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Readings

• Chap. 14 of [Russell and Norvig, 2012]
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Making Probabilistic Reasoning Feasible

Recall:

• A joint probability distribution (JPD) contains all the relevant
information to reason about the various kinds of probabilities of
a set {X1, . . . ,Xn} of random variables.

• Unfortunately, JPD tables are difficult to create and also very
expensive to store.

• One possibility is to work with conditional probabilities and
exploit the fact that many random variables are conditionally
independent.

• Belief Networks are a successful example of probabilistic systems
that exploit conditional independence to reason effectively under
uncertainty.
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Review of Basic Concepts

The JPD is a collection of probabilities:

P(X1, . . . ,Xn) = {P (X1 = x1 ∧ · · · ∧Xn = xn) | xi ∈ Domain(Xi)}

Conditional Probability:

P (X1 = x1 | X2 = x2) = P (X1=x1∧X2=x2)
P (X2=x2)

or

P (X1 = x1 ∧X2 = x2) = P (X1 = x1 | X2 = x2)P (X2 = x2)
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Review of Basic Concepts (2)

Chain rule:

P (X1 = x1 | X2 = x2, ...,Xn = xn) = P (X1=x1∧X2=x2∧···∧Xn=xn)
P (X2=x2∧···∧Xn=xn)

or

P (X1 = x1 ∧X2 = x2 ∧ · · · ∧Xn = xn)

= P (X1 = x1 | X2 = x2, ...,Xn = xn)P (X2 = x2 ∧ · · · ∧Xn = xn)

=
∏n

i=1 P (Xi = xi | Xi+1 = xi+1, ...,Xn = xn)

Conditional Independence:
If

P (X1 = x1 | X2 = x2, ...,Xn = xn) =

P (X1 = x1 | X2 = x2, ...,Xn−1 = xn−1)

then X1 = x1 is conditionally independent from Xn = xn
given the evidence X2 = x2, ...,Xn−1 = xn−1
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A Belief Network

Alarm

Earthquake

MaryCallsJohnCalls

Burglary
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Belief Networks

Let X1, . . . ,Xn be discrete random variables.

A belief network (or Bayesian network) for X1, . . . ,Xn is a graph with
m nodes such that

• there is a node for each Xi

• all the edges between two nodes are directed

• there are no cycles

• each node has a conditional probability table (CPT), given in
terms of its parents

The intuitive meaning of an edge from a node Xi to a node Xj is that
Xi has a direct influence on Xj
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Network Semantics

The topology of the network encodes conditional independence
assertions

Example:

Weather Cavity

Toothache Catch

• Weather is independent from the other variables

• Toothache and Catch are conditionally independent given
Cavity
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Conditional Probability Tables

Each node Xi in a belief network has an associated CPT expressing
the probability of Xi, given its parents as evidence

Example:

CPT for Alarm:

Alarm

Burglary Earthquake T F

T T 0.950 0.050

T F 0.940 0.060

F T 0.290 0.710

F F 0.001 0.999

P (alarm | burglary ∧ earthquake) = 0.950

P (¬alarm | ¬burglary ∧ earthquake) = 0.710

. . .
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A Belief Network with CPTs

B

T
T
F
F

E

T
F
T
F

P(A)

.95

.29

.001

.001

P(B)
.002

P(E)

Alarm

Earthquake

MaryCallsJohnCalls

Burglary

A P(J)

T
F

.90

.05

A P(M)

T
F

.70

.01

.94

Note: The tables only show P (X = true) here because
P (X = false) = 1− P (X = true)

CS:4420 Spring 2018 – p.10/60



The Semantics of Belief Networks

There are two equivalent ways to interpret a belief network for the
variables X1, . . . ,Xn:

1. The network is a representation of the JPD P(X1, . . . ,Xn)

2. The network is a collection of conditional independence
statements about X1, . . . ,Xn

Interpretation 1 is helpful when constructing belief networks

Interpretation 2 is helpful in designing inference procedures based on
them
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Belief Network as JPDs

The whole JPD P(X1, . . . ,Xn) can be computed from a belief
network for X1, . . . ,Xn and its CPTs

