
CS:4350 Logic in Computer Science

Model Checking

Cesare Tinelli

Spring 2021

1 / 28



Credits

These slides are largely based on slides originally developed by Andrei Voronkov
at the University of Manchester. Adapted by permission.

2 / 28



Outline

Model Checking
Model Checking Problem
Safety Properties and Reachability
Symbolic Reachability Checking

3 / 28



Putting it All Together

When we design a computational system, we would like to be sure that it will
satisfy all requirements, including safety requirements

Nowwe can treat the safety problem as a logical problem.
We can
• formally represent our system as a transition system
• express the desired properties of the system in temporal logic

What is missing?

4 / 28



Putting it All Together

When we design a computational system, we would like to be sure that it will
satisfy all requirements, including safety requirements

Nowwe can treat the safety problem as a logical problem.

We can
• formally represent our system as a transition system
• express the desired properties of the system in temporal logic

What is missing?

4 / 28



Putting it All Together

When we design a computational system, we would like to be sure that it will
satisfy all requirements, including safety requirements

Nowwe can treat the safety problem as a logical problem.
We can
• formally represent our system as a transition system
• express the desired properties of the system in temporal logic

What is missing?

4 / 28



Putting it All Together

When we design a computational system, we would like to be sure that it will
satisfy all requirements, including safety requirements

Nowwe can treat the safety problem as a logical problem.
We can
• formally represent our system as a transition system
• express the desired properties of the system in temporal logic

What is missing?

4 / 28



The Model Checking Problem

Given
1. a symbolic representation of a transition system
2. a temporal formula F

check if every (some) execution of the system satisfies this formula,
preferably fully automatically

5 / 28



Symbolic Representation and Transition Systems

Consider the transition systems T1 and T2:

T1

x = 0x = 1s1 s2

T2

x = 0x = 1s1 s2

x = 1s0

T1 and T2 have the same symbolic representation but satisfy di�erent LTL formulas
(e.g., ♦¬x)

This happens only if one of the transition systems has two states with the same
labelling function (e.g., s0 and s1 in T2)

Such symbolic representations are inadequate: one cannot distinguish two
di�erent states by a state formula

6 / 28



Symbolic Representation and Transition Systems

Consider the transition systems T1 and T2:

T1

x = 0x = 1s1 s2

T2

x = 0x = 1s1 s2

x = 1s0

T1 and T2 have the same symbolic representation but satisfy di�erent LTL formulas
(e.g., ♦¬x)

This happens only if one of the transition systems has two states with the same
labelling function (e.g., s0 and s1 in T2)

Such symbolic representations are inadequate: one cannot distinguish two
di�erent states by a state formula

6 / 28



Symbolic Representation and Transition Systems

Consider the transition systems T1 and T2:

T1

x = 0x = 1s1 s2

T2

x = 0x = 1s1 s2

x = 1s0

T1 and T2 have the same symbolic representation but satisfy di�erent LTL formulas
(e.g., ♦¬x)

This happens only if one of the transition systems has two states with the same
labelling function (e.g., s0 and s1 in T2)

Such symbolic representations are inadequate: one cannot distinguish two
di�erent states by a state formula

6 / 28



Making an Adequate Representation

If a transition system has di�erent states labeled by the same interpretation,
introduce a new state variable to distinguish any such pair of states

Example: One can add a current state variable cs with a unique value for each state

x = 0
cs = s2

x = 1
cs = s1

s1 s2

x = 1
cs = s0

s0

Wewill assume that di�erent states always have di�erent labelings

7 / 28



Making an Adequate Representation

If a transition system has di�erent states labeled by the same interpretation,
introduce a new state variable to distinguish any such pair of states

Example: One can add a current state variable cs with a unique value for each state

x = 0
cs = s2

x = 1
cs = s1

s1 s2

x = 1
cs = s0

s0

Wewill assume that di�erent states always have di�erent labelings

7 / 28



Making an Adequate Representation

If a transition system has di�erent states labeled by the same interpretation,
introduce a new state variable to distinguish any such pair of states

Example: One can add a current state variable cs with a unique value for each state

x = 0
cs = s2

x = 1
cs = s1

s1 s2

x = 1
cs = s0

s0

Wewill assume that di�erent states always have di�erent labelings

7 / 28



Reachability and Safety Properties

Reachability property: expressed by a formula for the form

♦F

where F is a propositional formula1

Safety/invariance property: expressed by a formula of the form

F

where F is a propositional formula

Most common problems arising in model checking. They are dual to each other:

F ≡ ¬♦¬F ♦F ≡ ¬ ¬F

Cannot reach an unsafe state i� all reachable states are safe

1Could be a PLFD. Restriction to PL is for simplicity.
8 / 28



Reachability and Safety Properties

Reachability property: expressed by a formula for the form

♦F

where F is a propositional formula1

Safety/invariance property: expressed by a formula of the form

F

where F is a propositional formula

Most common problems arising in model checking. They are dual to each other:

F ≡ ¬♦¬F ♦F ≡ ¬ ¬F

Cannot reach an unsafe state i� all reachable states are safe

1Could be a PLFD. Restriction to PL is for simplicity.
8 / 28



Reachability and Safety Properties

Reachability property: expressed by a formula for the form

♦F

where F is a propositional formula1

Safety/invariance property: expressed by a formula of the form

F

where F is a propositional formula

Most common problems arising in model checking. They are dual to each other:

F ≡ ¬♦¬F ♦F ≡ ¬ ¬F

Cannot reach an unsafe state i� all reachable states are safe

1Could be a PLFD. Restriction to PL is for simplicity.
8 / 28



Reachability and Safety Properties

Reachability property: expressed by a formula for the form

♦F

where F is a propositional formula1

Safety/invariance property: expressed by a formula of the form

F

where F is a propositional formula

Most common problems arising in model checking. They are dual to each other:

F ≡ ¬♦¬F ♦F ≡ ¬ ¬F

Cannot reach an unsafe state i� all reachable states are safe

1Could be a PLFD. Restriction to PL is for simplicity.
8 / 28



Reachability

Fix a transition system Swith transition relation T over states S

Wewrite s0 → s1 if (s0, s1) ∈ T, i.e., if there is a transition from state s0 to state s1

Let s ∈ S
• s is reachable in n steps from a state s0 ∈ S if there exist states s1, . . . , sn ∈ S
such that sn = s and s0 → s1 → · · · → sn

• s ∈ S is reachable from a state s0 ∈ S if s is reachable from s0 in n ≥ 0 steps
• s ∈ S is reachable in S if s is reachable from some initial state of S

9 / 28



Reachability

Fix a transition system Swith transition relation T over states S

Wewrite s0 → s1 if (s0, s1) ∈ T, i.e., if there is a transition from state s0 to state s1

Let s ∈ S
• s is reachable in n steps from a state s0 ∈ S if there exist states s1, . . . , sn ∈ S
such that sn = s and s0 → s1 → · · · → sn

• s ∈ S is reachable from a state s0 ∈ S if s is reachable from s0 in n ≥ 0 steps
• s ∈ S is reachable in S if s is reachable from some initial state of S

9 / 28



Reachability

Fix a transition system Swith transition relation T over states S

Wewrite s0 → s1 if (s0, s1) ∈ T, i.e., if there is a transition from state s0 to state s1

Let s ∈ S
• s is reachable in n steps from a state s0 ∈ S if there exist states s1, . . . , sn ∈ S
such that sn = s and s0 → s1 → · · · → sn

• s ∈ S is reachable from a state s0 ∈ S if s is reachable from s0 in n ≥ 0 steps
• s ∈ S is reachable in S if s is reachable from some initial state of S

9 / 28



Reachability

Fix a transition system Swith transition relation T over states S

Wewrite s0 → s1 if (s0, s1) ∈ T, i.e., if there is a transition from state s0 to state s1

Let s ∈ S
• s is reachable in n steps from a state s0 ∈ S if there exist states s1, . . . , sn ∈ S
such that sn = s and s0 → s1 → · · · → sn

• s ∈ S is reachable from a state s0 ∈ S if s is reachable from s0 in n ≥ 0 steps
• s ∈ S is reachable in S if s is reachable from some initial state of S

9 / 28



Reachability Properties and Graph Reachability

Theorem 1
A reachability property♦F holds on some computation path i� s |= F for some
reachable state s.

