CS:4350 Logic in Computer Science
 Model Checking

Cesare Tinelli

Spring 2021

Credits

These slides are largely based on slides originally developed by Andrei Voronkov at the University of Manchester. Adapted by permission.

Outline

Model Checking
Model Checking Problem
Safety Properties and Reachability
Symbolic Reachability Checking

Putting it All Together

When we design a computational system, we would like to be sure that it will satisfy all requirements, including safety requirements

Putting it All Together

When we design a computational system, we would like to be sure that it will satisfy all requirements, including safety requirements

Now we can treat the safety problem as a logical problem.

Putting it All Together

When we design a computational system, we would like to be sure that it will satisfy all requirements, including safety requirements

Now we can treat the safety problem as a logical problem. We can

- formally represent our system as a transition system
- express the desired properties of the system in temporal logic

Putting it All Together

When we design a computational system, we would like to be sure that it will satisfy all requirements, including safety requirements

Now we can treat the safety problem as a logical problem. We can

- formally represent our system as a transition system
- express the desired properties of the system in temporal logic

What is missing?

The Model Checking Problem

Given

1. a symbolic representation of a transition system
2. a temporal formula F
check if every (some) execution of the system satisfies this formula, preferably fully automatically

Symbolic Representation and Transition Systems

Consider the transition systems T_{1} and T_{2} :

T_{1} and T_{2} have the same symbolic representation but satisfy different LTL formulas (e.g., $\diamond \neg x$)

Symbolic Representation and Transition Systems

Consider the transition systems T_{1} and T_{2} :

T_{1} and T_{2} have the same symbolic representation but satisfy different LTL formulas (e.g., $\diamond \neg x$)

This happens only if one of the transition systems has two states with the same labelling function (e.g., s_{0} and s_{1} in T_{2})

Symbolic Representation and Transition Systems

Consider the transition systems T_{1} and T_{2} :

T_{1} and T_{2} have the same symbolic representation but satisfy different LTL formulas (e.g., $\diamond \neg x$)

This happens only if one of the transition systems has two states with the same labelling function (e.g., s_{0} and s_{1} in T_{2})

Such symbolic representations are inadequate: one cannot distinguish two different states by a state formula

Making an Adequate Representation

If a transition system has different states labeled by the same interpretation, introduce a new state variable to distinguish any such pair of states

Making an Adequate Representation

If a transition system has different states labeled by the same interpretation, introduce a new state variable to distinguish any such pair of states

Example: One can add a current state variable cs with a unique value for each state

Making an Adequate Representation

If a transition system has different states labeled by the same interpretation, introduce a new state variable to distinguish any such pair of states

Example: One can add a current state variable cs with a unique value for each state

We will assume that different states always have different labelings

Reachability and Safety Properties

Reachability property: expressed by a formula for the form ΔF
where F is a propositional formula ${ }^{1}$

[^0]
Reachability and Safety Properties

Reachability property: expressed by a formula for the form

where F is a propositional formula ${ }^{1}$
Safety/invariance property: expressed by a formula of the form
\square
where F is a propositional formula
${ }^{1}$ Could be a PLFD. Restriction to PL is for simplicity.

Reachability and Safety Properties

Reachability property: expressed by a formula for the form

ΔF

where F is a propositional formula ${ }^{1}$
Safety/invariance property: expressed by a formula of the form
\square
where F is a propositional formula

Most common problems arising in model checking. They are dual to each other:

$$
\square F \equiv \neg \diamond \neg F
$$

$$
\diamond F \equiv \neg \square \neg F
$$

[^1]
Reachability and Safety Properties

Reachability property: expressed by a formula for the form

ΔF

where F is a propositional formula ${ }^{1}$
Safety/invariance property: expressed by a formula of the form
\square
where F is a propositional formula

Most common problems arising in model checking. They are dual to each other:

$$
\square F \equiv \neg \diamond \neg F \quad \diamond F \equiv \neg \square \neg F
$$

Cannot reach an unsafe state iff all reachable states are safe

[^2]
Reachability

Fix a transition system \mathbb{S} with transition relation T over states S
We write $s_{0} \rightarrow s_{1}$ if $\left(s_{0}, s_{1}\right) \in T$, i.e., if there is a transition from state s_{0} to state s_{1}
Let $s \in S$