For each tuple 〈x1, . . . , xn〉 of possible values for 〈X1, . . . ,Xn〉,

P (X1 = x1 ∧ · · · ∧Xn = xn) =

n∏

i=1

P (Xi = xi | Parents(Xi))

where

Parents(Xi) = {Xj = xj | 1 ≤ j ≤ n and Xj is a parent of Xi}
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Belief Network as JPDs

P (X1 = x1 ∧ · · · ∧Xn = xn) =
∏n

i=1 P (Xi = xi | Parents(Xi))

B

T
T
F
F

E

T
F
T
F

P(A)

.95

.29

.001

.001

P(B)
.002

P(E)

Alarm

Earthquake

MaryCallsJohnCalls

Burglary

A P(J)

T
F

.90

.05

A P(M)

T
F

.70

.01

.94

P (j ∧m ∧ a ∧ ¬b ∧ ¬e)

= P (j | a) P (m | a) P (a | ¬b ∧ ¬e) P (¬b) P (¬e)

= 0.9× 0.7× 0.001× 0.999× 0.998 = 0.00062
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Belief Networks and Cond. Independence

Let {X1,X2, . . . ,Xn} be any set of nodes in the network such that

• all the parents of X1 are in {X2, . . . ,Xn}

• no node in {X2, . . . ,Xn} is a descendant of X1

Let 〈x1, . . . , xn〉 be a value assignment for 〈X1, . . . ,Xn〉

From the equation

P (X1 = x1 ∧ · · · ∧Xn = xn) =

n∏

i=1

P (Xi = xi | Parents(Xi))

we can show that

P (X1 = x1 | X2 = x2∧· · ·∧Xn = xn) = P (X1 = x1 | Parents(X1))
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Belief Networks and Cond. Independence

A consequence of the last equation is:

Given all its parents as evidence, each node in the network
is conditionally independent from its non-descendants

. . .

. . .U1

X

Um

Yn

Znj

Y1

Z1j
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Belief Networks and Cond. Independence

Another consequence is:

Given all its parents, children, and children’s parents as
evidence, each node in the network is conditionally
independent from all the other nodes

. . .

. . .U1

X

Um

Yn

Znj

Y1

Z1j
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Belief Networks and Cond. Independence

P (X1 = x1 | X2 = x2∧· · ·∧Xn = xn) = P (X1 = x1 | Parents(X1))

Examples:

P (b | e) = P (b)

P (j | m ∧ a) = P (j | a)

P (j | a ∧ e) = P (j | a)

P (j | a ∧ b ∧ e) = P (j | a)

P (j | m ∧ a ∧ b ∧ e) = P (j | a)

Alarm

Earthquake

MaryCallsJohnCalls

Burglary

Exercise: Find all the conditional independences holding in this
network
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Constructing Belief Networks

General Procedure

1. Identify a set of random variables {Xi}i that describe the domain

2. Choose an ordering X1, . . . ,Xn of the variables

3. Start with an empty network

4. For i = 1 . . . n:

(a) add Xi to the network

(b) select as parents of Xi nodes from X1, . . . ,Xi−1 such that
P(Xi | Parents(Xi)) = P(Xi | X1, . . . , Xi−1)

(c) fill in the CPT for Xi
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Constructing Belief Networks

General Procedure

1. Identify a set of random variables {Xi}i that describe the domain

2. Choose an ordering X1, . . . ,Xn of the variables

3. Start with an empty network

4. For i = 1 . . . n:

(a) add Xi to the network

(b) select as parents of Xi nodes from X1, . . . ,Xi−1 such that
P(Xi | Parents(Xi)) = P(Xi | X1, . . . , Xi−1)

(c) fill in the CPT for Xi

This choice of parents guarantees the network semantics:

P(X1, . . . ,Xn) =
∏n

i=1P(Xi | X1, . . . , Xi−1) (chain rule)

=
∏n

i=1P(Xi | Parents(Xi)) (by construction)
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Example

Suppose we choose the ordering MaryCalls, JohnCalls, Alarm,
Burglary, Earthquake

MaryCalls

JohnCalls

P (j | m) = P (j)?
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Example

Suppose we choose the ordering MaryCalls, JohnCalls, Alarm,
Burglary, Earthquake

MaryCalls

Alarm

JohnCalls

P (j | m) = P (j)? No
P (a | j,m) = P (a | j)?
P (a | j,m) = P (a)?
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Example

