCalls, Alarm, Burglary, Earthquake

Example

Suppose we choose the ordering MaryCalls, JohnCalls, Alarm, Burglary, Earthquake

Example contd.

Deciding conditional independence is hard in non-causal directions
Causal models and conditional independence seem hardwired for humans!

Assessing conditional probabilities is hard in non-causal directions
Network is less compact: $1+2+4+2+4=13$ probabilities needed

Ordering the Variables

The order in which add the variables to the network is important

"Wrong" orderings produces more complex networks

Ordering the Variables Right

A general, effective heuristic for constructing simpler belief networks is to exploit causal links between random variables whenever possible

This is done by adding variables to the network so that causes get added before effects

Example: Car diagnosis

Initial evidence: car won't start

Testable variables (green), actionable variables (orange)
Hidden variables (gray) ensure sparse structure, reduce parameters

Example: Car insurance

Compactness of Belief Networks

A belief network is a complete and non-redundant representation of a full joint probability distribution

In addition, its is typically more compact than a full joint probability table

The reason is that probabilistic domains are often representable as a locally structured system

In a locally structured system, each subcomponent interacts with only a bounded number of other components, regardless of the size of the system

The complexity of local structures generally grows linearly, instead of exponentially

Locally Structured Systems

In many real-world domains, each random variable is influenced by at most k others, for some fixed constant k

With n variables, all Boolean, a JPT will have 2^{n} entries
In a well constructed belief network, each node will have at most k parents

Hence each node will have a CPT with at most 2^{k} entries, for a total of $n 2^{k}$ entries.

Example: $n=20, k=5$

$$
\begin{array}{llrr}
\text { entries in network CPTs } & \leq & 20 \times 2^{5} & = \\
\text { entries in JPT } & = & 2^{20} & =1,048,576
\end{array}
$$

Representing CPTs

Even with a fairly small number of parents per node, constructing the CPTs for a belief network may require a lot a work

However, if the network is built with the right topology, the relationship between parent and children nodes will typically fall into a category with some canonical distribution

Examples:

- Deterministic nodes
- Noisy-OR relationships

Deterministic Nodes

A node is deterministic if its value is a function of the values of its parents, with no uncertainty

- Logical implications or equivalences:

$$
\begin{aligned}
& P(n \mid \neg c \wedge \neg u \wedge \neg m)=0 \\
& \begin{aligned}
P(n \mid u) & =P(n \mid c \wedge u)=\ldots=P(n \mid u \wedge \neg m) \\
& =P(n \mid c \wedge \neg u \wedge \neg m)=\ldots=1
\end{aligned}
\end{aligned}
$$

Deterministic Nodes (cont.)

- Functional relationships:

$$
\text { CoupleIncome }=\text { WifeIncome }+ \text { HusbandIncome }
$$

$$
\begin{aligned}
& P(C=80 K \mid H=50 K \wedge W=30 K)=1 \\
& P(C=95 K \mid H=50 K \wedge W=30 K)=0
\end{aligned}
$$

Noisy-OR

A generalization of logical OR. Adds uncertainty to statements like

$$
\text { Fever } \Leftrightarrow \text { Cold } \vee \text { Flu } \vee \text { Malaria }
$$

Three assumptions are needed:

1. Each cause has an independent chance of producing the effect
2. All possible causes are listed
3. The reason for a cause not to produce the effect is independent from the reason for another cause not to produce the effect:

$$
\begin{aligned}
& P\left(\neg \text { Effect }^{\mid} \text {Cause }_{i} \wedge \text { OtherCauses }\right) \\
& =P\left(\neg \text { Effect } \mid \text { Cause }_{i}\right) P(\neg \text { Effect } \mid \text { OtherCauses })
\end{aligned}
$$

The possibility that a cause does not produce an effect is given by a noise-parameter

CPTs for Noisy-ORs

Knowing the noise parameters (in boldface below) is enough to compute the whole CTP

CTP of Fever:	Cold	Flu	Malaria	P(Fever $)$	$P(\neg$ Fever $)$
F	F	F	0.00	1.00	
F	F	T	0.90	$\mathbf{0 . 1 0}$	
F	T	F	0.80	$\mathbf{0 . 2 0}$	
F	T	T	0.98	$0.02=0.2 \times 0.1$	
T	F	F	0.40	$\mathbf{0 . 6 0}$	
T	F	T	0.94	$0.06=0.6 \times 0.1$	
T	T	F	0.88	$0.12=0.6 \times 0.2$	
T	T	T	0.988	$0.012=0.6 \times 0.2 \times 0.1$	

