
CS:4420 Artificial Intelligence
Spring 2017

Constraint Satisfaction Problems

Cesare Tinelli

The University of Iowa

Copyright 2004–17, Cesare Tinelli and Stuart Russell a

a
These notes were originally developed by Stuart Russell and are used with permission. They are

copyrighted material and may not be used in other course settings outside of the University of Iowa in their

current or modified form without the express written consent of the copyright holders.

CS:4420 Spring 2017 – p.1/32

Constraint Satisfaction Problems (CSPs)

Standard search problem:

state is a“black box”—any old data structure
that supports goal test, eval, successor

CSP:

state is defined by variables Xi with values from domain Di

goal test is a set of constraints specifying
allowable combinations of values for subsets of variables

Simple example of a formal representation language

Allows useful general-purpose algorithms with more power than
standard search algorithms

CS:4420 Spring 2017 – p.2/32

Example: Map coloring

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

Variables: MA, NT , Q, NSW , V , SA, T

Domains: Di = {r(ed), g(reen), b(lue)}

Constraints: adjacent regions must have different colors

e.g., WA 6= NT (if the language allows this), or
(WA,NT) ∈ {(r, g), (r, b), (g, r), (g, b), . . .}

CS:4420 Spring 2017 – p.3/32

Example: Map coloring contd.

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

Solutions are assignments satisfying all constraints,

e.g., {WA= r,NT = g,Q= r,NSW = g, V = r,SA= b, T = g}

CS:4420 Spring 2017 – p.4/32

Constraint graph

Binary CSP: each constraint relates at most two variables

Constraint graph: nodes are variables, arcs show constraints

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

Victoria

WA

NT

SA

Q

NSW

V

T

General-purpose CSP methods use the graph structure to speed up
search

e.g., Tasmania is an independent subproblem!

CS:4420 Spring 2017 – p.5/32

Varieties of CSPs

Discrete variables

finite domains (size d)
• e.g., Boolean CSPs, incl. Boolean SAT (NP-complete)
• O(dn) complete assignments

infinite domains (integers, strings, etc.)
• e.g., job scheduling, variables are start/end days for each job
• need a constraint language,

e.g., startJob1 + 5 ≤ startJob3
• linear constraints solvable, nonlinear undecidable

Continuous variables

• e.g., start/end times for Hubble Telescope observations

• linear constraints solvable in polynolmial time by linear
programming methods

CS:4420 Spring 2017 – p.6/32

Varieties of constraints

Unary constraints involve a single variable
e.g., SA 6= g

Binary constraints involve pairs of variables
e.g., SA 6= WA

Higher-order constraints involve 3 or more variables
e.g., cryptarithmetic column constraints

Preferences are soft constraints
e.g., red is better than green
often representable by a cost for each variable assignment
→ constrained optimization problems

CS:4420 Spring 2017 – p.7/32

Example: Cryptarithmetic

OWTF U R

+
OWT
OWT

F O U R

X2 X1X3

Variables: F, T, U, W, R, O, X1, X2, X3

Domain: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Constraints: alldiff (F, T, U,W,R,O)

O +O = R+ 10 ·X1

. . .

CS:4420 Spring 2017 – p.8/32

Real-world CSPs

Assignment problems
e.g., who teaches what class

Timetabling problems
e.g., which class is offered when and where?

Hardware configuration

Transportation scheduling

Factory scheduling

Floorplanning

Notice that many real-world problems involve real-valued variables

CS:4420 Spring 2017 – p.9/32

Standard search formulation (incremental)

Let’s start with a basic, naive approach and then improve it

States are defined by the values assigned so far

Initial state: the empty assignment, { }

Successor function: assign a value to an unassigned variable
that does not conflict with current assignment.
fail if no legal assignments (not fixable!)

Goal test: the current assignment is complete

Note:

1. This is the same for all CSPs!

2. Every solution appears at depth n with n variables =⇒ use
depth-first search

3. Path is irrelevant, so can also use complete-state formulation

4. However, with domain of size d, branching factor b=(n− ℓ)d at
depth ℓ, hence n!dn leaves!

CS:4420 Spring 2017 – p.10/32

Backtracking search

Variable assignments are commutative
i.e., [WA= r then NT = g] same as [NT = g then WA= r]

Only need to consider assignments to a single variable at each node
=⇒ b= d and there are dn leaves

Depth-first search for CSPs with single-variable assignments is called
backtracking search