10 / 28



Reformulation of Reachability

Given
1. An initial condition I denoting the set of initial states of a transition system S
2. A final condition F denoting a set of final states
3. A transition formula Tr denoting the transition relation of S

is any final state reachable from an initial state?

Note: this reformulation does not use temporal logic

11 / 28



Reformulation of Reachability

Given
1. An initial condition I denoting the set of initial states of a transition system S
2. A final condition F denoting a set of final states
3. A transition formula Tr denoting the transition relation of S

is any final state reachable from an initial state?

Note: this reformulation does not use temporal logic

11 / 28



Symbolic Reachability Checking

Main Idea: build a symbolic representation of the set of reachable
states

Twomain kinds of algorithm:
• forward reachability
• backward reachability

12 / 28



Symbolic Reachability Checking

Main Idea: build a symbolic representation of the set of reachable
states

Twomain kinds of algorithm:
• forward reachability
• backward reachability

12 / 28



Reachability as a Decision Problem

Let x = x1, . . . , xn be state variables

Given
1. a formula I(x), the initial condition
2. a formula F(x), the final condition
3. formula T(x, x′), the transition formula

is there a sequence of states s0, . . . , sn such that
1. s0 |= I(x)
2. (si−1, si) |= T(x, x′) for all i = 0, . . . , n− 1
3. sn |= F(x)

Note that in this case sn is reachable from s0 in n steps

13 / 28



Reachability as a Decision Problem

Let x = x1, . . . , xn be state variables

Given
1. a formula I(x), the initial condition
2. a formula F(x), the final condition
3. formula T(x, x′), the transition formula

is there a sequence of states s0, . . . , sn such that
1. s0 |= I(x)
2. (si−1, si) |= T(x, x′) for all i = 0, . . . , n− 1
3. sn |= F(x)

Note that in this case sn is reachable from s0 in n steps

13 / 28



Idea of Reachability-Checking Algorithms

Note: If a final state is reachable from an initial state, it is reachable (from an initial
state) in some number n of steps

Approach: For given number n ≥ 0, find a formula denoting the set of states
reachable in n steps

If this formula is not satisfied in a final state, increase n and start again

When does this process terminate?

14 / 28



Idea of Reachability-Checking Algorithms

Note: If a final state is reachable from an initial state, it is reachable (from an initial
state) in some number n of steps

Approach: For given number n ≥ 0, find a formula denoting the set of states
reachable in n steps

If this formula is not satisfied in a final state, increase n and start again

When does this process terminate?

14 / 28



Idea of Reachability-Checking Algorithms

Note: If a final state is reachable from an initial state, it is reachable (from an initial
state) in some number n of steps

Approach: For given number n ≥ 0, find a formula denoting the set of states
reachable in n steps

If this formula is not satisfied in a final state, increase n and start again

When does this process terminate?

14 / 28



Idea of Reachability-Checking Algorithms

Note: If a final state is reachable from an initial state, it is reachable (from an initial
state) in some number n of steps

Approach: For given number n ≥ 0, find a formula denoting the set of states
reachable in n steps

If this formula is not satisfied in a final state, increase n and start again

When does this process terminate?

14 / 28



Reachability in n steps

Number of steps:

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BAD

BAD

s5

BADs6

BAD

s7

BAD

BAD

BAD

BADBAD

15 / 28



Reachability in n steps

Number of steps: 0

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BAD

BAD

s5

BADs6

BAD

s7

BAD

BAD

BAD

BADBAD

15 / 28



Reachability in n steps

Number of steps: 1

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BAD

BAD

s5

BADs6

BAD

s7

BAD

BAD

BAD

BADBAD

15 / 28



Reachability in n steps

Number of steps: 2

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BAD

BAD

s5

BADs6

BAD

s7

BAD

BAD

BAD

BAD

BAD

15 / 28



Reachability in n steps

Number of steps: 3

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BAD

BAD

s5

BADs6

BAD

s7

BAD

BAD

BAD

BADBAD

15 / 28



Reachability in n steps

Number of steps: 4

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADBADs5

BADs6

BAD

s7

BAD

BAD

BAD

BADBAD

15 / 28



Simple Logical Analysis

Notation If z = (z1, . . . , zn) is a tuple of variables, ∃zF abbreviates ∃z1 · · · ∃znF

Lemma 2
Let C(x) symbolically represent a set of states SC. The formula

FR(x) def
= ∃z(C(z) ∧ T(z, x))

represents the set of states reachable from SC in one step.