A noisy-OR with k causes can be specified with k values, the noise parameters, instead of the 2^{k} values of a full CPT

Inference in Belief Networks

Main task of a belief network: Compute the conditional probability of a set of query variables, given exact values for some evidence variables
$P($ Query \mid Evidence $)$

Belief networks are flexible enough so that any node can serve as either a query or an evidence variable

In general, to decide what actions to take, an agent

1. first gets values for some variables from its percepts, or from its own reasoning
2. then asks the network about the possible values of the other variables

Probabilistic Inference with BNs

Belief networks are a very flexible tool for probabilistic inference because they allow several kinds of inference:

Diagnostic inference (from effects to causes)
E.g. P(Burglary | JohnCalls)

Causal inference (from causes to effects)
E.g. P(JohnCalls \mid Burglary $)$

Intercausal inference (between causes of a common effect)
$P($ Burglary \mid Alarm \wedge Earthquake $)$
Mixed inference (combination of the above)
$P($ Alarm \mid JohnCalls $\wedge \neg$ Earthquake $)$

Types of Inference in Belief Networks

Inference tasks

Simple queries: compute posterior marginal $\mathbf{P}\left(X_{i} \mid \mathbf{E}=\mathbf{e}\right)$
E.g., $P($ NoGas \mid Gauge $=$ empty, Lights $=o n$, Starts $=$ false $)$

Conjunctive queries:

$$
\mathbf{P}\left(X_{i}, X_{j} \mid \mathbf{E}=\mathbf{e}\right)=\mathbf{P}\left(X_{i} \mid \mathbf{E}=\mathbf{e}\right) \mathbf{P}\left(X_{j} \mid X_{i}, \mathbf{E}=\mathbf{e}\right)
$$

Optimal decisions: decision networks include utility information; probabilistic inference required for P (outcome \mid action, evidence)

Value of information: which evidence to seek next?
Sensitivity analysis: which probability values are most critical?
Explanation: why do I need a new starter motor?

Inference by enumeration

Slightly intelligent way to sum out variables from the joint without actually constructing its explicit representation

Simple query on the burglary network:

$$
\begin{aligned}
\mathbf{P} & (B \mid j, m) \\
& =\mathbf{P}(B, j, m) / P(j, m) \\
& =\alpha \mathbf{P}(B, j, m) \\
& =\alpha \sum_{e} \sum_{a} \mathbf{P}(B, e, a, j, m)
\end{aligned}
$$

Rewrite full joint entries using product of CPT entries:
$\mathbf{P}(B \mid j, m)$

$$
\begin{aligned}
& =\alpha \sum_{e} \sum_{a} \mathbf{P}(B) P(e) \mathbf{P}(a \mid B, e) P(j \mid a) P(m \mid a) \\
& =\alpha \mathbf{P}(B) \sum_{e} P(e) \sum_{a} \mathbf{P}(a \mid B, e) P(j \mid a) P(m \mid a)
\end{aligned}
$$

Recursive depth-first enumeration: $O(n)$ space, $O\left(d^{n}\right)$ time

Enumeration algorithm

function Enumeration- $\operatorname{Ask}(X, \mathbf{e}, b n)$ returns a distribution over X
inputs: X, the query variable
e, observed values for variables \mathbf{E}
$b n$, a Bayesian network with variables $\{X\} \cup \mathbf{E} \cup \mathbf{Y}$
$\mathbf{Q}(X) \leftarrow$ a distribution over X, initially empty
for each value x_{i} of X do
extend \mathbf{e} with value x_{i} for X
$\mathbf{Q}\left(x_{i}\right) \leftarrow$ Enumerate- $\operatorname{AlL}(\operatorname{Vars}[b n], \mathbf{e})$
return $\operatorname{Normalize}(\mathbf{Q}(X))$
function Enumerate-All(vars, e) returns a real number
if Empty?(vars) then return 1.0
$Y \leftarrow \mathrm{Finst}($ vars $)$
if Y has value y in \mathbf{e}
then return $P(y \mid P a(Y)) \times$ Enumerate-All(Rest(vars), e)
else return $\sum_{y} P(y \mid P a(Y)) \times$ Enumerate-All(Rest(vars), \mathbf{e}_{y})
where \mathbf{e}_{y} is \mathbf{e} extended with $Y=y$

