
22c145-Fall’01: Neural Networks

Neural Networks

Readings: Chapter 19 of Russell & Norvig.

Cesare Tinelli 1

22c145-Fall’01: Neural Networks

Brains as Computational Devices

Brains advantages with respect to digital computers:

•Massively parallel

• Fault-tolerant

• Reliable

• Graceful degradation

Cesare Tinelli 2

22c145-Fall’01: Neural Networks

A Neuron

Axon

Cell body or Soma

Nucleus

Dendrite

Synapses

Axonal arborization

Axon from another cell

Synapse

Cesare Tinelli 3

22c145-Fall’01: Neural Networks

Comparing Brains with Computers

Computer Human Brain

Computational units 1 CPU, 105 gates 1011 neurons
Storage units 109 bits RAM, 1010 bits disk 1011 neurons, 1014 synapses
Cycle time 10 � 8 sec 10 � 3 sec
Bandwidth 109 bits/sec 1014 bits/sec
Neuron updates/sec 105 1014

Even if a computer is one million times faster than a brain in raw
speed, a brain ends up being one billion times faster than a computer
at what it does.

Example: Recognizing a face

Brain: < 1s (a few hundred computer cycles)
Computer: billions of cycles

Cesare Tinelli 4

22c145-Fall’01: Neural Networks

Artificial Neural Network

• A neural network is a graph with nodes, or units, connected by
links.

• Each link has an associated weight , a real number.

• Typically, each node i outputs a real number, which is fed as input to
the nodes connected to i.

• The output of a note is a function of the weighted sum of the node’s
inputs.

Cesare Tinelli 5

22c145-Fall’01: Neural Networks

A Neural Network Unit

Output

g
Input

Links

Output

Links

ini

Σ

a = g(in) iia j Wj,i

Activation
 Function

 Input
 Function

ia

Cesare Tinelli 6

22c145-Fall’01: Neural Networks

The Input Function

Each incoming link of a unit i feeds an input value, or activation
value, aj coming from another unit.

The input function ini of a unit is simply the weighted sum of the
unit’s input:

ini(a1, . . . , ani
) =

ni
∑

j=1

Wj,i aj

The unit applies the activation function gi to the result of ini to
produce an output.

Cesare Tinelli 7

22c145-Fall’01: Neural Networks

Different Activation Functions

(a) Step function (b) Sign function

+1

ai

−1

ini

+1

ai

init

(c) Sigmoid function

+1

ai

ini

stept(x) =

{

1, if x ≥ t

0, if x < t
sign(x) =

{

+1, if x ≥ 0

−1, if x < 0
sigmoid(x) = 1

1+e−x

Cesare Tinelli 8

22c145-Fall’01: Neural Networks

Units as Logic Gates

AND OR NOT

t = 1.5 t = 0.5 t = −0.5
W = −1

W = 1

W = 1W = 1

W = 1

Activation function: stept

Since units can implement the ∧,∨,¬ boolean operators, neural nets are
Turing-complete: they can implement any computable function.

Cesare Tinelli 9

22c145-Fall’01: Neural Networks

Computing with NNs

• Different functions are implemented by different network topologies
and unit weights.

• The lure of NNs is that a network need not be explicitly programmed
to compute a certain function f .

• Given enough nodes and links, a NN can learn the function by itself.

• It does so by looking at a training set of input/output pairs for f and
modifying its topology and weights so that its own input/output
behavior agrees with the training pairs.

• In other words, NNs too learn by induction .

Cesare Tinelli 10

22c145-Fall’01: Neural Networks

Learning Network Structures

• The structure of a NN is given by its nodes and links.

• The type of function a network can represent depends on the network
structure.

• Fixing the network structure in advance can make the task of learning
a certain function impossible.

• On the other hand, using a large network is also potentially
problematic.

• If a network has too many parameters (ie, weights), it will simply learn
the examples by memorizing them in its weights (overfitting).

Cesare Tinelli 11

22c145-Fall’01: Neural Networks

Learning Network Structures

There are two ways to modify a network structure in accordance with the
training set.

1. Optimal brain damage.

2. Tiling.

Neither technique is completely satisfactory.