Each formula Rn defined inductive as follows:

R0(x)
def
= I(x)

Rn+1(x)
def
= ∃z(Rn(z) ∧ T(x, z))

denotes the set of states reachable in n steps

16 / 28



Simple Logical Analysis

Notation If z = (z1, . . . , zn) is a tuple of variables, ∃zF abbreviates ∃z1 · · · ∃znF

Lemma 2
Let C(x) symbolically represent a set of states SC. The formula

FR(x) def
= ∃z(C(z) ∧ T(z, x))

represents the set of states reachable from SC in one step.

Each formula Rn defined inductive as follows:

R0(x)
def
= I(x)

Rn+1(x)
def
= ∃z(Rn(z) ∧ T(x, z))

denotes the set of states reachable in n steps

16 / 28



Simple Forward Reachability Algorithm

procedure FReach(I, T, F)
input: formulas I, T, F
output: “yes” or no output
begin
i := 0
R := I(x0)
loop
if R ∧ F(xi) is satisfiable then return “yes”
R := R ∧ T(xi, xi+1)
i := i + 1
end loop
end

How do we check the satisfiability of R ∧ F(xi)? Using SAT solvers!

17 / 28



Simple Forward Reachability Algorithm

procedure FReach(I, T, F)
input: formulas I, T, F
output: “yes” or no output
begin
i := 0
R := I(x0)
loop
if R ∧ F(xi) is satisfiable then return “yes”
R := R ∧ T(xi, xi+1)
i := i + 1
end loop
end

How do we check the satisfiability of R ∧ F(xi)?

Using SAT solvers!

17 / 28



Simple Forward Reachability Algorithm

procedure FReach(I, T, F)
input: formulas I, T, F
output: “yes” or no output
begin
i := 0
R := I(x0)
loop
if R ∧ F(xi) is satisfiable then return “yes”
R := R ∧ T(xi, xi+1)
i := i + 1
end loop
end

How do we check the satisfiability of R ∧ F(xi)? Using SAT solvers!

17 / 28



Termination
Number of steps: 0

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

BAD

BAD

BAD

BADBADBAD

When no final state is reachable, the algorithm does not terminate!

18 / 28



Termination
Number of steps: 1

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

BAD

BAD

BAD

BADBADBAD

When no final state is reachable, the algorithm does not terminate!

18 / 28



Termination
Number of steps: 2

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

BAD

BAD

BAD

BAD

BADBAD

When no final state is reachable, the algorithm does not terminate!

18 / 28



Termination
Number of steps: 3

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

BAD

BAD

BAD

BADBAD

BAD

When no final state is reachable, the algorithm does not terminate!

18 / 28



Termination
Number of steps: 4

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

BAD

BAD

BAD

BADBADBAD

When no final state is reachable, the algorithm does not terminate!

18 / 28



Termination
Number of steps: 5

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

BAD

BAD

BAD

BADBADBAD

When no final state is reachable, the algorithm does not terminate!

18 / 28



Termination
Number of steps: 6

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

BAD

BAD

BAD

BADBADBAD

When no final state is reachable, the algorithm does not terminate!

18 / 28



Termination
Number of steps: 7

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

BAD

BAD

BAD

BADBADBAD

When no final state is reachable, the algorithm does not terminate!

18 / 28



Reachability in≤ n steps

Define a sequence of formulas R≤n for reachability in at most n states:

R≤0(x)
def
= I(x)

R≤n+1(x)
def
= R≤n(x) ∨ ∃z(R≤n(z) ∧ T(z, x))

19 / 28



Reachability in≤ n steps
Number of steps: 0

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

BAD

BAD

BAD

BADBADBAD

Full set of reachable states has been determined

20 / 28



Reachability in≤ n steps
Number of steps: 1

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

BAD

BAD

BAD

BADBADBAD

Full set of reachable states has been determined

20 / 28



Reachability in≤ n steps
Number of steps: 2

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

BAD

BAD

BAD

BAD

BADBAD

Full set of reachable states has been determined

20 / 28



Reachability in≤ n steps
Number of steps: 3

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

BAD

BAD

BAD

BADBAD

BAD

Full set of reachable states has been determined

20 / 28



Reachability in≤ n steps
Number of steps: 4

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

BAD

BAD

BAD

BADBADBAD

Full set of reachable states has been determined

20 / 28



Reachability in≤ n steps
Number of steps: 5

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADs6

BAD

s7

BAD

BAD

BAD

BADBADBAD

Full set of reachable states has been determined

20 / 28



Termination

Let Sn the set of states reachable in≤ n steps

Key properties for termination:
1. Si ⊆ Si+1 for all i
2. the state space is finite