Evaluation tree

Enumeration is inefficient: repeated computation. E.g., computes $P(j \mid a) P(m \mid a)$ for each value of e

Inference by variable elimination

Variable elimination: carry out summations right-to-left, storing intermediate results, factors, to avoid recomputation

Use matrix operations

$$
\begin{aligned}
\mathbf{P} & (B \mid j, m)=\alpha \sum_{e} \sum_{a} \mathbf{P}(B, e, a, j, m) \\
& =\alpha \underbrace{\mathbf{P}(B)}_{\mathbf{f}_{1}(B)} \sum_{e} \underbrace{P(e)}_{\mathbf{f}_{2}(E)} \sum_{a} \underbrace{\mathbf{P}(a \mid B, e)}_{\mathbf{f}_{3}(A, B, E)} \underbrace{P(j \mid a)}_{\mathbf{f}_{4}(A)} \underbrace{P(m \mid a)}_{\mathbf{f}_{5}(A)} \\
& =\alpha \mathbf{f}_{1}(B) \times \sum_{e} \mathbf{f}_{2}(E) \times \sum_{a} \mathbf{f}_{3}(A, B, E) \times \mathbf{f}_{4}(A) \times \mathbf{f}_{5}(A) \\
& =\alpha \mathbf{f}_{1}(B) \times \sum_{e} \mathbf{f}_{2}(E) \times \sum_{a} \mathbf{f}_{3,4,5}(A, B, E) \\
& =\alpha \mathbf{f}_{1}(B) \times \sum_{e} \mathbf{f}_{2}(E) \times \mathbf{f}_{6}(B, E) \\
& =\alpha \mathbf{f}_{1}(B) \times \sum_{e} \mathbf{f}_{2,6}(B, E) \\
& =\alpha \mathbf{f}_{1}(B) \times \mathbf{f}_{7}(B) \\
& =\alpha \mathbf{f}_{1,7}(B)
\end{aligned}
$$

Variable elimination: Basic operations

Summing out a variable from a product of factors:

1. move any constant factors outside the summation
2. add up submatrices in pointwise product of remaining factors

$$
\begin{aligned}
\sum_{x} f_{1} \times \cdots \times f_{k} & =f_{1} \times \cdots \times f_{i} \sum_{x} f_{i+1} \times \cdots \times f_{k} \\
& =f_{1} \times \cdots \times f_{i} \times f_{\bar{X}}
\end{aligned}
$$

assuming f_{1}, \ldots, f_{i} do not depend on X
Pointwise product of factors f_{1} and f_{2} :

$$
\begin{aligned}
& f_{1}\left(x_{1}, \ldots, x_{j}, y_{1}, \ldots, y_{k}\right) \times f_{2}\left(y_{1}, \ldots, y_{k}, z_{1}, \ldots, z_{l}\right) \\
& \quad=f\left(x_{1}, \ldots, x_{j}, y_{1}, \ldots, y_{k}, z_{1}, \ldots, z_{l}\right)
\end{aligned}
$$

E.g., $f_{1}(A, B) \times f_{2}(B, C)=f(A, B, C)$

Pointwise Multiplication

A	B	$\mathbf{f}_{1}(A, B)$	B	C	$\mathbf{f}_{2}(B, C)$	A	B	C	$\mathbf{f}_{3}(A, B, C)$
T	T	0.3	T	T	0.2	T	T	T	$0.3 \times 0.2=0.06$
T	F	0.7	T	F	0.8	T	T	F	$0.3 \times 0.8=0.24$
F	T	0.9	F	T	0.6	T	F	T	$0.7 \times 0.6=0.42$
F	F	0.1	F	F	0.4	T	F	F	$0.7 \times 0.4=0.28$
						F	T	T	$0.9 \times 0.2=0.18$
						F	T	F	$0.9 \times 0.8=0.72$
						F	F	T	$0.1 \times 0.6=0.06$
						F	F	F	$0.1 \times 0.4=0.04$

