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Constraint Satisfaction Problems (CSPs)

Standard search problem:

state is a“black box”—any old data structure
that supports goal test, eval, successor

CSP:

state is defined by variables Xi with values from domain Di

goal test is a set of constraints specifying
allowable combinations of values for subsets of variables

Simple example of a formal representation language

Allows useful general-purpose algorithms with more power than
standard search algorithms
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Example: Map coloring

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

Variables: MA, NT , Q, NSW , V , SA, T

Domains: Di = {r(ed), g(reen), b(lue)}

Constraints: adjacent regions must have different colors

e.g., WA 6= NT (if the language allows this), or
(WA,NT ) ∈ {(r, g), (r, b), (g, r), (g, b), . . .}
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Example: Map coloring contd.

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

Solutions are assignments satisfying all constraints,

e.g., {WA= r,NT = g,Q= r,NSW = g, V = r,SA= b, T = g}

CS:4420 Spring 2017 – p.4/32



Constraint graph

Binary CSP: each constraint relates at most two variables

Constraint graph: nodes are variables, arcs show constraints
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Northern
Territory
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Australia

Queensland
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Victoria

Tasmania

Victoria

WA

NT

SA

Q

NSW
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T

General-purpose CSP methods use the graph structure to speed up
search

e.g., Tasmania is an independent subproblem!
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Varieties of CSPs

Discrete variables

finite domains (size d)
• e.g., Boolean CSPs, incl. Boolean SAT (NP-complete)
• O(dn) complete assignments

infinite domains (integers, strings, etc.)
• e.g., job scheduling, variables are start/end days for each job
• need a constraint language,

e.g., startJob1 + 5 ≤ startJob3
• linear constraints solvable, nonlinear undecidable

Continuous variables

• e.g., start/end times for Hubble Telescope observations

• linear constraints solvable in polynolmial time by linear
programming methods
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Varieties of constraints

Unary constraints involve a single variable
e.g., SA 6= g

Binary constraints involve pairs of variables
e.g., SA 6= WA

Higher-order constraints involve 3 or more variables
e.g., cryptarithmetic column constraints

Preferences are soft constraints
e.g., red is better than green
often representable by a cost for each variable assignment
→ constrained optimization problems
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Example: Cryptarithmetic

OWTF U R

+
OWT
OWT

F O U R

X2 X1X3

Variables: F, T, U, W, R, O, X1, X2, X3

Domain: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Constraints: alldiff (F, T, U,W,R,O)

O +O = R+ 10 ·X1

. . .
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Real-world CSPs

Assignment problems
e.g., who teaches what class

Timetabling problems
e.g., which class is offered when and where?

Hardware configuration

Transportation scheduling

Factory scheduling

Floorplanning

Notice that many real-world problems involve real-valued variables
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Standard search formulation (incremental)

Let’s start with a basic, naive approach and then improve it

States are defined by the values assigned so far

Initial state: the empty assignment, { }

Successor function: assign a value to an unassigned variable
that does not conflict with current assignment.
fail if no legal assignments (not fixable!)

Goal test: the current assignment is complete

Note:

1. This is the same for all CSPs!

2. Every solution appears at depth n with n variables =⇒ use
depth-first search

3. Path is irrelevant, so can also use complete-state formulation

4. However, with domain of size d, branching factor b=(n− ℓ)d at
depth ℓ, hence n!dn leaves!
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Backtracking search

Variable assignments are commutative
i.e., [WA= r then NT = g] same as [NT = g then WA= r]

Only need to consider assignments to a single variable at each node
=⇒ b= d and there are dn leaves

Depth-first search for CSPs with single-variable assignments is called
backtracking search

Backtracking search is the basic uninformed algorithm for CSPs

Can solve n-queens for n ≈ 25
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Backtracking search

function Backtracking-Search(csp) returns solution/failure

return Recursive-Backtracking([ ], csp)

function Recursive-Backtracking(assigned, csp) returns solution/failure

if assigned is complete then return assigned

var←Select-Unassigned-Variable(Variables[csp],assigned, csp)

for each value in Order-Domain-Values(var,assigned, csp) do

if value is consistent with assigned according to Constraints[csp] then

result←Recursive-Backtracking([var = value|assigned ], csp)

if result 6= failure then return result

end

return failure
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Backtracking example
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Backtracking example
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Backtracking example
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Backtracking example
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Improving backtracking efficiency

General-purpose methods can give huge gains in speed:

1. Which variable should be assigned next?

2. In what order should its values be tried?

3. Can we detect inevitable failure early?

4. Can we take advantage of problem structure?
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Variable choice heuristics

Minimum remaining values (MRV):
choose the variable with the fewest legal values

Degree heuristic:
choose the variable with the most constraints on remaining vars

Latter ofter used as a tie-breaker for former
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Value choice heuristics

Least constraining value:

• for a given a variable, choose the least constraining value: the
one that rules out the fewest values in the remaining variables

Allows 1 value for SA

Allows 0 values for SA

Combining these heuristics makes 1000-queens feasible
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Forward checking

Idea: Keep track of remaining legal values for unassigned variables

Terminate search when any variable has no legal values

WA NT Q NSW V SA T
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Forward checking

Idea: Keep track of remaining legal values for unassigned variables

Terminate search when any variable has no legal values
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Constraint propagation

Forward checking propagates information from assigned to unassigned
variables, but doesn’t provide early detection for all failures:

WA NT Q NSW V SA T

NT and SA cannot both be blue!

