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Readings

• Chap. 13 of [Russell and Norvig, 2012]
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Logic and Uncertainty

Major problem with logical-agent approaches:

Agents almost never have access to the whole truth about
their environments

• Very often, even in simple worlds, there are important questions
for which there is no yes/no answer

• In that case, an agent must reason under uncertainty

• Uncertainty also arises because of an agent’s incomplete or
incorrect understanding of its environment
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Uncertainty

Let action At =“leave for airport t minutes before flight”

Will At get me there on time?

Problems

• partial observability (road state, other drivers’ plans, etc.)

• noisy sensors (unreliable traffic reports)

• uncertainty in action outcomes (flat tire, etc.)
• immense complexity of modeling and predicting traffic
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Uncertainty

Let action At =“leave for airport t minutes before flight”

Will At get me there on time?

Hence a purely logical approach either

1. risks falsehood (“A25 will get me there on time”), or

2. leads to conclusions that are too weak for decision making
(“A25 will get me there on time if there’s no accident on the way,
it doesn’t rain, my tires remain intact, . . . ”)

(A1440 might reasonably be said to get me there on time
but I’d have to stay overnight in the airport . . .)
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Reasoning under Uncertainty

A rational agent is one that makes rational decisions — in order to
maximize its performance measure)

A rational decision depends on

• the relative importance of various goals

• the likelihood they will be achieved

• the degree to which they will be achieved

CS:4420 Spring 2018 – p.5/33



Handling Uncertain Knowledge

Reasons FOL-based approaches fail to cope with domains like, for
instance, medical diagnosis:

• Laziness: too much work to write complete axioms, or too hard
to work with the enormous sentences that result

• Theoretical Ignorance: The available knowledge of the domain is
incomplete

• Practical Ignorance: The theoretical knowledge of the domain is
complete but some evidential facts are missing
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Degrees of Belief

In several real-world domains the agent’s knowledge can only provide a
degree of belief in the relevant sentences

The agent cannot say whether a sentence is true, but only that is true
x% of the times

The main tool for handling degrees of belief is Probability Theory

The use of probability summarizes the uncertainty that stems from our
laziness or ignorance about the domain
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Probability Theory

Probability Theory makes the same ontological commitments as
First-order Logic:

Every sentence ϕ is either true or false

The degree of belief that ϕ is true is a number P between 0 and 1

P (ϕ) = 1 −→ ϕ is certainly true

P (ϕ) = 0 −→ ϕ is certainly not true

P (ϕ) = 0.65 −→ ϕ is true with a 65% chance
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Probability of Facts

Let A be a propositional variable, a symbol denoting a proposition
that is either true or false

P (A) denotes the probability that A is true in the absence of any
other information

Similarly,

P (¬A) = probability that A is false

P (A ∧B) = probability that both A and B are true

P (A ∨B) = probability that either A or B (or both) are true

Examples:

P (¬Blonde) P (Blonde ∧BlueEyed) P (Blonde ∨BlueEyed)

where Blonde/BlueEyed denotes that a given person is
blonde/blue-eyed
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Subjective/Bayesian Probability

Probabilities relate propositions to one’s own state of knowledge

E.g., P (A25 | no reported accidents) = 0.06

Probabilities of propositions change with new evidence:

E.g., P (A25 | no reported accidents, 5 a.m.) = 0.15

Note: This is analogous to logical entailment status KB |= α
(which changes with more knowledge), not truth
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Conditional/Unconditional Probability

P (A) is the unconditional (or prior) probability of fact A

An agent can use the unconditional probability of A to reason about
A in the absence of further information

If further evidence B becomes available, the agent must use the
conditional (or posterior) probability :

P (A | B)

the probability of A given that (all) the agent knows (is) B

Note: P (A) can be thought as the conditional probability of A with
respect to the empty evidence: P (A) = P (A | )

CS:4420 Spring 2018 – p.11/33



Conditional Probabilities

The probability of a fact may change as the agent acquires more, or
different, information:

1. P (Blonde) 2. P (Blonde | Swedish)

3. P (Blonde | Kenian) 4. P (Blonde | Kenian ∧ ¬EuroDescent)

1. If we know nothing about a person, the probability that s/he is
blonde equals a certain value, say 0.2

2. If we know that a person is Swedish the probability that s/he is
blonde is much higher, say 0.9

3. If we know that the person is Kenyan, the probability s/he is
blonde much lower, say 0.00003

4. If we know that the person is Kenyan and not of European
descent, the probability s/he is blonde is 0
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The Axioms of Probability

Probability Theory is governed by the following axioms:

1. All probabilities are real values between 0 and 1:

for all ϕ, 0 ≤ P (ϕ) ≤ 1

2. Valid propositions have probability 1

P (True) = P (α ∨ ¬α) = 1

3. The probability of disjunction is defined as follows:

P (α ∨ β) = P (α) + P (β)− P (α ∧ β)
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Understanding Axiom 3