Reachability

Fix a transition system \mathbb{S} with transition relation T over states S
We write $s_{0} \rightarrow s_{1}$ if $\left(s_{0}, s_{1}\right) \in T$, i.e., if there is a transition from state s_{0} to state s_{1}
Let $s \in S$

- s is reachable in n steps from a state $s_{0} \in S$ if there exist states $s_{1}, \ldots, s_{n} \in S$ such that $s_{n}=s$ and $s_{0} \rightarrow s_{1} \rightarrow \cdots \rightarrow s_{n}$

Reachability

Fix a transition system \mathbb{S} with transition relation T over states S
We write $s_{0} \rightarrow s_{1}$ if $\left(s_{0}, s_{1}\right) \in T$, i.e., if there is a transition from state s_{0} to state s_{1}
Let $s \in S$

- s is reachable in n steps from a state $s_{0} \in S$ if there exist states $s_{1}, \ldots, s_{n} \in S$ such that $s_{n}=s$ and $s_{0} \rightarrow s_{1} \rightarrow \cdots \rightarrow s_{n}$
- $s \in S$ is reachable from a state $s_{0} \in S$ if s is reachable from s_{0} in $n \geq 0$ steps

Reachability

Fix a transition system \mathbb{S} with transition relation T over states S
We write $s_{0} \rightarrow s_{1}$ if $\left(s_{0}, s_{1}\right) \in T$, i.e., if there is a transition from state s_{0} to state s_{1}
Let $s \in S$

- s is reachable in n steps from a state $s_{0} \in S$ if there exist states $s_{1}, \ldots, s_{n} \in S$ such that $s_{n}=s$ and $s_{0} \rightarrow s_{1} \rightarrow \cdots \rightarrow s_{n}$
- $s \in S$ is reachable from a state $s_{0} \in S$ if s is reachable from s_{0} in $n \geq 0$ steps
- $s \in S$ is reachable in \mathbb{S} if s is reachable from some initial state of \mathbb{S}

Reachability Properties and Graph Reachability

Theorem 1
A reachability property \diamond F holds on some computation path iff $s \models F$ for some reachable state s.

Reformulation of Reachability

Given

1. An initial condition / denoting the set of initial states of a transition system \mathbb{S}
2. A final condition F denoting a set of final states
3. A transition formula Tr denoting the transition relation of \mathbb{S}
is any final state reachable from an initial state?

Reformulation of Reachability

Given

1. An initial condition / denoting the set of initial states of a transition system \mathbb{S}
2. A final condition F denoting a set of final states
3. A transition formula Tr denoting the transition relation of \mathbb{S}
is any final state reachable from an initial state?

Note: this reformulation does not use temporal logic

Symbolic Reachability Checking

Main Idea: build a symbolic representation of the set of reachable states

Symbolic Reachability Checking

Main Idea: build a symbolic representation of the set of reachable states

Two main kinds of algorithm:

- forward reachability
- backward reachability

Reachability as a Decision Problem

Let $x=x_{1}, \ldots, x_{n}$ be state variables

Given

1. a formula $I(x)$, the initial condition
2. a formula $F(x)$, the final condition
3. formula $T\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$, the transition formula
is there a sequence of states s_{0}, \ldots, s_{n} such that
4. $s_{0} \mid=I(x)$
5. $\left(s_{i-1}, s_{i}\right) \models T\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$ for all $i=0, \ldots, n-1$
6. $s_{n} \models F(x)$

Reachability as a Decision Problem

Let $x=x_{1}, \ldots, x_{n}$ be state variables

Given

1. a formula $I(x)$, the initial condition
2. a formula $F(x)$, the final condition
3. formula $T\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$, the transition formula
is there a sequence of states s_{0}, \ldots, s_{n} such that
4. $s_{0} \mid=I(x)$
5. $\left(s_{i-1}, s_{i}\right) \models T\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$ for all $i=0, \ldots, n-1$
6. $s_{n} \models F(x)$

Note that in this case s_{n} is reachable from s_{0} in n steps

Idea of Reachability-Checking Algorithms

Note: If a final state is reachable from an initial state, it is reachable (from an initial state) in some number n of steps

Idea of Reachability-Checking Algorithms

Note: If a final state is reachable from an initial state, it is reachable (from an initial state) in some number n of steps

Approach: For given number $n \geq 0$, find a formula denoting the set of states reachable in n steps

Idea of Reachability-Checking Algorithms

Note: If a final state is reachable from an initial state, it is reachable (from an initial state) in some number n of steps

Approach: For given number $n \geq 0$, find a formula denoting the set of states reachable in n steps

If this formula is not satisfied in a final state, increase n and start again

Idea of Reachability-Checking Algorithms

Note: If a final state is reachable from an initial state, it is reachable (from an initial state) in some number n of steps

Approach: For given number $n \geq 0$, find a formula denoting the set of states reachable in n steps

If this formula is not satisfied in a final state, increase n and start again

When does this process terminate?