Variable elimination algorithm

function Elimination- $\operatorname{Ask}(X, \mathbf{e}, b n)$ returns a distribution over X inputs: X, the query variable
e, evidence specified as an event
$b n$, a belief network specifying joint distribution $\mathbf{P}\left(X_{1}, \ldots, X_{n}\right)$
factors $\leftarrow[] ;$ vars $\leftarrow \operatorname{Reverse}(\operatorname{Vars}[b n])$ for each var in vars do
factors $\leftarrow[$ Make-FACtor $($ var, $\mathbf{e}) \mid$ factors $]$
if var is a hidden variable then factors \leftarrow Sum-Out(var, factors) return Normalize(Pointwise-Product(factors))

Any ordering of the variables will do for correctness
Following topological order over BN is usually most efficient (although finding optimal ordering is NP-hard)

Irrelevant variables

Consider the query $\mathbf{P}($ JohnCalls \mid Burglary $=$ true $)$

$$
\mathbf{P}(J \mid b)=\alpha P(b) \sum_{e} P(e) \sum_{a} P(a \mid b, e) \mathbf{P}(J \mid a) \sum_{m} P(m \mid a)
$$

Sum over m is identically 1 ; Mary is irrelevant to the query
Thm 1: Y is irrelevant unless $Y \in$ Ancestors $(\{X\} \cup \mathbb{E})$
Here, $X=J, \mathbb{E}=\{B\}$, and Ancestors $(\{X\} \cup \mathbb{E})=\{A, B, E\}$ so M is irrelevant

Irrelevant variables contd.

The moral graph of a belief network is obtained by marrying all parents of the same node and then ignoring edge directions

A set A of notes is m-separated from a set B by a set C iff it is separated by C in the moral graph

Thm 2: Y is irrelevant if m-separated from X by \mathbf{E}
For $P($ JohnCalls \mid Alarm =true $)$, both Burglary and Earthquake are irrelevant

Complexity of exact inference

Singly connected networks (or polytrees):

- any two nodes are connected by at most one (undirected) path
- time and space cost of variable elimination are $O\left(d^{k} n\right)$

Multiply connected networks:

- can reduce 3SAT to exact inference \Longrightarrow NP-hard
- equivalent to counting 3SAT models \Longrightarrow \#P-complete

1. $A \vee B \vee C$
2. $C \vee D v \neg A$
3. $B \vee C \vee \neg D$
$P(A N D)>0$ iff $\{1,2,3\}$ is satisfiable

Approximate inference in belief networks

Inference by stochastic simulation

Basic idea:

1. Draw N samples from a sampling distribution S

2. Compute an approximate posterior probability \hat{P}
3. Show this converges to the true probability P

Inference by stochastic simulation

Direct Sampling

- Basic sampling: sampling with no evidence
- Rejection sampling: reject samples disagreeing with evidence
- Likelihood weighting: use evidence to weight samples

Markov chain simulation

- Markov chain Monte Carlo (MCMC): sample from a stochastic process whose stationary distribution is the true posterior

Sampling with no evidence

function PRIOR-SAMPLE $(b n)$ returns an event sampled from $b n$ inputs: $b n$, a belief network specifying jpd $\mathbf{P}\left(X_{1}, \ldots, X_{n}\right)$
$\mathbf{x} \leftarrow$ an event with n elements
for $i=1$ to n do
$x_{i} \leftarrow$ a random sample from $\mathbf{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)$
return x

Example

Sampling from an empty network contd.

Probability that PriorSample generates a particular event:

$$
S_{P S}\left(x_{1} \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)=P\left(x_{1} \ldots x_{n}\right)
$$

i.e., the true prior probability
E.g., $S_{P S}(t, f, t, t)=0.5 \times 0.9 \times 0.8 \times 0.9=0.324=P(t, f, t, t)$

Let $N_{P S}\left(x_{1} \ldots x_{n}\right)$ be the number of times event x_{1}, \ldots, x_{n} was generated and N the total number of samples. Then,

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \hat{P}\left(x_{1}, \ldots, x_{n}\right) & =\lim _{N \rightarrow \infty} N_{P S}\left(x_{1}, \ldots, x_{n}\right) / N \\
& =S_{P S}\left(x_{1}, \ldots, x_{n}\right) \\
& =P\left(x_{1} \ldots x_{n}\right)
\end{aligned}
$$

