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Readings

• Chap. 3 of [Russell and Norvig, 2012]
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Review: Tree Search

function Tree-Search( problem, fringe) returns a solution, or failure

fringe← Insert(Make-Node(Initial-State[problem]), fringe)

loop do

if fringe is empty then return failure

node←Remove-Front(fringe)

if Goal-Test[problem] applied to State(node) succeeds return node

fringe← InsertAll(Expand(node,problem), fringe)

A strategy is defined by a particular node expansion order
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Informed Search Strategies

Uninformed search strategies look for solutions by systematically
generating new states and checking each of them against the goal

This approach is very inefficient in most cases

Most successor states are“obviously”a bad choice

Such strategies do not know that because they have minimal
problem-specific knowledge

Informed search strategies exploit problem-specific knowledge as much
as possible to drive the search

They are almost always more efficient than uninformed searches and
often also optimal
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Informed Search Strategies

Main Idea

• Use the knowledge of the problem domain to build an evaluation
function f

• For every node n in the search space, f(n) quantifies the
desirability of expanding n in order to reach the goal

• Then use the desirability value of the nodes in the fringe to
decide which node to expand next
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Informed Search Strategies

The evaluation function f is typically an imperfect measure of the
goodness of the node

I.e., the right choice of nodes is not always the one suggested by f
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Informed Search Strategies

The evaluation function f is typically an imperfect measure of the
goodness of the node

I.e., the right choice of nodes is not always the one suggested by f

Note: It is possible to build a perfect evaluation function, which will
always suggest the right choice

How? Why don’t we use perfect evaluation functions then?
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Standard Assumptions on Search Spaces

• The cost of a node increases with the node’s depth

• Transitions costs are non-negative and bounded below, i.e., there
is a ǫ > 0 such that the cost of each transition is ≥ ǫ

• Each node has only finitely-many successors

Note: There are problems that do not satisfy one or more of these
assumptions
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Best-First Search

Idea: use an evaluation function estimating the desirability of each
node

Strategy: Always expand the most desirable unexpanded node

Implementation: the fringe is a priority queue sorted in decreasing
order of desirability

Special cases:

• greedy search

• A* search
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Best-First Search

Idea: use an evaluation function estimating the desirability of each
node

Strategy: Always expand the most desirable unexpanded node

Implementation: the fringe is a priority queue sorted in decreasing
order of desirability

Special cases:

• greedy search

• A* search

Note: Since f is only an approximation,“Best-First” is a misnomer.
Each time we choose the node at that point appears to be the best
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Best-first Search Strategies

Best-first is a family of search strategies, each with a different
evaluation function

Typically, strategies use estimates of the cost of reaching the goal and
try to minimize it

Uniform Search also tries to minimize a cost measure. Is it then a
best-first search strategy?
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Best-first Search Strategies

Best-first is a family of search strategies, each with a different
evaluation function

Typically, strategies use estimates of the cost of reaching the goal and
try to minimize it

Uniform Search also tries to minimize a cost measure. Is it then a
best-first search strategy?

Not in spirit, because the evaluation function should incorporate a
cost estimate of going from the current state to the closest goal state
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Romania with Step Costs in Km
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Greedy Best-First Search

Evaluation function h(n) (heuristics)

= estimate cost of cheapest path

from node n to closest goal

E.g., hSLD(n) = straight-line distance from n to Bucharest

Greedy search expands the node that appears to be closest to goal
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Greedy Search Example

Arad

366
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Greedy Search Example

Zerind

Arad

Sibiu Timisoara

253 329 374
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Greedy Search Example

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

329 374

366 176 380 193
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Greedy Search Example

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Sibiu Bucharest

329 374

366 380 193

253 0
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Properties of Greedy Best-First Search

Complete?

Time complexity?

Space complexity?

Optimal?
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Properties of Greedy Best-First Search

Complete? Only in finite spaces with repeated-state checking

Otherwise, can get stuck in loops:

Iasi → Neamt → Iasi → Neamt →

Time complexity?

Space complexity?