Consequences:
• there is k such that Sk = Sk+1
• for such k we have R≤k(x) ≡ R≤k+1(x)

21 / 28



Termination

Let Sn the set of states reachable in≤ n steps

Key properties for termination:
1. Si ⊆ Si+1 for all i
2. the state space is finite

Consequences:
• there is k such that Sk = Sk+1
• for such k we have R≤k(x) ≡ R≤k+1(x)

21 / 28



Forward Reachability Algorithm

procedure FReach(I, T, F)
input: formulas I, T, F
output: “yes” or “no”
begin
R(x) := I(x)
loop
if R(x) ∧ F(x) is satisfiable then return “yes”
R′(x) := R(x) ∨ ∃z(R(z) ∧ T(z, x))
if R(x) ≡ R′(x) then return “no”
R(x) := R′(x)
end loop
end

Implementation?
Use OBDDs and OBDD algorithms

Conjunction and disjunction
Quantification
Satisfiability checking
Equivalence checking

22 / 28



Forward Reachability Algorithm

procedure FReach(I, T, F)
input: formulas I, T, F
output: “yes” or “no”
begin
R(x) := I(x)
loop
if R(x) ∧ F(x) is satisfiable then return “yes”
R′(x) := R(x) ∨ ∃z(R(z) ∧ T(z, x))
if R(x) ≡ R′(x) then return “no”
R(x) := R′(x)
end loop
end

Implementation?

Use OBDDs and OBDD algorithms

Conjunction and disjunction
Quantification
Satisfiability checking
Equivalence checking

22 / 28



Forward Reachability Algorithm

procedure FReach(I, T, F)
input: formulas I, T, F
output: “yes” or “no”
begin
R(x) := I(x)
loop
if R(x) ∧ F(x) is satisfiable then return “yes”
R′(x) := R(x) ∨ ∃z(R(z) ∧ T(z, x))
if R(x) ≡ R′(x) then return “no”
R(x) := R′(x)
end loop
end

Implementation?
Use OBDDs and OBDD algorithms

Conjunction and disjunction

Quantification
Satisfiability checking
Equivalence checking

22 / 28



Forward Reachability Algorithm

procedure FReach(I, T, F)
input: formulas I, T, F
output: “yes” or “no”
begin
R(x) := I(x)
loop
if R(x) ∧ F(x) is satisfiable then return “yes”
R′(x) := R(x) ∨ ∃z(R(z) ∧ T(z, x))
if R(x) ≡ R′(x) then return “no”
R(x) := R′(x)
end loop
end

Implementation?
Use OBDDs and OBDD algorithms

Conjunction and disjunction
Quantification

Satisfiability checking
Equivalence checking

22 / 28



Forward Reachability Algorithm

procedure FReach(I, T, F)
input: formulas I, T, F
output: “yes” or “no”
begin
R(x) := I(x)
loop
if R(x) ∧ F(x) is satisfiable then return “yes”
R′(x) := R(x) ∨ ∃z(R(z) ∧ T(z, x))
if R(x) ≡ R′(x) then return “no”
R(x) := R′(x)
end loop
end

Implementation?
Use OBDDs and OBDD algorithms

Conjunction and disjunction
Quantification
Satisfiability checking

Equivalence checking

22 / 28



Forward Reachability Algorithm

procedure FReach(I, T, F)
input: formulas I, T, F
output: “yes” or “no”
begin
R(x) := I(x)
loop
if R(x) ∧ F(x) is satisfiable then return “yes”
R′(x) := R(x) ∨ ∃z(R(z) ∧ T(z, x))
if R(x) ≡ R′(x) then return “no”
R(x) := R′(x)
end loop
end

Implementation?
Use OBDDs and OBDD algorithms

Conjunction and disjunction
Quantification
Satisfiability checking
Equivalence checking