Suppose we choose the ordering MaryCalls, JohnCalls, Alarm,
Burglary, Earthquake

MaryCalls

Alarm

Burglary

JohnCalls

P (j | m) = P (j)? No
P (a | j,m) = P (a | j)? No
P (a | j,m) = P (a)? No
P (b | a, j,m) = P (b | a)?
P (b | a, j,m) = P (b)?
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Example

Suppose we choose the ordering MaryCalls, JohnCalls, Alarm,
Burglary, Earthquake

MaryCalls

Alarm

Burglary

Earthquake

JohnCalls

P (j | m) = P (j)? No
P (a | j,m) = P (a | j)? No
P (a | j,m) = P (a)? No
P (b | a, j,m) = P (b | a)? Yes
P (b | a, j,m) = P (b)? No
P (e | b, a, j,m) = P (e | a)?
P (e | b, a, j,m) = P (e | a, b)?
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Example

Suppose we choose the ordering MaryCalls, JohnCalls, Alarm,
Burglary, Earthquake

MaryCalls

Alarm

Burglary

Earthquake

JohnCalls

P (j | m) = P (j)? No
P (a | j,m) = P (a | j)? No
P (a | j,m) = P (a)? No
P (b | a, j,m) = P (b | a)? Yes
P (b | a, j,m) = P (b)? No
P (e | b, a, j,m) = P (e | a)? No
P (e | b, a, j,m) = P (e | a, b)? Yes

CS:4420 Spring 2018 – p.19/60



Example contd.

MaryCalls

Alarm

Burglary

Earthquake

JohnCalls

Deciding conditional independence is hard in non-causal directions

Causal models and conditional independence seem hardwired for
humans!

Assessing conditional probabilities is hard in non-causal directions

Network is less compact: 1 + 2 + 4 + 2 + 4=13 probabilities needed
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Ordering the Variables

The order in which add the variables to the network is important

JohnCalls

MaryCalls

Alarm

Burglary

Earthquake

MaryCalls

Alarm

Earthquake

Burglary

JohnCalls

“Wrong”orderings produces more complex networks
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Ordering the Variables Right

A general, effective heuristic for constructing simpler belief networks is
to exploit causal links between random variables whenever possible

This is done by adding variables to the network so that causes get
added before effects

Alarm

Earthquake

MaryCallsJohnCalls

Burglary
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Example: Car diagnosis

Initial evidence: car won’t start

lights

no oil no gas starter
broken

battery age alternator
  broken

fanbelt
broken

battery
  dead no charging

battery
    flat

gas gauge

fuel line
blocked

oil light

battery
 meter

car won’t
    start dipstick

Testable variables (green), actionable variables (orange)
Hidden variables (gray) ensure sparse structure, reduce parameters
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Example: Car insurance

SocioEcon
Age

GoodStudent

ExtraCar
Mileage

VehicleYear
RiskAversion

SeniorTrain

DrivingSkill MakeModel

DrivingHist

DrivQuality
Antilock

Airbag CarValue HomeBase AntiTheft

Theft
OwnDamage

PropertyCostLiabilityCostMedicalCost

Cushioning

Ruggedness Accident

OtherCost OwnCost
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Compactness of Belief Networks

A belief network is a complete and non-redundant representation of a
full joint probability distribution

In addition, its is typically more compact than a full joint probability
table

The reason is that probabilistic domains are often representable as a
locally structured system

In a locally structured system, each subcomponent interacts with only
a bounded number of other components, regardless of the size of the
system

The complexity of local structures generally grows linearly, instead of
exponentially
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Locally Structured Systems

In many real-world domains, each random variable is influenced by at
most k others, for some fixed constant k

With n variables, all Boolean, a JPT will have 2n entries

In a well constructed belief network, each node will have at most k
parents

Hence each node will have a CPT with at most 2k entries, for a total
of n2k entries.