Optimal?
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Properties of Greedy Best-First Search

Complete? Only in finite spaces with repeated-state checking

Otherwise, can get stuck in loops:

Iasi → Neamt → Iasi → Neamt →

Time complexity? O(bm) — may have to expand all nodes

Space complexity?

Optimal?
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Properties of Greedy Best-First Search

Complete? Only in finite spaces with repeated-state checking

Otherwise, can get stuck in loops:

Iasi → Neamt → Iasi → Neamt →

Time complexity? O(bm) — may have to expand all nodes

Space complexity? O(bm) — may have to keep most nodes

in memory

Optimal?
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Properties of Greedy Best-First Search

Complete? Only in finite spaces with repeated-state checking

Otherwise, can get stuck in loops:

Iasi → Neamt → Iasi → Neamt →

Time complexity? O(bm) — may have to expand all nodes

Space complexity? O(bm) — may have to keep most nodes

in memory

Optimal? No
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Properties of Greedy Best-First Search

Complete? Only in finite spaces with repeated-state checking

Otherwise, can get stuck in loops:

Iasi → Neamt → Iasi → Neamt →

Time complexity? O(bm) — may have to expand all nodes

Space complexity? O(bm) — may have to keep most nodes

in memory

Optimal? No

A good heuristic can nonetheless produce dramatic time/space
improvements in practice
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A* — A Better Best-First Strategy

Greedy Best-first search

• minimizes estimated cost h(n) from current node n to goal

• is informed but almost always suboptimal and incomplete

Uniform cost search

• minimizes actual cost g(n) to current node n

• is, in most cases, optimal and complete but uninformed

A* search

• combines the two by minimizing f(n) = g(n) + h(n)

• is, under reasonable assumptions, optimal and complete, and
also informed
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A* Search

Idea: avoid expanding paths that are already expensive

Evaluation function: f(n) = g(n) + h(n)

g(n) = cost so far to reach n

h(n) = estimated cost to goal from n

f(n) = estimated total cost of path through n to goal

A* search should use an admissible heuristic:

for all n, h(n) ≤ h∗(n) where h∗(n) is the true cost from n

E.g., hSLD(n) never overestimates the actual road distance
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A* Search Example

Arad

366=0+366
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A* Search Example

Zerind

Arad

Sibiu Timisoara

447=118+329 449=75+374393=140+253
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A* Search Example

Zerind

Arad

Sibiu

Arad

Timisoara

Rimnicu VilceaFagaras Oradea

447=118+329 449=75+374

646=280+366 413=220+193415=239+176 671=291+380
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A* Search Example

Zerind

Arad

Sibiu

Arad

Timisoara

Fagaras Oradea

447=118+329 449=75+374

646=280+366 415=239+176

Rimnicu Vilcea

Craiova Pitesti Sibiu

526=366+160 553=300+253417=317+100

671=291+380
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A* Search Example

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Rimnicu VilceaFagaras Oradea

Craiova Pitesti Sibiu

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253417=317+100

671=291+380
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A* Search Example

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Rimnicu VilceaFagaras Oradea

Craiova Pitesti Sibiu

Bucharest Craiova Rimnicu Vilcea

418=418+0

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253

615=455+160 607=414+193

671=291+380
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A* Search: Why an Admissible Heuristic

If h is admissible, f(n) never overestimates the actual cost of the best
solution through n

Overestimates are dangerous

S

(or maybe after a long time)
The optimal path is never found!

40
G

42 3

3 0

real cost = 15

4

5
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Consistent heuristics

A heuristic is consistent if

h(n) ≤ c(n, a, n′) + h(n′)

If f is consistent, we have

f(n′) = g(n′) + h(n′)

= g(n) + c(n, a, n′) + h(n′)

≥ g(n) + h(n)

= f(n)

I.e., f(n) is nondecreasing along any path

n

c(n,a,n’)

h(n’)

h(n)

G

n’
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Consistent heuristics

A heuristic is consistent if

h(n) ≤ c(n, a, n′) + h(n′)

If f is consistent, we have

f(n′) = g(n′) + h(n′)