• Often, it is people that define the network structure manually by trial
and error.

• Learning procedures are then used to learn the network weights only.

Cesare Tinelli 12

22c145-Fall’01: Neural Networks

Multilayer, Feed-forward Networks

A kind of neural network in which

• links are unidirectional and form no cycles (the net is a directed
acyclic graph);

• the root nodes of the graph are input units, their activation value is
determined by the environment;

• the leaf nodes are output units;

• the remaining nodes are hidden units;

• units can be divided into layers: a unit in a layer is connected only to
units in the next layer.

Cesare Tinelli 13

22c145-Fall’01: Neural Networks

A Two-layer, Feed-forward Network

Input units

Hidden units

Output units Oi

Wj,i

a j

Wk,j

Ik

Notes.

• This graph is upside-down: the roots of the graph are at the bottom and the (only)

leaf at the top.

• The layer of input units is generally not counted (which is why this is a two-layer net).

Cesare Tinelli 14

22c145-Fall’01: Neural Networks

Multilayer, Feed-forward Networks

Are a powerful computational device:

• with just one hidden layer, they can approximate any continuous
function;

• with just two hidden layers, they can approximate any computable
function.

However, the number of needed units per layer may grow exponentially
with the number of the input units.

Cesare Tinelli 15

22c145-Fall’01: Neural Networks

Perceptrons

Single-layer, feed-forward networks whose units use a step function as
activation function.

Perceptron Network Single Perceptron

Input
Units Units

Output Input
Units Unit

Output

OIj Wj,i Oi Ij Wj

Cesare Tinelli 16

22c145-Fall’01: Neural Networks

Perceptrons

Perceptrons caused a great stir when they were invented because it was
shown that

If a function is representable by a perceptron, then it is
learnable with 100% accuracy, given enough training examples.

The problem is that perceptrons can only represent linearly-separable
functions.

It was soon shown that most of the functions we would like to compute
are not linearly-separable.

Cesare Tinelli 17

22c145-Fall’01: Neural Networks

Linearly Separable Functions on a 2-dimensional Space

I 1

I 2

I 1

I 2

I 1

I 2

?

(a) (b) (c)and or xor

0 1

0

1

0

1 1

0

0 1 0 1

I 2I 1I 1 I 2I 1 I 2

A black dot corresponds to an output value of 1. An empty dot
corresponds to an output value of 0.

Cesare Tinelli 18

22c145-Fall’01: Neural Networks

A Linearly Separable Function on a 3-dimensional Space

The minority function: Return 1 if the input vector contains less ones than
zeros. Return 0 otherwise.

(a) Separating plane (b) Weights and threshold

W = −1

t = −1.5
W = −1

W = −1

I3

I2

I1

Cesare Tinelli 19

22c145-Fall’01: Neural Networks

Learning with NNs

Most NN learning methods are current-best-hypothesis methods.

function NEURAL-NETWORK-LEARNING(examples) returns network

network � a network with randomly assigned weights
repeat

for each e in examples do
O � NEURAL-NETWORK-OUTPUT(network, e)
T � the observed output values from e
update the weights in network based on e, O, and T

end
until all examples correctly predicted or stopping criterion is reached
return network

Each cycle in the procedure above is called an epoch.

Cesare Tinelli 20

22c145-Fall’01: Neural Networks

The Perceptron Learning Method

Weight updating in perceptrons is very simple because each output node
is independent of the other output nodes.

Perceptron Network Single Perceptron

Input
Units Units

Output Input
Units Unit

Output

OIj Wj,i Oi Ij Wj

With no loss of generality then, we can consider a perceptron with a
single output node.

Cesare Tinelli 21

22c145-Fall’01: Neural Networks

Normalizing Unit Thresholds.

• Notice that, if t is the threshold value of the output unit, then

stept(

n
∑

j=1

WjIj) = step0(

n
∑

j=0

WjIj)

where W0 = t and I0 = −1.

• Therefore, we can always assume that the unit’s threshold is 0 if we
include the actual threshold as the weight of an extra link with a fixed
input value.

• This allows thresholds to be learned like any other weight.