Example: n = 20, k = 5

entries in network CPTs ≤ 20× 25 = 640

entries in JPT = 220 = 1, 048, 576
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Representing CPTs

Even with a fairly small number of parents per node, constructing the
CPTs for a belief network may require a lot a work

However, if the network is built with the right topology, the
relationship between parent and children nodes will typically fall into a
category with some canonical distribution

Examples:

• Deterministic nodes

• Noisy-OR relationships
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Deterministic Nodes

A node is deterministic if its value is a function of the values of its
parents, with no uncertainty

• Logical implications or equivalences:

NorthAmerican⇔ Canadian ∨ US ∨Mexican

Canadian

NorthAmerican

US Mexican

P (n | ¬c ∧ ¬u ∧ ¬m) = 0

P (n | u) = P (n | c ∧ u) = . . . = P (n | u ∧ ¬m)
= P (n | c ∧ ¬u ∧ ¬m) = . . . = 1
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Deterministic Nodes (cont.)

• Functional relationships:

CoupleIncome = WifeIncome + HusbandIncome

CoupleIncome

HusbandIncomeWifeIncome

P (C = 80K | H = 50K ∧W = 30K) = 1

P (C = 95K | H = 50K ∧W = 30K) = 0

CS:4420 Spring 2018 – p.29/60



Noisy-OR

A generalization of logical OR. Adds uncertainty to statements like

Fever ⇔ Cold ∨ Flu ∨Malaria

Three assumptions are needed:

1. Each cause has an independent chance of producing the effect

2. All possible causes are listed

3. The reason for a cause not to produce the effect is independent
from the reason for another cause not to produce the effect:

P (¬Effect | Causei ∧OtherCauses)

= P (¬Effect | Causei) P (¬Effect | OtherCauses)

The possibility that a cause does not produce an effect is given by a
noise-parameter
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CPTs for Noisy-ORs

Knowing the noise parameters (in boldface below) is enough to
compute the whole CTP

CTP of Fever:

Cold F lu Malaria P (Fever) P (¬Fever)

F F F 0.00 1.00

F F T 0.90 0.10

F T F 0.80 0.20

F T T 0.98 0.02 = 0.2× 0.1

T F F 0.40 0.60

T F T 0.94 0.06 = 0.6× 0.1

T T F 0.88 0.12 = 0.6× 0.2

T T T 0.988 0.012 = 0.6× 0.2× 0.1

A noisy-OR with k causes can be specified with k values, the noise

parameters, instead of the 2k values of a full CPT
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Inference in Belief Networks

Main task of a belief network: Compute the conditional probability of
a set of query variables, given exact values for some evidence variables

P (Query | Evidence)

Belief networks are flexible enough so that any node can serve as
either a query or an evidence variable

In general, to decide what actions to take, an agent

1. first gets values for some variables from its percepts, or from its
own reasoning

2. then asks the network about the possible values of the other
variables
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Probabilistic Inference with BNs

Belief networks are a very flexible tool for probabilistic inference
because they allow several kinds of inference:

Diagnostic inference (from effects to causes)

E.g. P (Burglary | JohnCalls)

Causal inference (from causes to effects)

E.g. P (JohnCalls | Burglary)

Intercausal inference (between causes of a common effect)

P (Burglary | Alarm ∧Earthquake)

Mixed inference (combination of the above)

P (Alarm | JohnCalls ∧ ¬Earthquake)
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Types of Inference in Belief Networks

Diagnostic Causal MixedIntercausal
(Explaining Away)

E

QE

Q Q E

Q

E

E

Q = query variable

E = evidence variable
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Inference tasks

Simple queries: compute posterior marginal P(Xi | E= e)

E.g., P (NoGas | Gauge= empty, Lights= on, Starts= false)

Conjunctive queries:

P(Xi,Xj | E= e) = P(Xi | E= e)P(Xj | Xi,E= e)

Optimal decisions: decision networks include utility information;
probabilistic inference required for P (outcome | action, evidence)

Value of information: which evidence to seek next?

Sensitivity analysis: which probability values are most critical?