= g(n) + c(n, a, n′) + h(n′)

≥ g(n) + h(n)

= f(n)

I.e., f(n) is nondecreasing along any path

n

c(n,a,n’)

h(n’)

h(n)

G

n’

Note:

• Consistent ⇒ admissible

• Most admissible heuristics are also consistent
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A* Search

Let h be any admissible heuristic function

Theorem: A* search using h is optimal

Proof is easier under the stronger assumption that h is consistent
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A* Search

Let h be any admissible heuristic function

Theorem: A* search using h is optimal

Proof is easier under the stronger assumption that h is consistent

A* expands all nodes with f(n) < C∗ = cost of optimal goal

A* expands some nodes with f(n) = C∗

A* expands no nodes with f(n) > C∗
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A* Search

Let h be any admissible heuristic function

Theorem: A* search using h is optimal

Proof is easier under the stronger assumption that h is consistent

A* expands all nodes with f(n) < C∗ = cost of optimal goal

A* expands some nodes with f(n) = C∗

A* expands no nodes with f(n) > C∗

Theorem: A* is optimally efficient for h: no other optimal strategy
using h expands fewer nodes than A*
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Optimality of A*: Basic Argument

Suppose some suboptimal goal G2 has been generated and is in the
queue. Let n be an unexpanded node on a least-cost path to an
optimal goal G

G

n

G2

Start

f(G2) = g(G2) since h(G2) = 0

> g(G) since G2 is suboptimal

≥ f(n) since h is admissible

Since f(G2) > f(n), A* will never select G2 for expansion
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Optimality of A* (more useful)

Lemma: A* expands nodes in order of increasing f -value

It gradually adds“f -contours”of nodes (cf. breadth-first adds layers)

Contour i has all nodes with f = fi, where fi < fi+1

O
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B
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N

380

400

420
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Properties of A*

Complete?

Time complexity?

Space complexity?

Optimal?
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Properties of A*

Complete? Yes, unless there are infinitely many nodes n with
f(n) ≤ f(G)

Time complexity?

Space complexity?

Optimal?
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Properties of A*

Complete? Yes, unless there are infinitely many nodes n with
f(n) ≤ f(G)

Time complexity? O(bǫd) where

ǫ = |h(n0)− h∗(n0)|

n0 = start state

h∗ = actual cost to goal state

Space complexity?

Optimal?
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Properties of A*

Complete? Yes, unless there are infinitely many nodes n with
f(n) ≤ f(G)

Time complexity? O(bǫd) where

ǫ = |h(n0)− h∗(n0)|

n0 = start state

h∗ = actual cost to goal state

Subexponential only in uncommon case where ǫ ≤ O(log h∗(n0))

Space complexity?

Optimal?
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Properties of A*

Complete? Yes, unless there are infinitely many nodes n with
f(n) ≤ f(G)

Time complexity? O(bǫd) where

ǫ = |h(n0)− h∗(n0)|

n0 = start state

h∗ = actual cost to goal state

Subexponential only in uncommon case where ǫ ≤ O(log h∗(n0))

Space complexity? O(bm), as in Greedy Best-First — may end up with all

nodes in memory

Optimal?
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Properties of A*

Complete? Yes, unless there are infinitely many nodes n with
f(n) ≤ f(G)

Time complexity? O(bǫd) where

ǫ = |h(n0)− h∗(n0)|

n0 = start state

h∗ = actual cost to goal state

Subexponential only in uncommon case where ǫ ≤ O(log h∗(n0))

Space complexity? O(bm), as in Greedy Best-First — may end up with all

nodes in memory

Optimal? Yes if h is admissible (and standard assumptions hold) — cannot

expand fi+1 until fi is finished
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Beyond A*

A* generally runs out of memory before it runs out of time

Other best-first strategies keep the good properties on A*
while trying to reduce memory consumption:

• Recursive Best-First search (RBFS)

• Iterative Deepening A* (IDA*)

• Memory-bounded A* (MA*)

• Simple Memory-bounded A* (SMA*)
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Admissible Heuristics

A* search is optimal with an admissible heuristic function h

How do we devise good heuristic functions for a given problem?