Reachability in n steps

Reachability in n steps

Number of steps: 0

Reachability in n steps

Number of steps: 1

Reachability in n steps

Number of steps: 2

Reachability in n steps

Number of steps: 3

Reachability in n steps

Number of steps: 4

Simple Logical Analysis

Notation If $z=\left(z_{1}, \ldots, z_{n}\right)$ is a tuple of variables, $\exists \boldsymbol{z} F$ abbreviates $\exists z_{1} \cdots \exists z_{n} F$

Lemma 2
Let $C(x)$ symbolically represent a set of states S_{C}. The formula

$$
F R(x) \stackrel{\text { def }}{=} \exists z(C(z) \wedge T(z, x))
$$

represents the set of states reachable from S_{C} in one step.

Simple Logical Analysis

Notation If $z=\left(z_{1}, \ldots, z_{n}\right)$ is a tuple of variables, $\exists \boldsymbol{z} F$ abbreviates $\exists z_{1} \cdots \exists z_{n} F$

Lemma 2
Let $C(x)$ symbolically represent a set of states S_{C}. The formula

$$
F R(x) \stackrel{\text { def }}{=} \exists z(C(z) \wedge T(z, x))
$$

represents the set of states reachable from S_{C} in one step.

Each formula R_{n} defined inductive as follows:

$$
\begin{aligned}
R_{0}(\boldsymbol{x}) & \stackrel{\text { def }}{=} I(\boldsymbol{x}) \\
R_{n+1}(\boldsymbol{x}) & \stackrel{\text { def }}{=} \exists \boldsymbol{z}\left(R_{n}(\boldsymbol{z}) \wedge T(\boldsymbol{x}, \boldsymbol{z})\right)
\end{aligned}
$$

denotes the set of states reachable in n steps

Simple Forward Reachability Algorithm

```
procedure FReach(I,T,F)
input: formulas I, T,F
output: "yes" or no output
begin
    i := 0
    R := I( }\mp@subsup{x}{0}{}
    loop
    if R\wedgeF(\mp@subsup{x}{i}{})\mathrm{ is satisfiable then return "yes"}
    R := R}\wedgeT(\mp@subsup{\boldsymbol{x}}{i}{},\mp@subsup{\boldsymbol{x}}{i+1}{}
    i := i+1
    end loop
end
```


Simple Forward Reachability Algorithm

```
procedure FReach(I,T,F)
input: formulas I, T,F
output: "yes" or no output
begin
    i := 0
    R := I( (}\mp@subsup{\boldsymbol{x}}{0}{}
    loop
    if R\wedgeF(\mp@subsup{x}{i}{})\mathrm{ is satisfiable then return "yes"}
    R := R\wedgeT(\mp@subsup{\boldsymbol{x}}{i}{},\mp@subsup{\boldsymbol{x}}{i+1}{})
    i := i+1
    end loop
end
```

How do we check the satisfiability of $R \wedge F\left(x_{i}\right)$?

Simple Forward Reachability Algorithm

```
procedure FReach(I,T,F)
input: formulas I, T,F
output: "yes" or no output
begin
    i := 0
    R := I( }\mp@subsup{x}{0}{}
    loop
    if R\wedgeF(\mp@subsup{x}{i}{})\mathrm{ is satisfiable then return "yes"}
    R := R}\wedgeT(\mp@subsup{\boldsymbol{x}}{i}{},\mp@subsup{\boldsymbol{x}}{i+1}{}
    i := i+1
    end loop
end
```

How do we check the satisfiability of $R \wedge F\left(x_{i}\right)$? Using SAT solvers!