• Then, we can even allow output values in [0, 1] by replacing step0 by
the sigmoid function.

Cesare Tinelli 22

22c145-Fall’01: Neural Networks

The Perceptron Learning Method

• If O is the value returned by the output unit for a given example and T
is the expected output, then the unit’s error is

e = T −O

• If the error e is positive we need to increase O; otherwise, we need to
decrease O.

Cesare Tinelli 23

22c145-Fall’01: Neural Networks

The Perceptron Learning Method

• Since O = g(
∑n

j=0
WjIj), we can change O by changing each Wj.

• To increase O we should increase Wj if Ij is positive, decrease Wj if Ij
is negative.

• To decrease O we should decrease Wj if Ij is positive, increase Wj if Ij
is negative.

• This is done by updating each Wj as follows

Wj ← Wj + α× Ij × (T −O)

where α is a positive constant, the learning rate.

Cesare Tinelli 24

22c145-Fall’01: Neural Networks

Perceptron Learning as Gradient Descent Search

Provided that the learning rate constant is not too high, the perceptron
will learn any linearly-separable function. Why?

The perceptron learning procedure is a gradient descent search
procedure whose search space has no local minima.

Err

b

a

W2

W1

Each possible configuration of weights for the perceptron is a state in the search space.

Cesare Tinelli 25

22c145-Fall’01: Neural Networks

Back-Propagation Learning

Extends the the main idea of perceptron learning to multilayer networks:

Assess the blame for a unit’s error and divide it among the
contributing weights.

We start from the units in the output layer and propagate the error back
to previous layers until we reach the input layer.

Weight updates:

• Output layer. Analogous to the perceptron case.

• Hidden layer. By back-propagation.

Cesare Tinelli 26

22c145-Fall’01: Neural Networks

Updating Weights: Output Layer

aj ig(in)Wji

iunit

Oi

Wji ← Wji + α× aj ×∆i

where

• ∆i = g′(ini)× (Ti −Oi),

• Ti is the expected output,

• g′ is the derivative of g,

• ini =
∑

j Wji aj,

• α is the learning rate.

Cesare Tinelli 27

22c145-Fall’01: Neural Networks

Updating Weights: Hidden Layers

jg(in) ajak

aj

aj

Wkj

unit j

Wkj ← Wkj + α× ak ×∆j

where

• ∆j = g′(inj)×
∑

iWji ∆i

• ∆i = error of unit in the next layer that is connected to unit j

Cesare Tinelli 28

22c145-Fall’01: Neural Networks

The Back-propagation Procedure

• Choose a learning rate α

• Repeat until network performance is satisfactory

– For each training example

1. for each output node i compute

∆i := g′(ini)(Ti −Oi)

2. for each hidden node j compute

∆j := g′(inj)
∑

i

Wji ∆i

3. Update each weight Wrs by

Wrs ← Wrs + α× ar ×∆s

Cesare Tinelli 29

22c145-Fall’01: Neural Networks

Why Back-propagation Works

Back-propagation learning as well is a gradient descent search in the
weight space over a certain error surface.

WhereW is the vector of all the weights in the network, the error surface
is given by

E(W) :=

∑

i(Ti −Oi)
2

2

The update for each weight Wji of a unit i is the opposite of the gradient
(slope) of the error surface along the direction Wji, that is,

aj ×∆i = −
∂E(W)

∂Wji

Cesare Tinelli 30

22c145-Fall’01: Neural Networks

Why Back-propagation doesn’t Always Work

Producing a new vectorW′ by adding to each Wji inW the opposite of
E’s slope along Wji guarantees that

E(W′) ≤ E(W).
Err

b

a

W2

W1

In general, however, the error surface may contain local minima.

Hence, convergence to an optimal set of weights is not guaranteed in
back-propagation learning (contrary to perceptron learning).

Cesare Tinelli 31

22c145-Fall’01: Neural Networks

Evaluating Back-propagation

To assess the goodness of back-propagation learning for multilayer
networks one needs to consider the following issues.

• Expressiveness.

• Computational efficiency.

• Generalization power.

• Sensitivity to noise.

• Transparency.

• Background Knowledge.

Cesare Tinelli 32