Typically, that depends on the problem domain

However, there are some general techniques that work reasonably well
across several domains
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Examples of Admissible Heuristics

8-puzzle problem:

• h1(n) = number of tiles in the wrong position at state n

• h2(n) = sum of the Manhattan distances of each tile from its
goal position

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

• h1(Start) =

• h2(Start) =
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Examples of Admissible Heuristics

8-puzzle problem:

• h1(n) = number of tiles in the wrong position at state n

• h2(n) = sum of the Manhattan distances of each tile from its
goal position

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

• h1(Start) = 7

• h2(Start) =
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Examples of Admissible Heuristics

8-puzzle problem:

• h1(n) = number of tiles in the wrong position at state n

• h2(n) = sum of the Manhattan distances of each tile from its
goal position

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

• h1(Start) = 7

• h2(Start) = 4+0+3+3+1+0+2+1 = 14
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Dominance

A heuristic function h2 dominates a heuristic function h1 for a
problem P if h2(n) ≥ h1(n) for all nodes n in P ’s space

Ex.: the 8-puzzle

h2 = total Manhattan distance dominates
h1 = number of misplaced tiles

With A*, if h2 is admissible and dominates h1, then it is always better
for search: A* will never expand more nodes with h2 than with h1

What if neither of h1, h2 dominates the other?
If both h1, h2 are admissible, use h(n) = max(h1(n), h2(n))
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Effectiveness of Heuristic Functions

Let

• h be a heuristic function h for A*
• N the total number of nodes expanded by one A* search with h
• d the depth of the found solution

The effective branching Factor (EBF) of h is the value b∗ that solves
the equation

xd + xd−1 + · · ·+ x2 + x+ 1−N = 0

(the branching factor of a uniform tree with N nodes and depth d)

A heuristics h for A* is effective in practice if its average EBF is close
to 1

Note: If h2 dominates h2, then EFB(h2) ≤ EFB(h1)
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Dominance and EFB: The 8-puzzle

Search Cost Effective Branching Factor

d IDS A*( h1) A*( h2) IDS A*( h1) A*( h2)

2 10 6 6 2.45 1.79 1.79
4 112 13 12 2.87 1.48 1.45
6 680 20 18 2.73 1.34 1.30
8 6384 39 25 2.80 1.33 1.24

10 47127 93 39 2.79 1.38 1.22
12 364404 227 73 2.78 1.42 1.24
14 3473941 539 113 2.83 1.44 1.23
16 – 1301 211 – 1.45 1.25
18 – 3056 363 – 1.46 1.26
20 – 7276 676 – 1.47 1.27
22 – 18094 1219 – 1.48 1.28
24 – 39135 1641 – 1.48 1.26

Average values over 1200 random instances of the problem

• d — depth of solution
• Search cost — # of expanded nodes
• IDS — iterative deepening search
• h1 — number of misplaces tiles
• h2 — total Manhattan distance
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Devising Heuristic Functions

A relaxed problem is a version of a search problem with less
restrictions on the applicability of the next-state operators

Example: n-puzzle

• original: “A tile can move from position p to position q if p is
adjacent to q and q is empty”

• relaxed-1: “A tile can move from p to q if p is adjacent to q”
• relaxed-2: “A tile can move from p to q if q is empty”
• relaxed-3: “A tile can move from p to q”

The exact solution cost of a relaxed problem is often a good
(admissible) heuristics for the original problem

Key point: the optimal solution cost of the relaxed problem is no
greater than the optimal solution cost of the original problem
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Relaxed Problems: Another Example

Traveling salesperson problem

Original problem: Find the shortest tour visiting n cities exactly once

Complexity: NP-complete

Relaxed problem: Find a tree with the smallest cost that connects the
n cities (minimum spanning tree)

Complexity: O(n2)

Cost of tree is a lower bound on the shortest (open) tour
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Devising Heuristic Functions Automatically

• Relaxation of formally described problems

• Pattern databases

• Learning
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