
CS:4420 Artificial Intelligence

Spring 2018

Beyond Classical Search

Cesare Tinelli

The University of Iowa

Copyright 2004–18, Cesare Tinelli and Stuart Russell a

a
These notes were originally developed by Stuart Russell and are used with permission. They are

copyrighted material and may not be used in other course settings outside of the University of Iowa in their

current or modified form without the express written consent of the copyright holders.

CS:4420 Spring 2018 – p.1/27

Readings

• Chap. 4 of [Russell and Norvig, 2012]

CS:4420 Spring 2018 – p.2/27

Beyond Classical Search

We have seen methods that systematically explore the search space,
possibly using principled pruning (e.g., A*)

The best of these methods can currently handle search spaces of up to
10100 states / ~1,000 binary variables (ballpark figure)

What if we have much larger search spaces?

Search spaces for some real-world problems may be much larger e.g.,
1030,000 states as in certain reasoning and planning tasks

Some of these problems can be solved by Iterative Improvement
Methods

CS:4420 Spring 2018 – p.3/27

Iterative Improvement Methods

In many optimization problems the goal state itself is the solution

The state space is a set of complete configurations

Search is about finding the optimal configuration (as in TSP) or just a
feasible configuration (as in scheduling problems)

In such cases, one can use iterative improvement, or local search,
methods

An evaluation, or objective, function h must be available that
measures the quality of each state

Main Idea: Start with a random initial configuration and make small,
local changes to it that improve its quality

CS:4420 Spring 2018 – p.4/27

Local Search: The Landscape Metaphor

Ideally, the evaluation function h should be monotonic: the closer a
state to an optimal goal state the better its h-value.

Each state can be seen as a point on a surface.

The search consists in moving on the surface, looking for its highest
peaks (or, lowest valleys): the optimal solutions.

evaluation

current
state

CS:4420 Spring 2018 – p.5/27

Local Search Example: TSP

TSP: Travelling Salesperson Problem

h = length of the tour

Strategy: Start with any complete tour, perform pairwise exchanges

CS:4420 Spring 2018 – p.6/27

Local Search Example: TSP

TSP: Travelling Salesperson Problem

h = length of the tour

Strategy: Start with any complete tour, perform pairwise exchanges

Variants of this approach get within 1% of optimal very quickly with
thousands of cities

CS:4420 Spring 2018 – p.6/27

Local Search Example: n-queens

• Put n queens on an n× n board with no two queens on the
same row, column, or diagonal

• h = number of conflicts

• Strategy: Move a queen to reduce number of conflicts

h = 5 h = 2 h = 0

CS:4420 Spring 2018 – p.7/27

Local Search Example: n-queens

• Put n queens on an n× n board with no two queens on the
same row, column, or diagonal

• h = number of conflicts

• Strategy: Move a queen to reduce number of conflicts

h = 5 h = 2 h = 0

Almost always solves n-queens problems almost instantaneously
for very large n, e.g., n = 106

CS:4420 Spring 2018 – p.7/27

Hill-Climbing Search

Aka: gradient descent/ascent search

“Like climbing Everest in thick fog with amnesia”

function Hill-Climbing(problem) returns a state that is a local maximum

inputs: problem, a problem

local vars: current, a node

neighbor, a node

current←Make-Node(Initial-State[problem])

loop do

neighbor← a highest-valued successor of current

if Value[neighbor] < Value[current] then return State[current]

current←neighbor

end

CS:4420 Spring 2018 – p.8/27

Hill-Climbing: Shortcomings

• Depending on the initial state, it can get stuck on local maxima

• It may converge very slowly

• In continuous spaces, choosing the step-size is non-obvious

current
state

objective function

state space

global maximum

local maximum

"flat" local maximum

shoulder

CS:4420 Spring 2018 – p.9/27

Hill-Climbing: Shortcomings

• Depending on the initial state, it can get stuck on local maxima

• It may converge very slowly

• In continuous spaces, choosing the step-size is non-obvious

current
state

objective function

state space

global maximum

local maximum

"flat" local maximum

shoulder

However, true local optima are surprisingly rare in high-dimensional
spaces. There often is an escape to a better state

