
CS:4420 Artificial Intelligence
Spring 2017

Neural Networks

Cesare Tinelli

The University of Iowa

Copyright 2004–17, Cesare Tinelli and Stuart Russell a

a
These notes were originally developed by Stuart Russell and are used with permission. They are

copyrighted material and may not be used in other course settings outside of the University of Iowa in their

current or modified form without the express written consent of the copyright holders.

CS:4420 Spring 2017 – p.1/37

Readings

• Chap. 18 of [Russell and Norvig, 2012]

CS:4420 Spring 2017 – p.2/37

Brains as Computational Devices

Brains advantages with respect to digital computers:

• Massively parallel

• Fault-tolerant

• Reliable

• Graceful degradation

CS:4420 Spring 2017 – p.3/37

Brains and Neurons

1011 neurons of > 20 types, 1014 synapses, 1ms–10ms cycle time

Signals are noisy“spike trains”of electrical potential

Axon

Cell body or Soma

Nucleus

Dendrite

Synapses

Axonal arborization

Axon from another cell

Synapse

CS:4420 Spring 2017 – p.4/37

Artificial Neural Network

Artificial neural networks are inspired by brains and neurons

A neural network is a graph with nodes, or units, connected by links

Each link has an associated weight, a real number

Typically, each node i outputs a real number, which is fed as input to
the nodes connected to i

The output of a note is a function of the weighted sum of the node’s
inputs

CS:4420 Spring 2017 – p.5/37

A Neural Network Unit

McCulloch & Pitts model:

Output

Σ
Input

Links

Activation

Function

Input

Function

Output

Links

a0 = −1 ai = g(ini)

ai

g
iniWj,i

W0,i

Bias Weight

aj

Output is a“squashed” linear function of the inputs:

ai ← g(ini) = g
(

∑

j Wj,iaj

)

This is a gross oversimplification of real neurons, but is meant to
develop understanding of what networks of simple units can do

CS:4420 Spring 2017 – p.6/37

Possible Activation Functions

(a) Step function (b) Sign function

+1

ai

−1

ini

+1

ai

init

(c) Sigmoid function

+1

ai

ini

stept(x) =

{

1, if x ≥ t

0, if x < t
sign(x) =

{

+1, if x ≥ 0

−1, if x < 0

sigmoid(x) = 1

1+e−x

CS:4420 Spring 2017 – p.7/37

Normalizing Unit Thresholds.

If t is the threshold value of the output unit, then

stept(

n
∑

j=1

WjIj) = step0(

n
∑

j=0

WjIj)

where W0 = t and I0 = −1

So we can always assume that the unit’s threshold is 0

This allows thresholds to be learned like any other weight

Then, we can even allow output values in [0, 1] by replacing step0 by
the sigmoid function

CS:4420 Spring 2017 – p.8/37

Units as Logic Gates

AND

W0 = 1.5

W1 = 1

W2 = 1

OR

W2 = 1

W1 = 1

W0 = 0.5

NOT

W1 = –1

W0 = – 0.5

Activation function: step function

Since units can implement the ∧,∨,¬ boolean operators, neural nets
are Turing-complete: they can implement any computable function

CS:4420 Spring 2017 – p.9/37

Computing with NNs

Different functions are implemented by different network topologies
and unit weights

The allure of NNs is that a network need not be explicitly programmed
to compute a certain function f

Given enough nodes and links, a NN can learn the function by itself

It does so by

• looking at a training set of input/output pairs for f and

• modifying its topology and weights so that its own input/output
behavior agrees with the training pairs

In other words, NNs too learn by induction

CS:4420 Spring 2017 – p.10/37

Learning Network Structures

The structure of a NN is given by its nodes and links

The type of function a network can represent depends on the network
structure

Fixing the network structure in advance can make the task of learning
a certain function impossible

On the other hand, using a large network is also potentially
problematic

If a network has too many parameters (i.e., weights), it will simply
learn the examples by memorizing them in its weights (overfitting)

CS:4420 Spring 2017 – p.11/37

Learning Network Structures

Two main ways to modify a network structure in accordance with the
training set:

Optimal brain damage:
Start with a large, fully-connected network and remove
connections that do not seem to matter

Tiling: Start with a very small network and increasingly add
units to cover correctly more and more examples

Neither technique is completely satisfactory in practice

Often, the network structure is established manually by trial and error
(using cross-validation, etc.)