Backtracking search is the basic uninformed algorithm for CSPs

Can solve n-queens for n ≈ 25

CS:4420 Spring 2017 – p.11/32

Backtracking search

function Backtracking-Search(csp) returns solution/failure

return Recursive-Backtracking([], csp)

function Recursive-Backtracking(assigned, csp) returns solution/failure

if assigned is complete then return assigned

var←Select-Unassigned-Variable(Variables[csp],assigned, csp)

for each value in Order-Domain-Values(var,assigned, csp) do

if value is consistent with assigned according to Constraints[csp] then

result←Recursive-Backtracking([var = value|assigned], csp)

if result 6= failure then return result

end

return failure

CS:4420 Spring 2017 – p.12/32

Backtracking example

CS:4420 Spring 2017 – p.13/32

Backtracking example

CS:4420 Spring 2017 – p.13/32

Backtracking example

CS:4420 Spring 2017 – p.13/32

Backtracking example

CS:4420 Spring 2017 – p.13/32

Improving backtracking efficiency

General-purpose methods can give huge gains in speed:

1. Which variable should be assigned next?

2. In what order should its values be tried?

3. Can we detect inevitable failure early?

4. Can we take advantage of problem structure?

CS:4420 Spring 2017 – p.14/32

Variable choice heuristics

Minimum remaining values (MRV):
choose the variable with the fewest legal values

Degree heuristic:
choose the variable with the most constraints on remaining vars

Latter ofter used as a tie-breaker for former
CS:4420 Spring 2017 – p.15/32

Value choice heuristics

Least constraining value:

• for a given a variable, choose the least constraining value: the
one that rules out the fewest values in the remaining variables

Allows 1 value for SA

Allows 0 values for SA

Combining these heuristics makes 1000-queens feasible

CS:4420 Spring 2017 – p.16/32

Forward checking

Idea: Keep track of remaining legal values for unassigned variables

Terminate search when any variable has no legal values

WA NT Q NSW V SA T

CS:4420 Spring 2017 – p.17/32

Forward checking

Idea: Keep track of remaining legal values for unassigned variables

Terminate search when any variable has no legal values

WA NT Q NSW V SA T

CS:4420 Spring 2017 – p.17/32

Forward checking

Idea: Keep track of remaining legal values for unassigned variables

Terminate search when any variable has no legal values

WA NT Q NSW V SA T

CS:4420 Spring 2017 – p.17/32

Forward checking

Idea: Keep track of remaining legal values for unassigned variables

Terminate search when any variable has no legal values

WA NT Q NSW V SA T

CS:4420 Spring 2017 – p.17/32

Constraint propagation

Forward checking propagates information from assigned to unassigned
variables, but doesn’t provide early detection for all failures:

WA NT Q NSW V SA T

NT and SA cannot both be blue!

Constraint propagation repeatedly enforces constraints locally

CS:4420 Spring 2017 – p.18/32

Arc consistency

Simplest form of propagation, makes each arc consistent

Arc X → Y is consistent iff
for every value x of X there is some allowed value y for Y

WA NT Q NSW V SA T

CS:4420 Spring 2017 – p.19/32

Arc consistency

Simplest form of propagation, makes each arc consistent

Arc X → Y is consistent iff
for every value x of X there is some allowed value y for Y

WA NT Q NSW V SA T

CS:4420 Spring 2017 – p.19/32

Arc consistency

Simplest form of propagation, makes each arc consistent

Arc X → Y is consistent iff
for every value x of X there is some allowed value y for Y

WA NT Q NSW V SA T

If X loses a value, neighbors of X need to be rechecked

CS:4420 Spring 2017 – p.19/32

Arc consistency

Simplest form of propagation, makes each arc consistent

Arc X → Y is consistent iff
for every value x of X there is some allowed value y for Y

WA NT Q NSW V SA T

If X loses a value, neighbors of X need to be rechecked

Arc consistency detects failure earlier than forward checking

Can be run as a preprocessor and/or after each assignment

CS:4420 Spring 2017 – p.19/32

Arc consistency algorithm

function AC-3(csp) returns the CSP, possibly with reduced domains

inputs: csp, a binary CSP with variables {X1, X2, . . . , Xn}

local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do

(Xi, Xj)←Remove-First(queue)

if Remove-Inconsistent-Values(Xi, Xj) then

for each Xk in Neighbors[Xi] do

add (Xk, Xi) to queue

function Remove-Inconsistent-Values(Xi, Xj) returns true iff we remove a value

removed← false

for each x in Domain[Xi] do

if no value y in Domain[Xj] allows (x,y) to satisfy the constraint between Xi and Xj

then delete x from Domain[Xi]; removed← true

return removed

O(n2d3), can be reduced to O(n2d2) (but detecting all is NP-hard)
CS:4420 Spring 2017 – p.20/32

Further notions of consistency

Node consistency: A single variable X is node-consistent if all the
values in X’s domain D(X) satisfy the unary constraints on X

Ex.

D(X) = {1, 2, 3} C1 = (X > 0) X node-consist. with C1

D(X) = {1, 2, 3} C2 = (X > 5) X not node-consist. with C2

CS:4420 Spring 2017 – p.21/32

Further notions of consistency

Arc-consistency for n-constraints

Generalized arc consistency: A variable Xi is generalized
arc-consistent wrt an n-ary constraint C(X1, . . . ,Xi, . . . ,Xn) if,
for every v ∈ D(Xi),
there is a (v1, . . . , v, . . . , vn) ∈ D(X1)× · · · ×D(Xi)× · · · ×D(Xn)
that satisfies C

Ex.