That is, estimates derived from PriorSample are consistent
Shorthand: $\hat{P}\left(x_{1}, \ldots, x_{n}\right) \approx P\left(x_{1} \ldots x_{n}\right)$

Rejection sampling (with evidence e)

$\hat{\mathbf{P}}(X \mid$ e) estimated from samples agreeing with e

function Rej-Sampling $(X, \mathbf{e}, b n, N)$ returns an estimate of $P(X \mid \mathbf{e})$ local vars: \mathbf{N}, a vector of counts over X, initially zero for $j=1$ to N do

$$
\mathbf{x} \leftarrow \text { Prior-Sample }(b n)
$$

if x is consistent with e then
$\mathbf{N}[x] \leftarrow \mathbf{N}[x]+1$ where x is the value of X in \mathbf{x} return Normalize(N $[X]$)
E.g., estimate $\mathbf{P}($ Rain \mid Sprinkler $=$ true $)$ using 100 samples 27 samples have Sprinkler $=$ true. Of these, 8 have Rain $=$ true
$\hat{\mathbf{P}}($ Rain \mid Sprinkler $=$ true $)=$ Normalize $(\langle 8,19\rangle)=\langle 0.296,0.704\rangle$
Similar to a basic real-world empirical estimation procedure

Analysis of rejection sampling

$$
\begin{aligned}
\hat{\mathbf{P}}(X \mid \mathbf{e}) & =\alpha \mathbf{N}_{P S}(X, \mathbf{e}) & & \text { (algorithm defn.) } \\
& =\mathbf{N}_{P S}(X, \mathbf{e}) / N_{P S}(\mathbf{e}) & & \text { (normalized by } N_{P S}(\mathbf{e}) \text {) } \\
& \approx \mathbf{P}(X, \mathbf{e}) / P(\mathbf{e}) & & \text { (property of PRIORSAMPLE) } \\
& =\mathbf{P}(X \mid \mathbf{e}) & & \text { (defn. of conditional probability) }
\end{aligned}
$$

Hence rejection sampling returns consistent posterior estimates
Problem: hopelessly expensive if $P(\mathbf{e})$ is small
$P(\mathrm{e})$ drops off exponentially with number of evidence variables!

Likelihood weighting (with evidence e)

Idea:

- fix evidence variables
- sample only non-evidence variables,
- weight each sample by the likelihood it accords the evidence

Likelihood weighting example

Query: $\mathbf{P}($ Rain \mid Sprinkler $=$ true, WetGrass $=$ true $)$

weight $=1.0$

Likelihood weighting example

Query: $\mathbf{P}($ Rain \mid Sprinkler $=$ true, WetGrass $=$ true $)$

weight $=1.0$

Likelihood weighting example

Query: $\mathbf{P}($ Rain \mid Sprinkler $=$ true, WetGrass $=$ true $)$

weight $=1.0 \times 0.1$

Likelihood weighting example

Query: $\mathbf{P}($ Rain \mid Sprinkler $=$ true, WetGrass $=$ true $)$

weight $=1.0 \times 0.1$

Likelihood weighting example

Query: $\mathbf{P}($ Rain \mid Sprinkler $=$ true, WetGrass $=$ true $)$

weight $=1.0 \times 0.1 \times 0.99=0.099$
$e v e n t=c \wedge s \wedge r \wedge w$

Likelihood weighting (with evidence e)

function Likelyhood- $\mathrm{W}(X, \mathbf{e}, b n, N)$ returns an estimate of $P(X \mid \mathbf{e})$ local vars: \mathbf{W}, a vector of weighted counts over X, initially zero for $j=1$ to N do
$\mathbf{x}, w \leftarrow$ Weighted-Sample $(b n)$
$\mathbf{W}[x] \leftarrow \mathbf{W}[x]+w$ where x is the value of X in \mathbf{x} return $\operatorname{Normalize}(\mathbf{W}[X])$
function Weighted-Sample($b n$, e) returns an event and a weight $\mathbf{x} \leftarrow$ an event with n elements; $w \leftarrow 1$ for $i=1$ to n do
if X_{i} has a value x_{i} in \mathbf{e}
then $w \leftarrow w \times P\left(X_{i}=x_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)$
else $x_{i} \leftarrow$ a random sample from $\mathbf{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)$
return \mathbf{x}, w