CS:4420 Spring 2018 – p.9/27

Hill Climbing: Improvements

Various possible alternatives:

• Restart from a random point in the space

• Look ahead: expand up to m > 1 generations of descendants
before choosing best node

• Introduce noise: allow down-hill moves sometimes

• Keep n > 1 nodes in the fringe at each step

CS:4420 Spring 2018 – p.10/27

Simulated Annealing Search

Idea: improve hill-climbing by allowing occasional down-hill steps, to
minimize the probability of getting stuck in a local maximum

Down-hill steps taken randomly but with probability that decreases
with time

Probability controlled by a given annealing schedule for a temperature

parameter T

If schedule lowers T slowly enough, search is guaranteed to end in a
global maximum

Catch: it may take several tries with test problems to devise a good
annealing schedule

CS:4420 Spring 2018 – p.11/27

Simulated Annealing Algorithm

function Simulated-Annealing(problem, schedule) returns a solution state

inputs: problem, a problem

schedule, a mapping from time to“temperature”

local vars: current, a node

next, a node

T, a “temperature” controlling prob. of downward steps

current←Make-Node(Initial-State[problem])

for t← 1 to ∞ do

T← schedule[t]

if T = 0 or Is-Goal-State(current) then return current

next← a randomly selected successor of current

∆E←Value[next] – Value[current]

if ∆E > 0 then current←next

else current←next only with probability
(

1

e

)

|∆ E|
T

CS:4420 Spring 2018 – p.12/27

Properties of Simulated Annealing

Note:
(

1

e

)

|∆ E|

T is directly proportional to T and

inversely proportional to |∆E|

It can be proven that if T is decreased slowly enough, the search
converges to the best state

This is not necessarily an interesting guarantee

Devised by Metropolis et al., 1953, for physical process modeling

Widely used in VLSI layout, airline scheduling, etc.

CS:4420 Spring 2018 – p.13/27

Local Beam Search

Idea: improve hill-climbing by keeping k states instead of 1; choose
top k of all their successors

Not the same as k searches run in parallel!
Searches that find good states recruit other searches to join them

Problem: quite often, all k states end up on same local maximum

Solution: choose k successors randomly, biased towards good ones

CS:4420 Spring 2018 – p.14/27

Genetic Algorithms

Inspired by Darwin’s theory of natural selection

Each state is seen as an individual in a population

A genetic algorithm applies selection and reproduction operators to an
initial population

The aim is to generate individuals that are most successful, according
to a given fitness function

It is basically a stochastic local beam search, but with successors
generated from pairs of states

Local maxima are avoided by giving a nonzero chance of reproduction
to low-scoring individuals

CS:4420 Spring 2018 – p.15/27

The Basic Genetic Algorithm

function GENETIC-ALGORITHM(population, FITNESS-FN) returns an individual
inputs: population, a set of individuals

FITNESS-FN, a function that measures the fitness of an individual

repeat
parents SELECTION(population, FITNESS-FN)
population REPRODUCTION(parents)

until some individual is fit enough
return the best individual in population, according to FITNESS-FN

• Variation operators used in Reproduction create the
necessary diversity, facilitating novelty

• Selection reduces diversity but pushes quality by increasing
fitness

CS:4420 Spring 2018 – p.16/27

Improving fitness

Abstract example: changes of values of fitness function

CS:4420 Spring 2018 – p.17/27

Genetic Algorithms: Classic Approach

• Each state is represented by a finite string over a finite alphabet.

• Each character in the string is a gene.

• The selection mechanism is randomized, with the probability of
selection proportional to the fitness measure.

• Reproduction is accomplished by crossover and mutation.

32252124

(a)
Initial Population

(b)
Fitness Function

(c)
Selection

(d)
Cross−Over

(e)
Mutation

24748552

32752411

24415124

24

23

20

32543213 11

29%

31%

26%

14%

32752411

24748552

32752411

24415124

32748552

24752411

32752124

24415411

24752411

32748152

24415417

CS:4420 Spring 2018 – p.18/27

Possible Encodings

Character strings 0101 · · · 1100

Sequences of real numbers (43.2 -33.1 · · · 0.0 89.2)

Tuples of elements (E11 E3 E7 · · · E1 E15)

Lists of rules (R1 R2 R3 · · · R22 R23)

Program elements (genetic programming)

. . .