22 / 28



Forward Reachability Algorithm

procedure FReach(I, T, F)
input: formulas I, T, F
output: “yes” or “no”
begin
R(x) := I(x)
loop
if R(x) ∧ F(x) is satisfiable then return “yes”
R′(x) := R(x) ∨ ∃z(R(z) ∧ T(z, x))
if R(x) ≡ R′(x) then return “no”
R(x) := R′(x)
end loop
end

Implementation?
Use OBDDs and OBDD algorithms

Conjunction and disjunction
Quantification
Satisfiability checking
Equivalence checking

22 / 28



Main Issues with Forward Reachability Algorithms

Forward reachability behaves in the same way, independently of the set of final
states

In other words, they are not goal oriented

23 / 28



Backward Reachability

in≤ n steps

Idea:
• instead of going forward in the state transition graph, go backward
• swap initial and final states and invert the transition relation

Number of backward steps:

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BAD

BAD

s6

BAD

s7

Bad states unreachable!

24 / 28



Backward Reachability in≤ n steps
Idea:
• instead of going forward in the state transition graph, go backward
• swap initial and final states and invert the transition relation

Number of backward steps: 0

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BAD

BAD

s6

BAD

s7

Bad states unreachable!

24 / 28



Backward Reachability in≤ n steps
Idea:
• instead of going forward in the state transition graph, go backward
• swap initial and final states and invert the transition relation

Number of backward steps: 1

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADBADs6

BAD

s7

Bad states unreachable!

24 / 28



Backward Reachability in≤ n steps
Idea:
• instead of going forward in the state transition graph, go backward
• swap initial and final states and invert the transition relation

Number of backward steps: 1

BADs0

BADs1

BAD s2

BAD

s3

BAD

s4

BADs5

BADBADs6

BAD

s7

Bad states unreachable!
24 / 28



Backward Reachability in n steps

Number of backward steps: 0

BAD

BAD

s0

BAD

BAD

s1

BAD

BAD

s2

BAD

BAD

s3

BAD

BAD

s4

BADBADs5

BADs6

BAD

s7

Bad states reachable!

25 / 28



Backward Reachability in n steps

Number of backward steps: 1

BAD

BAD

s0

BAD

BAD

s1

BAD

BAD

s2

BAD

BAD

s3

BADBAD

s4

BAD

BAD

s5

BADs6

BAD

s7

Bad states reachable!

25 / 28



Backward Reachability in n steps

Number of backward steps: 2

BAD

BAD

s0

BAD

BAD

s1

BAD

BAD

s2

BADBAD

s3

BAD

BAD

s4

BAD

BAD

s5

BADs6

BAD

s7

Bad states reachable!

25 / 28



Backward Reachability in n steps

Number of backward steps: 3

BAD

BAD

s0

BADBADs1

BAD

BAD

s2

BADBAD

s3

BAD

BAD

s4

BAD

BAD

s5

BADs6

BAD

s7

Bad states reachable!

25 / 28



Backward Reachability in n steps

Number of backward steps: 4

BADBADs0

BADBADs1

BADBAD s2

BADBAD

s3

BAD

BAD

s4

BAD

BAD

s5

BADs6

BAD

s7

Bad states reachable!

25 / 28



Backward Reachability

S0 is backward reachable from F in n steps if F is reachable from S0 in n steps

Lemma 3
Let C(x) symbolically represent a set of states SC. The formula

BR(x) def
= ∃z(T(x, z) ∧ C(z))

denotes the set of states backward reachable from SC in one step.

26 / 28



Backward Reachability

S0 is backward reachable from F in n steps if F is reachable from S0 in n steps

Lemma 3
Let C(x) symbolically represent a set of states SC. The formula

BR(x) def
= ∃z(T(x, z) ∧ C(z))

denotes the set of states backward reachable from SC in one step.