Learning procedures are then used to learn the network weights only

CS:4420 Spring 2017 – p.12/37

Network structures

Feed-forward networks:

• single-layer perceptrons

• multi-layer perceptrons

Feed-forward networks implement functions, have no internal state

Recurrent networks:

• Hopfield networks have symmetric weights (Wi,j = Wj,i)

g(x)= sign(x), ai= ± 1; holographic associative memory

• Boltzmann machines use stochastic activation functions

Recurrent networks have directed cycles with delays, hence have
internal state (like flip-flops), can oscillate etc.

CS:4420 Spring 2017 – p.13/37

Feed-forward example

W1,3

1,4W

2,3W

2,4W

W3,5

4,5W

1

2

3

4

5

Network is a parameterized family of nonlinear functions:

a5 = g(W3,5 · a3 +W4,5 · a4)

= g(W3,5 · g(W1,3 · a1 +W2,3 · a2) +

W4,5 · g(W1,4 · a1 +W2,4 · a2))

Adjusting weights changes the function: do learning this way!

CS:4420 Spring 2017 – p.14/37

(Single-layer) Perceptrons

Single-layer, feed-forward networks whose units use a step function as
activation function

Perceptron Network Single Perceptron

Input
Units Units

Output Input
Units Unit

Output

OI j Wj,i Oi I j Wj

CS:4420 Spring 2017 – p.15/37

Perceptrons

Input
Units Units

Output
Wj,i

-4 -2 0 2 4x1
-4

-2
0

2
4

x2

0
0.2
0.4
0.6
0.8

1
Perceptron output

Output units all operate separately—no shared weights

Adjusting weights changes the cliff’s location, orientation, and
steepness

CS:4420 Spring 2017 – p.16/37

Perceptron Learning

Perceptrons caused a great stir when they were invented because it
was shown that

If a function is representable by a perceptron, then it is
learnable with 100% accuracy, given enough training
examples

The problem is that perceptrons can only represent linearly-separable
functions

It was soon shown that most of the functions we would like to
compute are not linearly-separable

CS:4420 Spring 2017 – p.17/37

Linearly Separable Functions

2-dimensional space:

I 1

I 2

I 1

I 2

I 1

I 2

?

(a) (b) (c)and or xor

0 1

0

1

0

1 1

0

0 1 0 1

I 2I 1I 1 I 2I 1 I 2

A black dot corresponds to an output value of 1; an empty dot
corresponds to an output value of 0

Can represent and, or, not, majority, etc., but not xor

Represents a linear separator in input space:

∑

j

WjIj > 0 or W · I > 0

CS:4420 Spring 2017 – p.18/37

A Linearly Separable Function

3-dimensional space:

The minority function: return 1 if the input vector contains less 1s
than 0s; return 0 otherwise

(a) Separating plane (b) Weights and threshold

W = −1

t = −1.5
W = −1

W = −1

I3

I2

I1

CS:4420 Spring 2017 – p.19/37

Learning with NNs

Most NN learning methods are current-best-hypothesis methods

function NEURAL-NETWORK-LEARNING(examples) returns network

network a network with randomly assigned weights
repeat

for each e in examplesdo
O NEURAL-NETWORK-OUTPUT(network, e)
T the observed output values from e
update the weights in networkbased on e, O, and T

end
until all examples correctly predicted or stopping criterion is reached
return network

Each cycle in the procedure above is called an epoch

CS:4420 Spring 2017 – p.20/37

The Perceptron Learning Method

Weight updating in perceptrons is very simple because each output
node is independent of the other output nodes.