Explanation: why do I need a new starter motor?
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Inference by enumeration

Slightly intelligent way to sum out variables from the joint without
actually constructing its explicit representation

Simple query on the burglary network: B E

J

A

M

P(B | j,m)

= P(B, j,m)/P (j,m)

= αP(B, j,m)

= α
∑

e

∑

a P(B, e, a, j,m)

Rewrite full joint entries using product of CPT entries:

P(B | j,m)
= α

∑

e

∑

a P(B)P (e)P(a | B, e)P (j | a)P (m | a)

= αP(B)
∑

e P (e)
∑

a P(a | B, e)P (j | a)P (m | a)

Recursive depth-first enumeration: O(n) space, O(dn) time
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Enumeration algorithm

function Enumeration-Ask(X,e, bn) returns a distribution over X

inputs: X, the query variable

e, observed values for variables E

bn, a Bayesian network with variables {X} ∪ E ∪ Y

Q(X )← a distribution over X, initially empty

for each value xi of X do

extend e with value xi for X

Q(xi)←Enumerate-All(Vars[bn],e)

return Normalize(Q(X))

function Enumerate-All(vars,e) returns a real number

if Empty?(vars) then return 1.0

Y←First(vars)

if Y has value y in e

then return P (y | Pa(Y )) × Enumerate-All(Rest(vars),e)

else return
∑

y P (y | Pa(Y )) × Enumerate-All(Rest(vars),ey)

where ey is e extended with Y = y
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Evaluation tree

αP(B)
∑

e
P (e)

∑

a
P(a | B, e)P (j | a)P (m | a)

P(j|a)
.90

P(m|a)
.70 .01

P(m|    a)

.05
P(j|    a) P(j|a)

.90

P(m|a)
.70 .01

P(m|    a)

.05
P(j|    a)

P(b)
.001

P(e)
.002

P(   e)
.998

P(a|b,e)
.95 .06

P(   a|b,   e)
.05
P(   a|b,e)

.94
P(a|b,   e)

Enumeration is inefficient: repeated computation. E.g., computes
P (j | a)P (m | a) for each value of e
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Inference by variable elimination

Variable elimination: carry out summations right-to-left,
storing intermediate results, factors, to avoid recomputation

Use matrix operations

P(B | j,m) = α
∑

e

∑

a P(B, e, a, j,m)

= αP(B)
︸ ︷︷ ︸

f1(B)

∑

e P (e)
︸︷︷︸

f2(E)

∑

aP(a | B, e)
︸ ︷︷ ︸

f3(A,B,E)

P (j | a)
︸ ︷︷ ︸

f4(A)

P (m | a)
︸ ︷︷ ︸

f5(A)

= α f1(B)×
∑

e f2(E)×
∑

a f3(A,B,E) × f4(A)× f5(A)

= α f1(B)×
∑

e f2(E)×
∑

a f3,4,5(A,B,E)

= α f1(B)×
∑

e f2(E)× f6(B,E)

= α f1(B)×
∑

e f2,6(B,E)

= α f1(B)× f7(B)

= α f1,7(B)
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Variable elimination: Basic operations

Summing out a variable from a product of factors:

1. move any constant factors outside the summation

2. add up submatrices in pointwise product of remaining factors

∑

x f1× · · · × fk = f1× · · · × fi
∑

x fi+1× · · · × fk

= f1× · · · × fi× fX̄

assuming f1, . . . , fi do not depend on X

Pointwise product of factors f1 and f2:

f1(x1, . . . , xj , y1, . . . , yk)× f2(y1, . . . , yk, z1, . . . , zl)

= f(x1, . . . , xj , y1, . . . , yk, z1, . . . , zl)

E.g., f1(A,B)× f2(B,C) = f(A,B,C)
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Pointwise Multiplication

A B f1(A,B) B C f2(B,C) A B C f3(A,B,C)

T T 0.3 T T 0.2 T T T 0.3× 0.2 = 0.06

T F 0.7 T F 0.8 T T F 0.3× 0.8 = 0.24

F T 0.9 F T 0.6 T F T 0.7× 0.6 = 0.42

F F 0.1 F F 0.4 T F F 0.7× 0.4 = 0.28

F T T 0.9× 0.2 = 0.18

F T F 0.9× 0.8 = 0.72

F F T 0.1× 0.6 = 0.06

F F F 0.1× 0.4 = 0.04
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Variable elimination algorithm

function Elimination-Ask(X,e, bn) returns a distribution over X

inputs: X, the query variable

e, evidence specified as an event

bn, a belief network specifying joint distribution P(X1, . . . , Xn)

factors← [ ]; vars←Reverse(Vars[bn])

for each var in vars do

factors← [Make-Factor(var ,e)|factors]

if var is a hidden variable then factors←Sum-Out(var, factors)

return Normalize(Pointwise-Product(factors))