>A     B

True

A B

P (A ∨B) = P (A) + P (B)− P (A ∧B)
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Conditional Probabilities

Conditional probabilities are defined in terms of unconditional ones.
Whenever P (B) > 0,

P (A | B) =
P (A ∧B)

P (B)

The same definition can be equivalently expressed as the product rule:

P (A ∧B) = P (A | B)P (B)

= P (B | A)P (A)

A and B are independent iff P (A | B) = P (A) (or P (B | A) = P (B),
or P (A ∧B) = P (A)P (B))
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Random Variable

A random variable is a variable ranging over a certain domain of
values

It is

• discrete if it ranges over a discrete (that is, countable) domain

• continuous if it ranges over the real numbers

We will only consider discrete random variables with finite domains

Note: Propositional variables can be seen as random variables over
the Boolean domain
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Random Variables

Variable Domain

Age {1, 2, . . . , 120}

Weather {sunny, dry, cloudy, rain, snow}

Size {small,medium, large}

Blonde {true, false}

The probability that a random variable X has value val is written as

P (X = val)

Note 1: P (A = true) is written shortly as P (a) while P (A = false)
is written as P (¬a)

Note 2: Traditionally, in Probability Theory variables are capitalized
and constant values are not
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Probability Distribution

If X is a random variable, we use the bold case P(X) to denote a
vector of values for the probabilities of each individual element that X
can take.

Example:

P (Weather = sunny) = 0.6

P (Weather = rain) = 0.2

P (Weather = cloudy) = 0.18

P (Weather = snow) = 0.02

Then P(Weather) = 〈0.6, 0.2, 0.18, 0.02〉
(the value order of “sunny”,“rain”, cloudy”,“snow” is assumed).

P(Weather) is called a probability distribution for the random
variable Weather
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Joint Probability Distribution

If X1, . . . ,Xn are random variables,

P(X1, . . . ,Xn)

denotes their joint probability distribution (JPD), an n-dimensional
matrix specifying the probability of every possible combination of
values for X1, . . . ,Xn

Example

Sky : {sunny, cloudy, rain, snow}

Wind : {true, false}

P(Wind, Sky) =

sunny cloudy rain snow

true 0.30 0.15 0.17 0.01

false 0.30 0.05 0.01 0.01

CS:4420 Spring 2018 – p.19/33



Joint Probability Distribution

All relevant probabilities about a vector 〈X1, . . . ,Xn〉 of random
variables can be computed from P(X1, . . . ,Xn)

S = sunny S = cloudy S = rain S = snow P(W )

W 0.30 0.15 0.17 0.01 0.63

¬W 0.30 0.05 0.01 0.01 0.37

P(S) 0.60 0.20 0.18 0.02 1.00

P (S = rain ∧W ) = 0.17

P (S = rain) = P (S = rain ∧W ) + P (S = rain ∧ ¬W )

= 0.17 + 0.01 = 0.18

P (W ) = 0.30 + 0.15 + 0.17 + 0.01 = 0.63

P (S = rain | W ) = P (S = rain ∧W )/P (W )

= 0.17/0.63 = 0.27
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Joint Probability Distribution

A joint probability distribution P(X1, . . . ,Xn) provides complete
information about the probabilities of its random variables.

However, JPD’s are often hard to create (again because of incomplete
knowledge of the domain).

Even when available, JPD tables are very expensive, or impossible, to
store because of their size.

A JPD table for n random variables, each ranging over k distinct
values, has kn entries!

A better approach is to come up with conditional probabilities as
needed and compute the others from them.
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An Alternative to JPD: The Bayes Rule

Recall that for any fact A and B,

P (A ∧B) = P (A | B)P (B) = P (B | A)P (A)

From this we obtain the Bayes Rule:

P (B | A) =
P (A | B)P (B)

P (A)

The rule is useful in practice because it is often easier to compute (or
estimate) P (A | B), P (B), and P (A) than to compute P (B | A)
directly

CS:4420 Spring 2018 – p.22/33



Applying the Bayes Rule

What is the probability that a patient has meningitis (M) given that
he has a stiff neck (S)?

P (m | s) =
P (s | m)P (m)

P (s)

• P (s | m) is easier to estimate than P (m | s) because it refers to
causal knowledge: meningitis typically causes stiff neck

• P (s | m) can be estimated from past medical cases and the
knowledge about how meningitis works

• Similarly, P (m) and P (s) can be estimated from statistical
information
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Applying the Bayes Rule

The Bayes rule is helpful even in absence of (immediate) causal
relationships

What is the probability that a blonde person (B) is Swedish (S)?