Perceptron Network Single Perceptron

Input
Units Units

Output Input
Units Unit

Output

OI j Wj,i Oi I j Wj

So we can consider a perceptron with a single output node

CS:4420 Spring 2017 – p.21/37

The Perceptron Learning Method

If O is the value returned by the output unit for a given example and
T is the expected output, then the unit’s error is

E = T −O

If the error E is positive we need to increase O; otherwise, we need to
decrease it

CS:4420 Spring 2017 – p.22/37

The Perceptron Learning Method

• Since O = g(
∑n

j=0
WjIj) where g is the sigmoid function, we

can change O by changing each Wj .

• To increase O we should increase Wj if Ij is positive, decrease
Wj if Ij is negative.

• To decrease O we should decrease Wj if Ij is positive, increase
Wj if Ij is negative.

• This is done by updating each Wj as follows

Wj ← Wj + α · Ij · g
′(

n
∑

j=0

WjIj) · (T −O)

where g′(x) = g(x) · (1− g(x)) is the first derivative of g
and α is a positive constant, the learning rate

CS:4420 Spring 2017 – p.23/37

Perceptron Learning as Search

Provided that the learning rate constant is not too high, the
perceptron will learn any linearly-separable function. Why?

The perceptron learning procedure is a gradient descent search
procedure whose search space has no local minima.

Err

b

a

W2

W1

Each possible configuration of weights for the perceptron is a state in
the search space

CS:4420 Spring 2017 – p.24/37

Perceptron learning contd.

Perceptron learning rule converges to a consistent function for any
linearly separable data set

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100P
ro

po
rt

io
n

co
rr

ec
t o

n
te

st
 s

et

Training set size - MAJORITY on 11 inputs

Perceptron
Decision tree

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100P
ro

po
rt

io
n

co
rr

ec
t o

n
te

st
 s

et
Training set size - RESTAURANT data

Perceptron
Decision tree

Perceptron learns majority function easily, DTL is hopeless

DTL learns restaurant function easily, perceptron cannot represent it

CS:4420 Spring 2017 – p.25/37

Multilayer, Feed-forward Networks

A kind of neural network in which

• links are unidirectional and form no cycles (the net is a directed
acyclic graph)

• the root nodes of the graph are input units, their activation value
is determined by the environment

• the leaf nodes are output units

• the remaining nodes are hidden units

• units can be divided into layers: a unit in a layer is connected
only to units in the next layer

CS:4420 Spring 2017 – p.26/37

A Two-layer, Feed-forward Network

Input units

Hidden units

Output units Oi

Wj,i

a j

Wk,j

Ik

Notes:

• The roots of the graph are at the bottom and the (only) leaf at
the top

• The layer of input units is generally not counted (which is why
this is a two-layer net)

• Layers are usually fully connected; numbers of hidden units is
typically chosen by hand

CS:4420 Spring 2017 – p.27/37

Multilayer, Feed-forward Networks

Are a powerful computational device:

• with just one hidden layer, they can approximate any continuous
function

• with just two hidden layers, they can approximate any
computable function

However, the number of needed units per layer may grow
exponentially with the number of the input units

CS:4420 Spring 2017 – p.28/37

Expressiveness of MLNs

All continuous functions w/ 2 layers, all functions w/ 3 layers

-4 -2 0 2 4x1
-4

-2
0

2
4

x2

0
0.2
0.4
0.6
0.8

1

hW(x1, x2)

-4 -2 0 2 4x1
-4

-2
0

2
4

x2

0
0.2
0.4
0.6
0.8

1

hW(x1, x2)

Combine two opposite-facing threshold functions to make a ridge

Combine two perpendicular ridges to make a bump

Add bumps of various sizes and locations to fit any surface

Proof requires exponentially many hidden units (cf DTL proof)

CS:4420 Spring 2017 – p.29/37

Back-Propagation Learning

Extends the the main idea of perceptron learning to multilayer
networks:

Assess the blame for a unit’s error and divide it among the
contributing weights

1. start from the units in the output layer

2. propagate the error back to previous layers up to the input layer

Weight updates:

Output layer: as in the perceptron case

Hidden layer: by back-propagation

CS:4420 Spring 2017 – p.30/37

Updating Weights: Output Layer

Exactly as in perceptrons:

aj ig(in)Wji

iunit

Oi

Wji ← Wji + α · aj ·∆i

where

• g is the sigmoid function, ini =
∑

j Wji aj

• ∆i = g′(ini) · (Ti −Oi)

• Ti is the expected output

CS:4420 Spring 2017 – p.31/37

Updating Weights: Hidden Layers

jg(in) ajak

aj

aj

Wkj

unit j

Wkj ← Wkj + α · ak ·∆j

where

• ∆j = g′(inj) ·
∑

iWji ∆i

• ∆i = error of unit in the next layer that is connected to unit j

CS:4420 Spring 2017 – p.32/37

The Back-propagation Procedure

1. Choose a learning rate α

2. Choose (small) values for the weights randomly

3. Repeat until network performance is satisfactory

For each training example e

a. Propagate e’s inputs forward to compute output Oi

for each output node i

b. For each output node i, compute

∆i := g′(ini) · (Ti −Oi)

c. For each previous level l and node j in l, compute

∆j := g′(inj) ·
∑

iWji∆i

d. Update each weight Wrs by

Wrs ←Wrs + α · ar ·∆s

CS:4420 Spring 2017 – p.33/37

Why Back-Propagation Works

Back-propagation learning too is a gradient descent search in the
weight space over a certain error surface

If W is the vector of all the weights in the network, the error surface
is given by

E(W) :=

∑

i(Ti −Oi)
2

2

The update for each weight Wji of a unit i is the opposite of the

gradient (slope) of the error surface along the direction Wji:

aj ·∆i = −
∂E(W)

∂Wji

CS:4420 Spring 2017 – p.34/37

Why BP doesn’t Always Work

Producing a new vector W′ by adding to each Wji in W the opposite
of E’s slope along Wji guarantees that

E(W′) ≤ E(W)

Err

b

a

W2

W1

In general, however, the error surface may contain local minima

CS:4420 Spring 2017 – p.35/37

Back-propagation learning contd.

Learning curve for MLP with 4 hidden units:

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

P
ro

po
rt

io
n

co
rr

ec
t o

n
te

st
 s

et

Training set size - RESTAURANT data

Decision tree
Multilayer network

MLNs are quite good for complex pattern recognition tasks, but
resulting hypotheses cannot be understood easily

CS:4420 Spring 2017 – p.36/37

Evaluating Back-propagation

To assess the goodness of back-propagation learning for multilayer
networks one must consider several issues:

• Expressiveness

• Computational efficiency

• Generalization power

• Sensitivity to noise

• Transparency

• Background Knowledge

CS:4420 Spring 2017 – p.37/37

	Readings
	Brains as Computational Devices
	Brains and Neurons
	Artificial Neural Network
	A Neural Network Unit
	Possible Activation Functions
	Normalizing Unit Thresholds.
	Units as Logic Gates
	Computing with NNs
	Learning Network Structures
	Learning Network Structures
	Network structures
	Feed-forward example
	(Single-layer)
Perceptrons
	Perceptrons
	Perceptron Learning
	Linearly Separable Functions
	A Linearly Separable Function
	Learning with NNs
	The Perceptron Learning Method
	The Perceptron Learning Method
	The Perceptron Learning Method
	Perceptron Learning as Search
	Perceptron learning contd.
	Multilayer, Feed-forward Networks
	A Two-layer, Feed-forward Network
	Multilayer, Feed-forward Networks
	Expressiveness of MLNs
	Back-Propagation Learning
	Updating Weights: Output Layer
	Updating Weights: Hidden Layers
	The Back-propagation Procedure
	Why Back-Propagation Works
	Why BP doesn't Always Work
	Back-propagation learning contd.
	Evaluating Back-propagation