Any ordering of the variables will do for correctness

Following topological order over BN is usually most efficient (although
finding optimal ordering is NP-hard)
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Irrelevant variables

B E

J

A

M

Consider the query P(JohnCalls | Burglary= true)

P(J | b) = αP (b)
∑

e

P (e)
∑

a

P (a | b, e)P(J | a)
∑

m

P (m | a)

Sum over m is identically 1; Mary is irrelevant to the query

Thm 1: Y is irrelevant unless Y ∈Ancestors({X}∪E)

Here, X = J , E= {B}, and Ancestors({X}∪E) = {A,B,E}
so M is irrelevant
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Irrelevant variables contd.

B E

J

A

M

The moral graph of a belief network is obtained by marrying all
parents of the same node and then ignoring edge directions

A set A of notes is m-separated from a set B by a set C iff it is
separated by C in the moral graph

Thm 2: Y is irrelevant if m-separated from X by E

For P (JohnCalls | Alarm= true), both Burglary and Earthquake
are irrelevant

CS:4420 Spring 2018 – p.44/60



Complexity of exact inference

Singly connected networks (or polytrees):

• any two nodes are connected by at most one (undirected) path

• time and space cost of variable elimination are O(dkn)

Multiply connected networks:

• can reduce 3SAT to exact inference =⇒ NP-hard

• equivalent to counting 3SAT models =⇒ #P-complete

A B C D

1 2 3

AND

0.5 0.50.50.5

LL

L
L

1.  A  v  B  v  C

2.  C  v  D  v    A

3.  B  v  C  v    D

P (AND) > 0 iff {1, 2, 3} is satisfiable
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Approximate inference in belief networks

Inference by stochastic simulation

Basic idea:

1. Draw N samples from a sampling distribution S

Coin

0.5

2. Compute an approximate posterior probability P̂

3. Show this converges to the true probability P
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Inference by stochastic simulation

Direct Sampling

• Basic sampling: sampling with no evidence

• Rejection sampling: reject samples disagreeing with evidence

• Likelihood weighting: use evidence to weight samples

Markov chain simulation

• Markov chain Monte Carlo (MCMC): sample from a stochastic
process whose stationary distribution is the true posterior
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Sampling with no evidence

function Prior-Sample(bn) returns an event sampled from bn

inputs: bn, a belief network specifying jpd P(X1, . . . , Xn)

x← an event with n elements

for i = 1 to n do

xi← a random sample from P(Xi | Parents(Xi))

return x
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Example
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Generated event:

c ∧ ¬s ∧ r ∧ w
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Sampling from an empty network contd.

Probability that PriorSample generates a particular event:

SPS(x1 . . . xn) =
∏n

i=1 P (xi | Parents(Xi)) = P (x1 . . . xn)

i.e., the true prior probability

E.g., SPS(t, f, t, t) = 0.5× 0.9× 0.8× 0.9 = 0.324 = P (t, f, t, t)

Let NPS(x1 . . . xn) be the number of times event x1, . . . , xn was
generated and N the total number of samples. Then,

lim
N→∞

P̂ (x1, . . . , xn) = lim
N→∞

NPS(x1, . . . , xn)/N

= SPS(x1, . . . , xn)

= P (x1 . . . xn)

That is, estimates derived from PriorSample are consistent

Shorthand: P̂ (x1, . . . , xn) ≈ P (x1 . . . xn)
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Rejection sampling (with evidence e)

P̂(X | e) estimated from samples agreeing with e

function Rej-Sampling(X,e, bn,N) returns an estimate of P (X |e)

local vars: N, a vector of counts over X, initially zero

for j = 1 to N do

x←Prior-Sample(bn)

if x is consistent with e then

N[x]←N[x]+1 where x is the value of X in x

return Normalize(N[X])

E.g., estimate P(Rain | Sprinkler= true) using 100 samples

27 samples have Sprinkler= true. Of these, 8 have Rain= true

P̂(Rain | Sprinkler= true) = Normalize(〈8, 19〉) = 〈0.296, 0.704〉

Similar to a basic real-world empirical estimation procedure
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Analysis of rejection sampling

P̂(X | e) = αNPS(X, e) (algorithm defn.)