Likelihood weighting analysis

Sampling probability for Weighted-Sample is

$$
S_{W S}(\mathbf{z}, \mathbf{e})=\prod_{i=1}^{l} P\left(z_{i} \mid \operatorname{Parents}\left(Z_{i}\right)\right)
$$

Note: pays attention to evidence in ancestors only \Longrightarrow somewhere "in between" prior and posterior distribution

Weight for a given sample z, e is

$$
w(\mathbf{z}, \mathbf{e})=\prod_{i=1}^{m} P\left(e_{i} \mid \operatorname{Parents}\left(E_{i}\right)\right)
$$

Weighted sampling probability is

$$
\begin{aligned}
& S_{W S}(\mathbf{z}, \mathbf{e}) w(\mathbf{z}, \mathbf{e}) \\
& \quad=\prod_{i=1}^{l} P\left(z_{i} \mid \operatorname{Parents}\left(Z_{i}\right)\right) \prod_{i=1}^{m} P\left(e_{i} \mid \operatorname{Parents}\left(E_{i}\right)\right) \\
& \quad=P(\mathbf{z}, \mathbf{e}) \text { (by standard global semantics of network) }
\end{aligned}
$$

Hence likelihood weighting returns consistent estimates but performance still degrades with many evidence variables because a few samples have nearly all the total weight

Approximate inference using MCMC

- "State" of network = current assignment to all of its variables
- Generate next state by sampling one var. given its Markov Blanket
- Sample each variable in turn, keeping evidence fixed
function GIBBS- $\operatorname{Ask}(X, \mathbf{e}, b n, N)$ returns an estimate of $P(X \mid \mathbf{e})$
local vars: \mathbf{N}, a vector of counts for each value of X, initially zero
\mathbf{Z}, the nonevidence variables in $b n$
\mathbf{x}, the current state of the network, initially copied from \mathbf{e} initialize \mathbf{x} with random values for the variables in \mathbf{Z}
for $j=1$ to N do
for each Z_{i} in \mathbf{Z} do
set the value of Z_{i} in \mathbf{x} by sampling from $\mathbf{P}\left(Z_{i} \mid M B\left(Z_{i}\right)\right)$
$\mathbf{N}[x] \leftarrow \mathbf{N}[x]+1$ where x is the value of X in \mathbf{x}
return Normalize(\mathbf{N})

The Markov chain

With Sprinkler = true, WetGrass = true, there are four states:

Wander about for a while, average what you see

Markov blanket sampling

$$
\begin{aligned}
M B(\text { Cloudy }) & =\{\text { Sprinkler, Rain }\} \\
M B(\text { Rain }) & =\{\text { Cloudy, Sprinkler }, \text { WetGrass }\}
\end{aligned}
$$

Probability given the Markov blanket is calculated as

$$
\begin{aligned}
& P\left(x_{i} \mid m b\left(X_{i}\right)\right) \\
& \quad=\alpha P\left(x_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right) \prod_{Z_{j} \in \operatorname{Children}\left(X_{i}\right)} P\left(z_{j} \mid \operatorname{Parents}\left(Z_{j}\right)\right)
\end{aligned}
$$

where $m b\left(X_{i}\right)$ denotes the values (in the current state) of the variables in X_{i} 's Markov blanket $\operatorname{MB}\left(X_{i}\right)$

MCMC example

To estimate $\mathbf{P}($ Rain \mid Sprinkler $=$ true, WetGrass $=$ true $)$

1. Apply the Gibbs sampling algorithm with Sprinkler and WetGrass both fixed to true
2. Count number of times Rain is true and false in the samples

Example:

Visit 100 states; 31 have Rain $=$ true, 69 have Rain $=$ false
$\hat{\mathbf{P}}($ Rain \mid Sprinkler $=$ true, WetGrass $=$ true $)$
$=\operatorname{Normalize}(\langle 31,69\rangle)=\langle 0.31,0.69\rangle$
Theorem: Markov chain approaches stationary distribution, i.e., over the long run, the fraction of time spent in each state is exactly proportional to the state's posterior probability

[^0]: ${ }^{a}$ These notes were originally developed by Stuart Russell and are used with permission. They are copyrighted material and may not be used in other course settings outside of the University of Iowa in their current or modified form without the express written consent of the copyright holders.