26 / 28



Backward Reachability Algorithm
Same as the forward reachability algorithms, but
• swap Iwith F
• use the inverse of the transition relation T

procedure BReach(I, T, F)
input: formulas I, T, F
output: “yes” or “no”
begin
R(x) := F(x)
loop
if R(x) ∧ I(x) is satisfiable then
return “yes”
R′(x) := R(x) ∨ ∃z(T(x, z) ∧ R(z))
if R(x) ≡ R′(x) then return “no”
R(x) := R′(x)
end loop
end

procedure FReach(I, T, F)
input: formulas I, T, F
output: “yes” or “no”
begin
R(x) := I(x)
loop
if R(x) ∧ F(x) is satisfiable then
return “yes”
R′(x) := R(x) ∨ ∃z(R(z) ∧ T(z, x))
if R(x) ≡ R′(x) then return “no”
R(x) := R′(x)
end loop
end

27 / 28



Backward Reachability Algorithm
Same as the forward reachability algorithms, but
• swap Iwith F
• use the inverse of the transition relation T

procedure BReach(I, T, F)
input: formulas I, T, F
output: “yes” or “no”
begin
R(x) := F(x)
loop
if R(x) ∧ I(x) is satisfiable then
return “yes”
R′(x) := R(x) ∨ ∃z(T(x, z) ∧ R(z))
if R(x) ≡ R′(x) then return “no”
R(x) := R′(x)
end loop
end

procedure FReach(I, T, F)
input: formulas I, T, F
output: “yes” or “no”
begin
R(x) := I(x)
loop
if R(x) ∧ F(x) is satisfiable then
return “yes”
R′(x) := R(x) ∨ ∃z(R(z) ∧ T(z, x))
if R(x) ≡ R′(x) then return “no”
R(x) := R′(x)
end loop
end

27 / 28



Backward Reachability Algorithm
Same as the forward reachability algorithms, but
• swap Iwith F
• use the inverse of the transition relation T

procedure BReach(I, T, F)
input: formulas I, T, F
output: “yes” or “no”
begin
R(x) := F(x)
loop
if R(x) ∧ I(x) is satisfiable then
return “yes”
R′(x) := R(x) ∨ ∃z(T(x, z) ∧ R(z))
if R(x) ≡ R′(x) then return “no”
R(x) := R′(x)
end loop
end

procedure FReach(I, T, F)
input: formulas I, T, F
output: “yes” or “no”
begin
R(x) := I(x)
loop
if R(x) ∧ F(x) is satisfiable then
return “yes”
R′(x) := R(x) ∨ ∃z(R(z) ∧ T(z, x))
if R(x) ≡ R′(x) then return “no”
R(x) := R′(x)
end loop
end

27 / 28



Backward Reachability Algorithm
Same as the forward reachability algorithms, but
• swap Iwith F
• use the inverse of the transition relation T

procedure BReach(I, T, F)
input: formulas I, T, F
output: “yes” or “no”
begin
R(x) := F(x)
loop
if R(x) ∧ I(x) is satisfiable then
return “yes”
R′(x) := R(x) ∨ ∃z(T(x, z) ∧ R(z))
if R(x) ≡ R′(x) then return “no”
R(x) := R′(x)
end loop
end

procedure FReach(I, T, F)
input: formulas I, T, F
output: “yes” or “no”
begin
R(x) := I(x)
loop
if R(x) ∧ F(x) is satisfiable then
return “yes”
R′(x) := R(x) ∨ ∃z(R(z) ∧ T(z, x))
if R(x) ≡ R′(x) then return “no”
R(x) := R′(x)
end loop
end

27 / 28



Extensions of Model Checking

• There are model-checking algorithms for properties other than reachability

• there is a general model-checking algorithm for arbitrary LTL properties

• there are extensions of model-checking techniques for infinite-state systems

• they will not be considered in this course

28 / 28



Extensions of Model Checking

• There are model-checking algorithms for properties other than reachability

• there is a general model-checking algorithm for arbitrary LTL properties

• there are extensions of model-checking techniques for infinite-state systems

• they will not be considered in this course

28 / 28



Extensions of Model Checking

• There are model-checking algorithms for properties other than reachability

• there is a general model-checking algorithm for arbitrary LTL properties

• there are extensions of model-checking techniques for infinite-state systems

• they will not be considered in this course

28 / 28



Extensions of Model Checking

• There are model-checking algorithms for properties other than reachability

• there is a general model-checking algorithm for arbitrary LTL properties

• there are extensions of model-checking techniques for infinite-state systems

• they will not be considered in this course

28 / 28


	Model Checking
	Model Checking Problem
	Safety Properties and Reachability
	Symbolic Reachability Checking