= NPS(X, e)/NPS(e) (normalized by NPS(e))

≈ P(X, e)/P (e) (property of PriorSample)

= P(X | e) (defn. of conditional probability)

Hence rejection sampling returns consistent posterior estimates

Problem: hopelessly expensive if P (e) is small

P (e) drops off exponentially with number of evidence variables!
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Likelihood weighting (with evidence e)

Idea:

• fix evidence variables

• sample only non-evidence variables,

• weight each sample by the likelihood it accords the evidence
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Likelihood weighting example

Query: P(Rain | Sprinkler= true,WetGrass= true)
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Likelihood weighting example

Query: P(Rain | Sprinkler= true,WetGrass= true)
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weight = 1.0× 0.1× 0.99 = 0.099
event = c ∧ s ∧ r ∧ w
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Likelihood weighting (with evidence e)

function Likelyhood-W(X,e, bn,N) returns an estimate of P (X |e)

local vars: W, a vector of weighted counts over X, initially zero

for j = 1 to N do

x,w←Weighted-Sample(bn)

W[x ]←W[x ] + w where x is the value of X in x

return Normalize(W[X ])

function Weighted-Sample(bn,e) returns an event and a weight

x← an event with n elements; w← 1

for i = 1 to n do

if Xi has a value xi in e

then w←w × P (Xi= xi | Parents(Xi))

else xi← a random sample from P(Xi | Parents(Xi))

return x, w
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Likelihood weighting analysis

Sampling probability for Weighted-Sample is

SWS(z, e) =
∏l

i=1 P (zi | Parents(Zi))

Note: pays attention to evidence in ancestors only =⇒ somewhere
“in between”prior and posterior distribution

Weight for a given sample z, e is

w(z, e) =
∏m

i=1 P (ei | Parents(Ei))

Weighted sampling probability is

SWS(z, e)w(z, e)

=
∏l

i=1 P (zi | Parents(Zi))
∏m

i=1 P (ei | Parents(Ei))

= P (z, e) (by standard global semantics of network)

Hence likelihood weighting returns consistent estimates
but performance still degrades with many evidence variables
because a few samples have nearly all the total weight
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Approximate inference using MCMC

- “State”of network = current assignment to all of its variables
- Generate next state by sampling one var. given its Markov Blanket
- Sample each variable in turn, keeping evidence fixed

function GIBBS-Ask(X,e, bn,N) returns an estimate of P (X |e)

local vars: N, a vector of counts for each value of X, initially zero

Z, the nonevidence variables in bn

x, the current state of the network, initially copied from e

initialize x with random values for the variables in Z

for j = 1 to N do

for each Zi in Z do

set the value of Zi in x by sampling from P(Zi | MB(Zi))

N[x ]←N[x ] + 1 where x is the value of X in x

return Normalize(N)
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The Markov chain

With Sprinkler= true,WetGrass= true, there are four states:

Cloudy

RainSprinkler

 Wet
Grass

Cloudy

RainSprinkler

 Wet
Grass

Cloudy

RainSprinkler

 Wet
Grass

Cloudy

RainSprinkler

 Wet
Grass

Wander about for a while, average what you see
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Markov blanket sampling

Cloudy

RainSprinkler

 Wet
Grass

MB(Cloudy) = {Sprinkler,Rain}

MB(Rain) = {Cloudy, Sprinkler,WetGrass}

Probability given the Markov blanket is calculated as

P (xi | mb(Xi))
= αP (xi | Parents(Xi))

∏

Zj∈Children(Xi)
P (zj | Parents(Zj))

where mb(Xi) denotes the values (in the current state) of the
variables in Xi’s Markov blanket MB(Xi)
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MCMC example

To estimate P(Rain | Sprinkler = true,WetGrass = true)

1. Apply the Gibbs sampling algorithm with Sprinkler and
WetGrass both fixed to true

2. Count number of times Rain is true and false in the samples

Example:
Visit 100 states; 31 have Rain= true, 69 have Rain= false

P̂(Rain | Sprinkler = true,WetGrass = true)
= Normalize(〈31, 69〉) = 〈0.31, 0.69〉

Theorem: Markov chain approaches stationary distribution, i.e., over
the long run, the fraction of time spent in each state is exactly
proportional to the state’s posterior probability
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