Termination

Number of steps: 0

Termination

Number of steps: 1

Termination

Number of steps: 2

Termination

Number of steps: 3

Termination

Number of steps: 4

Termination

Number of steps: 5

Termination

Number of steps: 6

Termination

Number of steps: 7

When no final state is reachable, the algorithm does not terminate!

Reachability in $\leq n$ steps

Define a sequence of formulas $R_{\leq n}$ for reachability in at most n states:

$$
\begin{aligned}
R_{\leq 0}(\boldsymbol{x}) & \stackrel{\text { def }}{=} l(\boldsymbol{x}) \\
R_{\leq n+1}(\boldsymbol{x}) & \stackrel{\text { def }}{=} R_{\leq n}(\boldsymbol{x}) \vee \exists \boldsymbol{z}\left(R_{\leq n}(\boldsymbol{z}) \wedge T(\boldsymbol{z}, \boldsymbol{x})\right)
\end{aligned}
$$

Reachability in $\leq n$ steps

Number of steps: 0

Reachability in $\leq n$ steps

Number of steps: 1

Reachability in $\leq n$ steps

Number of steps: 2

Reachability in $\leq n$ steps

Number of steps: 3

Reachability in $\leq n$ steps

Number of steps: 4

Reachability in $\leq n$ steps

Number of steps: 5

Full set of reachable states has been determined

Termination

Let S_{n} the set of states reachable in $\leq n$ steps

Key properties for termination:

1. $S_{i} \subseteq S_{i+1}$ for all i
2. the state space is finite

Termination

Let S_{n} the set of states reachable in $\leq n$ steps

Key properties for termination:

1. $S_{i} \subseteq S_{i+1}$ for all i
2. the state space is finite

Consequences:

- there is k such that $S_{k}=S_{k+1}$
- for such k we have $R_{\leq k}(\boldsymbol{x}) \equiv R_{\leq k+1}(\boldsymbol{x})$

Forward Reachability Algorithm

```
procedure FReach(I,T,F)
input: formulas I, T,F
output: "yes" or "no"
begin
    R(\boldsymbol{x}):= I(\boldsymbol{x})
loop
    if R(x)\wedgeF(x) is satisfiable then return "yes"
    R'(\boldsymbol{x})}:=R(\boldsymbol{x})\vee\exists\boldsymbol{z}(R(\boldsymbol{z})\wedgeT(\boldsymbol{z},\boldsymbol{x})
    if R(x)\equiv\mp@subsup{R}{}{\prime}(\boldsymbol{x})\mathrm{ then return "no"}
    R(x) := R'(x)
    end loop
end
```


Forward Reachability Algorithm

```
procedure FReach(I,T,F)
input: formulas I, T,F
output: "yes" or "no"
begin
    R(\boldsymbol{x}):= I(\boldsymbol{x})
loop
    if R(x)\wedgeF(x) is satisfiable then return "yes"
    R'(\boldsymbol{x})}:=R(\boldsymbol{x})\vee\exists\boldsymbol{z}(R(\boldsymbol{z})\wedgeT(\boldsymbol{z},\boldsymbol{x})
    if R(\boldsymbol{x})\equiv\mp@subsup{R}{}{\prime}(\boldsymbol{x})\mathrm{ then return "no"}
    R(x) := R'(x)
    end loop
end
```

Implementation?

Forward Reachability Algorithm

```
procedure FReach(I,T,F)
input: formulas I, T,F
output: "yes" or "no"
begin
    R(\boldsymbol{x}):= I(\boldsymbol{x})
loop
    if R(x)\wedgeF(x) is satisfiable then return "yes"
    R'(\boldsymbol{x})}:=R(\boldsymbol{x})\vee\exists\boldsymbol{z}(R(\boldsymbol{z})\wedgeT(\boldsymbol{z},\boldsymbol{x})
    if R(x)\equiv\mp@subsup{R}{}{\prime}(\boldsymbol{x})\mathrm{ then return "no"}
    R(x) := R'(x)
    end loop
end
```

Conjunction and disjunction
Implementation?

Forward Reachability Algorithm

```
procedure FReach(I,T,F)
input: formulas I, T,F
output: "yes" or "no"
begin
    R(\boldsymbol{x}):= I(\boldsymbol{x})
    loop
    if R(x)\wedgeF(x) is satisfiable then return "yes"
    R'(\boldsymbol{x})}:=R(\boldsymbol{x})\vee\exists\boldsymbol{z}(R(\boldsymbol{z})\wedgeT(\boldsymbol{z},\boldsymbol{x})
    if R(x)\equiv\mp@subsup{R}{}{\prime}(\boldsymbol{x})\mathrm{ then return "no"}
    R(x) := R'(x)
    end loop
end
```

Implementation?