Constraint propagation repeatedly enforces constraints locally
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Arc consistency

Simplest form of propagation, makes each arc consistent

Arc X → Y is consistent iff
for every value x of X there is some allowed value y for Y

WA NT Q NSW V SA T

CS:4420 Spring 2017 – p.19/32



Arc consistency

Simplest form of propagation, makes each arc consistent

Arc X → Y is consistent iff
for every value x of X there is some allowed value y for Y

WA NT Q NSW V SA T

CS:4420 Spring 2017 – p.19/32



Arc consistency

Simplest form of propagation, makes each arc consistent

Arc X → Y is consistent iff
for every value x of X there is some allowed value y for Y

WA NT Q NSW V SA T

If X loses a value, neighbors of X need to be rechecked
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Arc consistency

Simplest form of propagation, makes each arc consistent

Arc X → Y is consistent iff
for every value x of X there is some allowed value y for Y

WA NT Q NSW V SA T

If X loses a value, neighbors of X need to be rechecked

Arc consistency detects failure earlier than forward checking

Can be run as a preprocessor and/or after each assignment
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Arc consistency algorithm

function AC-3( csp) returns the CSP, possibly with reduced domains

inputs: csp, a binary CSP with variables {X1, X2, . . . , Xn}

local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do

(Xi, Xj)←Remove-First(queue)

if Remove-Inconsistent-Values(Xi, Xj) then

for each Xk in Neighbors[Xi] do

add (Xk, Xi) to queue

function Remove-Inconsistent-Values(Xi, Xj) returns true iff we remove a value

removed← false

for each x in Domain[Xi] do

if no value y in Domain[Xj ] allows (x,y) to satisfy the constraint between Xi and Xj

then delete x from Domain[Xi]; removed← true

return removed

O(n2d3), can be reduced to O(n2d2) (but detecting all is NP-hard)
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Further notions of consistency

Node consistency: A single variable X is node-consistent if all the
values in X’s domain D(X) satisfy the unary constraints on X

Ex.

D(X) = {1, 2, 3} C1 = (X > 0) X node-consist. with C1

D(X) = {1, 2, 3} C2 = (X > 5) X not node-consist. with C2
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Further notions of consistency

Arc-consistency for n-constraints

Generalized arc consistency: A variable Xi is generalized
arc-consistent wrt an n-ary constraint C(X1, . . . ,Xi, . . . ,Xn) if,
for every v ∈ D(Xi),
there is a (v1, . . . , v, . . . , vn) ∈ D(X1)× · · · ×D(Xi)× · · · ×D(Xn)
that satisfies C

Ex.

D(X) = D(Y ) = D(Z) = {1, 2, 3}

C1 = (X + Y > Z) Y generalized arc-consist. with C1

C2 = (X + Y < Z) Z not generalized arc-consist. with C2
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Further notions of consistency

Chained arc-consistency

Path consistency: A two-variable set {X,Z} is path-consistent wrt a
third variable Y if,
for every assignment satisfying the constraints on {X,Z},
there is an assignment to Y that satisfies the constraints on {X,Y }
and {Y,Z}

Ex.

D(X) = D(Y ) = D(Z) = {1, 2, 3, 4}

{X > 2 · Z, X > Y, Y = Z + 1} {X,Z} path-consistent wrt Y

{X > 2 · Z, X < Y, Y = Z + 1} not {X,Z} path-consistent wrt Y
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Problem structure

Victoria

WA

NT

SA

Q

NSW

V

T

Tasmania and mainland are independent subproblems

Identifiable as connected components of constraint graph
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Problem structure

Suppose each subproblem has c variables out of n total

Worst-case solution cost is n/c · dc, linear in n

E.g., n=80, d=2, c=20

280 = 4 billion years at 10 million nodes/sec

4 · 220 = 0.4 seconds at 10 million nodes/sec
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Tree-structured CSPs

A

B

C

D

E

F

Theorem: If the constraint graph has no loops, the CSP can be solved
in O(nd2) time

Compare to general CSPs, where worst-case time is O(dn)

This property also applies to logical and probabilistic reasoning:
an important example of the relation between

• syntactic restrictions and

• the complexity of reasoning
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Algorithm for tree-structured CSPs

1. Choose a variable as root, order variables from root to leaves
so that every node’s parent precedes it in the ordering

A

B

C

D

E

F

A B C D E F

2. For j from n down to 2, apply
RemoveInconsistentValues(Parent(Xj),Xj)

3. For j from 1 to n, assign Xj consistently with Parent(Xj)
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Nearly tree-structured CSPs

Conditioning: instantiate a variable, prune its neighbors’ domains

Victoria

WA

NT
Q

NSW

V

TT

Victoria

WA

NT

SA

Q

NSW

V

Cutset conditioning: instantiate (in all ways) a set of variables
so that the remaining constraint graph is a tree

Cutset size c =⇒ runtime O(dc · (n− c)d2), very fast for small c
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Further Optimizations

• Tree decomposition

• Symmetry breaking
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Iterative algorithms for CSPs

Hill-climbing, simulated annealing typically work with
“complete” states, i.e., all variables assigned

To apply to CSPs:
allow states with unsatisfied constraints
operators reassign variable values

Variable selection: randomly select any conflicted variable

Value selection by min-conflicts heuristic:
choose value that violates the fewest constraints
i.e., hillclimb with h(n) = total number of violated constraints
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Example: 4-Queens

States: 4 queens in 4 columns (44 = 256 states)

Operators: move queen in column

Goal test: no attacks

Evaluation: h(n) = number of attacks

h = 5 h = 2 h = 0
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Performance of min-conflicts

Given random initial state, can solve n-queens in almost constant time
for arbitrary n with high probability (e.g., n = 10,000,000)

The same appears to be true for any randomly-generated CSP
except in a narrow range of the ratio

R =
number of constraints

number of variables

R

CPU
time

critical
   ratio

The critical ration corresponds to a phase transition for the problems,
from satisfiable to unsatisfiable
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