D(X) = D(Y) = D(Z) = {1, 2, 3}

C1 = (X + Y > Z) Y generalized arc-consist. with C1

C2 = (X + Y < Z) Z not generalized arc-consist. with C2

CS:4420 Spring 2017 – p.22/32

Further notions of consistency

Chained arc-consistency

Path consistency: A two-variable set {X,Z} is path-consistent wrt a
third variable Y if,
for every assignment satisfying the constraints on {X,Z},
there is an assignment to Y that satisfies the constraints on {X,Y }
and {Y,Z}

Ex.

D(X) = D(Y) = D(Z) = {1, 2, 3, 4}

{X > 2 · Z, X > Y, Y = Z + 1} {X,Z} path-consistent wrt Y

{X > 2 · Z, X < Y, Y = Z + 1} not {X,Z} path-consistent wrt Y

CS:4420 Spring 2017 – p.23/32

Problem structure

Victoria

WA

NT

SA

Q

NSW

V

T

Tasmania and mainland are independent subproblems

Identifiable as connected components of constraint graph

CS:4420 Spring 2017 – p.24/32

Problem structure

Suppose each subproblem has c variables out of n total

Worst-case solution cost is n/c · dc, linear in n

E.g., n=80, d=2, c=20

280 = 4 billion years at 10 million nodes/sec

4 · 220 = 0.4 seconds at 10 million nodes/sec

CS:4420 Spring 2017 – p.25/32

Tree-structured CSPs

A

B

C

D

E

F

Theorem: If the constraint graph has no loops, the CSP can be solved
in O(nd2) time

Compare to general CSPs, where worst-case time is O(dn)

This property also applies to logical and probabilistic reasoning:
an important example of the relation between

• syntactic restrictions and

• the complexity of reasoning

CS:4420 Spring 2017 – p.26/32

Algorithm for tree-structured CSPs

1. Choose a variable as root, order variables from root to leaves
so that every node’s parent precedes it in the ordering

A

B

C

D

E

F

A B C D E F

2. For j from n down to 2, apply
RemoveInconsistentValues(Parent(Xj),Xj)

3. For j from 1 to n, assign Xj consistently with Parent(Xj)

CS:4420 Spring 2017 – p.27/32

Nearly tree-structured CSPs

Conditioning: instantiate a variable, prune its neighbors’ domains

Victoria

WA

NT
Q

NSW

V

TT

Victoria

WA

NT

SA

Q

NSW

V

Cutset conditioning: instantiate (in all ways) a set of variables
so that the remaining constraint graph is a tree

Cutset size c =⇒ runtime O(dc · (n− c)d2), very fast for small c

CS:4420 Spring 2017 – p.28/32

Further Optimizations

• Tree decomposition

• Symmetry breaking

CS:4420 Spring 2017 – p.29/32

Iterative algorithms for CSPs

Hill-climbing, simulated annealing typically work with
“complete” states, i.e., all variables assigned

To apply to CSPs:
allow states with unsatisfied constraints
operators reassign variable values

Variable selection: randomly select any conflicted variable

Value selection by min-conflicts heuristic:
choose value that violates the fewest constraints
i.e., hillclimb with h(n) = total number of violated constraints

CS:4420 Spring 2017 – p.30/32

Example: 4-Queens

States: 4 queens in 4 columns (44 = 256 states)

Operators: move queen in column

Goal test: no attacks

Evaluation: h(n) = number of attacks

h = 5 h = 2 h = 0

CS:4420 Spring 2017 – p.31/32

Performance of min-conflicts

Given random initial state, can solve n-queens in almost constant time
for arbitrary n with high probability (e.g., n = 10,000,000)

The same appears to be true for any randomly-generated CSP
except in a narrow range of the ratio

R =
number of constraints

number of variables

R

CPU
time

critical
 ratio

The critical ration corresponds to a phase transition for the problems,
from satisfiable to unsatisfiable

CS:4420 Spring 2017 – p.32/32

	Constraint Satisfaction Problems (CSPs)
	Example: Map coloring
	Example: Map coloring contd.
	Constraint graph
	Varieties of CSPs
	Varieties of constraints
	Example: Cryptarithmetic
	Real-world CSPs
	Standard search formulation (incremental)
	Backtracking search
	Backtracking search
	Backtracking example
	Improving backtracking efficiency
	Variable choice heuristics
	Value choice heuristics
	Forward checking
	Constraint propagation
	Arc consistency
	Arc consistency algorithm
	Further notions of consistency
	Further notions of consistency
	Further notions of consistency
	Problem structure
	Problem structure
	Tree-structured CSPs
	Algorithm for tree-structured CSPs
	Nearly tree-structured CSPs
	Further Optimizations
	Iterative algorithms for CSPs
	Example: 4-Queens
	Performance of min-conflicts