Conjunction and disjunction Quantification

Forward Reachability Algorithm

```
procedure FReach(I,T,F)
input: formulas I, T,F
output: "yes" or "no"
begin
    R(\boldsymbol{x}):= I(\boldsymbol{x})
    loop
    if R(x)\wedgeF(x) is satisfiable then return "yes"
    R'(\boldsymbol{x})}:=R(\boldsymbol{x})\vee\exists\boldsymbol{z}(R(\boldsymbol{z})\wedgeT(\boldsymbol{z},\boldsymbol{x})
    if R(\boldsymbol{x})\equiv\mp@subsup{R}{}{\prime}(\boldsymbol{x})\mathrm{ then return "no"}
    R(x) := R'(x)
end loop
end
```

Implementation?

Conjunction and disjunction Quantification
Satisfiability checking

Forward Reachability Algorithm

```
procedure FReach(I,T,F)
input: formulas I, T,F
output: "yes" or "no"
begin
    R(\boldsymbol{x}):= I(\boldsymbol{x})
loop
    if R(x)\wedgeF(x) is satisfiable then return "yes"
    R'(\boldsymbol{x})}:=R(\boldsymbol{x})\vee\exists\boldsymbol{z}(R(\boldsymbol{z})\wedgeT(\boldsymbol{z},\boldsymbol{x})
    if R(x)\equiv\mp@subsup{R}{}{\prime}(x)\mathrm{ then return "no"}
    R(x) := R'(x)
end loop
end
```

Implementation?

Conjunction and disjunction Quantification
Satisfiability checking
Equivalence checking

Forward Reachability Algorithm

```
procedure FReach(I,T,F)
input: formulas I, T,F
output: "yes" or "no"
begin
    R(\boldsymbol{x}):= I(\boldsymbol{x})
loop
    if R(x)\wedgeF(x) is satisfiable then return "yes"
    R}(\boldsymbol{x}):=R(\boldsymbol{x})\vee\exists\boldsymbol{z}(R(\boldsymbol{z})\wedgeT(\boldsymbol{z},\boldsymbol{x})
    if R(x)\equiv\mp@subsup{R}{}{\prime}(\boldsymbol{x})\mathrm{ then return "no"}
    R(x) := R'(x)
end loop
end
```

Implementation?
Use OBDDs and OBDD algorithms

Conjunction and disjunction Quantification
Satisfiability checking
Equivalence checking

Main Issues with Forward Reachability Algorithms

Forward reachability behaves in the same way, independently of the set of final states

In other words, they are not goal oriented

Backward Reachability

Idea:

- instead of going forward in the state transition graph, go backward
- swap initial and final states and invert the transition relation

Backward Reachability in $\leq n$ steps

Idea:

- instead of going forward in the state transition graph, go backward
- swap initial and final states and invert the transition relation

Number of backward steps: 0

Backward Reachability in $\leq n$ steps

Idea:

- instead of going forward in the state transition graph, go backward
- swap initial and final states and invert the transition relation

Number of backward steps: 1

Backward Reachability in $\leq n$ steps

Idea:

- instead of going forward in the state transition graph, go backward
- swap initial and final states and invert the transition relation

Number of backward steps: 1

Backward Reachability in n steps

Number of backward steps: 0

Backward Reachability in n steps

Number of backward steps: 1

Backward Reachability in n steps

Number of backward steps: 2

Backward Reachability in n steps

Number of backward steps: 3

Backward Reachability in n steps

Number of backward steps: 4

Bad states reachable!

Backward Reachability

S_{0} is backward reachable from F in n steps if F is reachable from S_{0} in n steps

Backward Reachability

S_{0} is backward reachable from F in n steps if F is reachable from S_{0} in n steps

Lemma 3
Let $C(x)$ symbolically represent a set of states S_{C}. The formula

$$
B R(x) \stackrel{\text { def }}{=} \exists z(T(x, z) \wedge C(z))
$$

denotes the set of states backward reachable from S_{C} in one step.