P (s | b) =
P (b | s)P (s)

P (b)

All P (b | s), P (s), P (b) are easily estimated from statistical
information

P (b | s) ≈ # of blonde Swedish
Swedish population

= 9

10

P (s) ≈ Swedish population
world population

= . . .

P (b) ≈ # of blondes
world population

= . . .
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Conditional Independence

In terms of exponential explosion, conditional probabilities do not
seem any better than JPD’s for computing the probability of a fact,
given n > 1 pieces of evidence

P (meningitis | stiffNeck ∧ nausea ∧ · · · ∧ doubleVision)

However, facts do not always depend on all the evidence.

Example:

P (meningitis | stiffNeck ∧ astigmatic) = P (meningitis | stiffNeck)

Meningitis and Astigmatic are conditionally independent, given
knowledge of StiffNeck
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Conditional Probability Notation

Recall:

P (A ∧B) = P (A | B)P (B) = P (B | A)P (A)

A general version holds for whole joint probability distributions, e.g.,

P(Weather,Cavity) = P(Weather | Cavity)P(Cavity)

stands for (with W for Weather and C for Cavity):

P (W = sunny, C = true) = P (W = sunny | C = true)P (C = true)

P (W = sunny, C = false) = P (W = sunny | C = false)P (C = false)
...

P (W = snow,C = false) = P (W = snow | C = false)P (C = false)

I.e., a 4× 2 set of equations, not matrix multiplication
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Conditional Probability Notation

The chain rule is derived by successive application of product rule:

P(X1, . . . ,Xn)

= P(X1, . . . ,Xn−1)P(Xn|X1, . . . ,Xn−1)

= P(X1, . . . ,Xn−2)P(Xn−1|X1, . . . ,Xn−2)P(Xn|X1, . . . ,Xn−1)
...

= Πn

i=1
P(Xi|X1, . . . ,Xi−1)
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Inference by enumeration

Let X be all the variables. Typically, we want

the posterior joint distribution of the query variables Y

given specific values e for the evidence variables E

Let the hidden variables be H = X−Y−E. Then,

P(Y | E= e) = αP(Y,E= e) = αΣhP(Y,E= e,H=h)

where α = P (E= e)−1

Problems:

1. Worst-case time complexity O(dn) where d is the largest arity

2. Space complexity O(dn) to store the joint distribution

3. How to find the numbers for O(dn) entries?
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Independence

A and B are independent iff

P(A | B)=P(A) iff P(B | A)=P(B) iff P(A,B)=P(A)P(B)

Example:

P(Toothache,Catch,Cavity,Weather)
= P(Toothache,Catch,Cavity)P(Weather)

32 entries reduced to 12; for n independent biased coins, 2n → n

Problem: Absolute independence is powerful but rare

For instance, dentistry is a large field with hundreds of variables, none
of which are independent.

What to do? Exploit conditional independence
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Conditional independence

P(Toothache,Cavity, Catch) has 23 − 1 = 7 independent entries

If I have a cavity, the probability that the probe catches in it doesn’t
depend on whether I have a toothache or not:

P (catch | toothache, cavity) = P (catch | cavity)

The same independence holds if I have no cavity:

P (catch | toothache,¬cavity) = P (catch | ¬cavity)

Catch is conditionally independent on Toothache given Cavity:

P(Catch | Toothache,Cavity) = P(Catch | Cavity)

Similarly:

P(Toothache | Catch,Cavity) = P(Toothache | Cavity)
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Conditional independence contd.

Write out full joint distribution using chain rule:

P(Toothache,Catch,Cavity)

= P(Toothache | Catch,Cavity)P(Catch,Cavity)

= P(Toothache | Catch,Cavity)P(Catch | Cavity)P(Cavity)

= P(Toothache | Cavity)P(Catch | Cavity)P(Cavity)

Now we have only 2 + 2 + 1 = 5 independent entries

In most cases, conditional independence reduces the size of the
representation of the JPD from exponential to linear in n

Conditional independence is our most basic and robust form of
knowledge about uncertain environments
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Bayes’ Rule and cond. independence

P(Cavity | toothache ∧ catch)

= αP(toothache ∧ catch | Cavity)P(Cavity)

= αP(toothache | Cavity)P(catch | Cavity)P(Cavity)

This is an example of a naive Bayes model:

P(Cause,Effect1, . . . ,Effectn) = Πn

i=1P(Effect i | Cause)P(Cause)

Toothache

Cavity

Catch

Cause

Effect1 Effectn

Total number of parameters is linear in n
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Bayesian Networks

Exploiting conditional independence information is crucial in making
(automated) probabilistic reasoning feasible

Bayesian Networks are a successful example of probabilistic systems
that exploit conditional independence to reason efficiently under
uncertainty
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