CS:4420 Spring 2018 – p.19/27

Encodings for Genetic Algorithms

Choosing the right encoding of state configurations to strings is
crucial.

Crossover helps only if substrings are meaningful components that can
be reassembled into a new meaningful configuration.

+ =

Note: GAs are not evolution: e.g., real genes encode replication
machinery!

CS:4420 Spring 2018 – p.20/27

Problem Encoding

Problem: Find location that is closest to several given cities

Population encoding: Express location l as a 16-bit string

l = 1001010101011100

with the first 8 bits representing the location’s X-coordinate
and the second 8 bits representing the Y-coordinate

Fitness function: Median distance of location from each city

Combination: Crossover of X-coordinate from one parent and
Y-coordinate from the other

Mutation: one or more bit flips

CS:4420 Spring 2018 – p.21/27

Problem Encoding

Problem: Finding the max value of some function f : [0, 1)n → R

Population encoding: Vectors of size n with elements from [0, 1)

Combination: Various options

Mutation: randomly replace a value in the vector with one from [0, 1)

CS:4420 Spring 2018 – p.22/27

Discrete Recombination

Similar to crossover

Equal probability of receiving each parameter from either parent

Example:

(8, 12, 31, ... , 5) (2, 5, 23, ... , 14)

⇓

(2, 12, 31, ... , 14)

CS:4420 Spring 2018 – p.23/27

Intermediate Recombination

Each child component is the average of the corresponding parent
components

Example:

(8, 12, 31, ... , 5) (2, 5, 23, ... , 14)

⇓

(5, 8.5, 27, ... , 9.5)

CS:4420 Spring 2018 – p.24/27

GA for the Traveling Salesperson Probl.

Problem: Find a tour of a given set of cities so that

each city is visited only once and

total traveled is minimal

Representation: An ordered list of city numbers

(known as order-based GA)

1) London 3) Iowa City 5) Beijing 7) Tokyo

2) Venice 4) Singapore 6) Phoenix 8) Victoria

Ex.,

CityList1 (3 5 7 2 1 6 4 8)

CityList2 (2 5 7 6 8 1 3 4)

CS:4420 Spring 2018 – p.25/27

GA for the Traveling Salesperson Probl.

Combination: Order 1 crossover (combines inversion and
recombination):

1. Copy a randomly selected portion of Parent 1 to Child

2. Fill the blanks in Child with those numbers in Parent 2 from left
to right, avoiding duplicates in Child

Parent 1 (3 5 7 2 1 6 4 8)

Parent 2 (2 5 7 6 8 1 3 4)

Child (5 8 7 2 1 6 3 4)

CS:4420 Spring 2018 – p.26/27

GA for the Traveling Salesperson Probl.

Mutation: swap two numbers in the list

Before: (5 8 7 2 1 6 3 4)

After: (5 8 6 2 1 7 3 4)

CS:4420 Spring 2018 – p.27/27

	Readings
	Beyond Classical Search
	Iterative Improvement Methods
	Local Search: The Landscape Metaphor
	Local Search Example: TSP
	Local Search Example: n-queens
	Hill-Climbing Search
	Hill-Climbing: Shortcomings
	Hill Climbing: Improvements
	Simulated Annealing Search
	Simulated Annealing Algorithm
	Properties of Simulated Annealing
	Local Beam Search
	Genetic Algorithms
	The Basic Genetic Algorithm
	Improving fitness
	Genetic Algorithms: Classic Approach
	Possible Encodings
	Encodings for Genetic Algorithms
	Problem Encoding
	Problem Encoding
	Discrete Recombination
	Intermediate Recombination
	GA for the Traveling Salesperson Probl.
	GA for the Traveling Salesperson Probl.
	GA for the Traveling Salesperson Probl.