Backward Reachability Algorithm

Same as the forward reachability algorithms, but

- swap / with F
- use the inverse of the transition relation T

Backward Reachability Algorithm

Same as the forward reachability algorithms, but

- swap / with F
- use the inverse of the transition relation T

```
procedure \(B \operatorname{Reach}(I, T, F)\)
input: formulas I, T, F
output: "yes" or "no"
begin
    \(R(\boldsymbol{x})\) : \(=F(\boldsymbol{x})\)
loop
    if \(R(\boldsymbol{x}) \wedge I(\boldsymbol{x})\) is satisfiable then
        return "yes"
    \(R^{\prime}(\boldsymbol{x}):=R(\boldsymbol{x}) \vee \exists \boldsymbol{z}(T(\boldsymbol{x}, \boldsymbol{z}) \wedge R(\boldsymbol{z}))\)
    if \(R(x) \equiv R^{\prime}(x)\) then return "no"
    \(R(\boldsymbol{x}):=R^{\prime}(\boldsymbol{x})\)
    end loop
end
```


Backward Reachability Algorithm

Same as the forward reachability algorithms, but

- swap / with F
- use the inverse of the transition relation T

```
procedure BReach(I, T, F)
input: formulas \(I, T, F\)
output: "yes" or "no"
begin
    \(R(\boldsymbol{x})\) := \(F(\boldsymbol{x})\)
    loop
    if \(R(\boldsymbol{x}) \wedge I(x)\) is satisfiable then
        return "yes"
    \(R^{\prime}(\boldsymbol{x}):=R(\boldsymbol{x}) \vee \exists \boldsymbol{z}(T(\boldsymbol{x}, \boldsymbol{z}) \wedge R(\boldsymbol{z}))\)
    if \(R(x) \equiv R^{\prime}(x)\) then return "no"
    \(R(\boldsymbol{x}):=R^{\prime}(\boldsymbol{x})\)
    end loop
end
```


Backward Reachability Algorithm

Same as the forward reachability algorithms, but

- swap / with F
- use the inverse of the transition relation T

```
procedure BReach(I, T, F)
input: formulas I, T, F
output: "yes" or "no"
begin
    \(R(\boldsymbol{x}):=F(\boldsymbol{x})\)
    loop
    if \(R(x) \wedge I(x)\) is satisfiable then
        return "yes"
    \(R^{\prime}(\boldsymbol{x}):=R(\boldsymbol{x}) \vee \exists \boldsymbol{z}(T(\boldsymbol{x}, \boldsymbol{z}) \wedge R(\boldsymbol{z}))\)
    if \(R(x) \equiv R^{\prime}(x)\) then return "no"
    \(R(\boldsymbol{x}):=R^{\prime}(\boldsymbol{x})\)
    end loop
end
```

```
procedure FReach(I,T,F)
input: formulas I, T,F
output: "yes" or "no"
begin
    R(\boldsymbol{x}):= I(\boldsymbol{x})
    loop
    if R(x)\wedgeF(x) is satisfiable then
        return "yes"
    R'(\boldsymbol{x}):=R(\boldsymbol{x})\vee\exists\boldsymbol{z}(R(\boldsymbol{z})\wedgeT(\boldsymbol{z},\boldsymbol{x}))
    if R(x)\equiv\mp@subsup{R}{}{\prime}(\boldsymbol{x})\mathrm{ then return "no"}
    R(x) := R'(x)
    end loop
end
```


Extensions of Model Checking

- There are model-checking algorithms for properties other than reachability

Extensions of Model Checking

- There are model-checking algorithms for properties other than reachability
- there is a general model-checking algorithm for arbitrary LTL properties

Extensions of Model Checking

- There are model-checking algorithms for properties other than reachability
- there is a general model-checking algorithm for arbitrary LTL properties
- there are extensions of model-checking techniques for infinite-state systems

Extensions of Model Checking

- There are model-checking algorithms for properties other than reachability
- there is a general model-checking algorithm for arbitrary LTL properties
- there are extensions of model-checking techniques for infinite-state systems
- they will not be considered in this course

[^0]: ${ }^{1}$ Could be a PLFD. Restriction to PL is for simplicity.

[^1]: ${ }^{1}$ Could be a PLFD. Restriction to PL is for simplicity.

[^2]: ${ }^{1}$ Could be a PLFD. Restriction to PL is for simplicity.

