CS:4350 Logic in Computer Science

Propositional Logic of Finite Domains

Cesare Tinelli

Spring 2021

L

ThE m

UNIVERSITY
OF lowa

1/22

Credits

These slides are largely based on slides originally developed by Andrei Voronkov
at the University of Manchester. Adapted by permission.

2/22

Outline

Propositional Logic of Finite Domains
Logic and modeling
State-changing systems
PLFD
PLFD and propositional logic
Tableau system for PLFD

3/22

Logic and Modeling

Satisfiability-checking in propositional logic has many applications

4/22

Logic and Modeling

Satisfiability-checking in propositional logic has many applications

Unfortunately, there is a gap between real-life problems and their representation
in propositional logic

4/22

Logic and Modeling

Satisfiability-checking in propositional logic has many applications

Unfortunately, there is a gap between real-life problems and their representation
in propositional logic

Many application domains have special modeling languages for describing
problems

4/22

Logic and Modeling

Satisfiability-checking in propositional logic has many applications

Unfortunately, there is a gap between real-life problems and their representation
in propositional logic

Many application domains have special modeling languages for describing
problems

because propositional logic is not convenient for modeling

4/22

Logic and Modeling

Satisfiability-checking in propositional logic has many applications

Unfortunately, there is a gap between real-life problems and their representation
in propositional logic

Many application domains have special modeling languages for describing
problems

because propositional logic is not convenient for modeling

However, in many cases, problems expressed in these languages can then be
translated to propositional logic

4/22

Circuit Design

" il ¢ || e 3 Circuit: propositional logic

B | o hal_i2: : ALTEAEID‘JEEw

5/22

Circuit Design

library ieee;
use ieee.std_logic_1164.all;
entity FULL_ADDER is
port (A, B, Cin : in std_logic;
Sum, Cout : out std_logic%
end FULL_ADDER;
architecture BEHAV_FA of FULL_ADDER is
signal intl, int2, int3: std_logic;
begin
P1: process (A, B)
begin
intl<= A xor B;
int2<= A and B;
end process;
P2: process (intl, int2, Cin)
begin
Sum <= intl xor Cin;
int3 <= intl and Cin;
Cout <= int2 or int3;
end process;
end BEHAV_FA;

H

Circuit: propositional logic

Design: high-level
description (VHDL)

5/22

Scheduling

Al Second Year Timetable 2009-2010 Level 2
printavie Monday Tuesday Wednesday Thursday Friday
Timetable
08:00 - - - - -
08:00 CRAW TH.1 1.1ac 623 scOMP204111AI 623/ ;COMP20340(31 UNIX
acoMP20340() 17407 | FCOMP200B118] 623|rcOMP20340(41 ma07
HCOMP20411(A] 23 UNIX 1 @23
BS EAST B8 ROSCOE 1.007 1041 UNIX
HCOMP20081(8) 623
10:00 + CRAW TH.1 623 ROSCOE 1.007 RENO C016
STMON B (B.41) SCOMP20010 623|GCOMP20340(%) IT407|FCOMP2041114] 623/ ICOMP20340(1 UNIX
coiragaes 4] [FCOMP20241(31) Toot 1 wCOMP20411(A] 623 FCOMP2008113] 623 | ;COMP20340(A1 rr407
MATH20701 Mans Coop 630 BMAN10621 11 UNIX 1 623
6COMP20411141 UNIX
HCOMP20081(5] 623
T B3 CRAW TH.1 11 1 623wt UNIX
SACKVILLE F047 623 623 UNIX | nCOMP! a0z
SIMON 3 Toot 1 RENO G002 EEEN20027 RENO C009 1COMP20081(81 623
BMAN10621 1.1 BMAN10621 ROSCOE 1.008 MATH20111 TURING G.107 rcOMP204 1171 623
FCOMP20241 LF15
MATH10141 RENO €016
12:00 |BMAN21061 ROSCOE 1.008 COMP PASS LF15|6+#COMP20081(4] 623 MATH20111 TURING 6,207 MATH20201 unIPLE
EEEN20010 RENO C002 MATH20411 TURING G.107 RENO €016, awdt] 623w UNIX
MATH20411 SCH BLACKETT UNIX| w rr407
1COMP20081 (51 623
ICOMP20411(A1 @23
13:00 | FCOMP203401A1 17407 COMP20411 o - COMP20141 1.1/EEEN20019 S5B Al
FCOMP2034018! UNIX MATH20701 TURING G.107
COMP200818) 623
2COMP20051(4 w+] 623
MATH20411 _TURING G.107
14100 |BMAN20880 SIMON 3 (3.40) EEEN-LAE [= BMAN21061 CRAW TH.2 COMP20141 11
EEEN20019 RENO €009 COMP20411 11 MATH20201 ROSC A EEEN20019 558 A16
MATH20111 TURING G.207
FCOMP203400 407
reoMP2034013! UNIX
§COMP20081(%) 623
1COMP20051(A wi+] 623
15:00 (#COMP200S1M4w3+) G23 2nd Yr Tuterial - COMP20051. 1.1 COMP20010 g
UN Toot 1 MATH29631 SACKVILLE G037
BMANZ0880 SIMON 3 (3.40) EEEN-LAB ?
16:00 |MATH20201 REND C016 CARS20021 UNIPLB. - COMP20081 1.1 EEEN20027 RENO C009
HCOMP20051(Aw3*) G23 MATH20411 SCH BLACKETT BMAN20890 CRAW TH.2 MATH20111
FCOMP20010 UNIX COMP20241[v3t] Taot1 nd ¥r Tutorial ZOCHONIS TH.B (6.7)
17:00 - CARS20021 UNIPLB. = BMAN208S0 CRAW TH.2 =

m BMAN20880 weeks 8,9 & 10

6/22

Constraints on Solutions

Registration Week Timetables

Year 1

All First Years

All Single Hons (+CBA/IC) A4W4X+Y4Z
All Single Hons (-CBA/IC) W4X+Y+Z
Group A - (CBA + IC)

Group B - (CSWBM: C+D)

Group € - (CSWBM)

Group D - (CSwBM)

Group E - (CSE)

= Group M - (CM)

Group W - (CS,SE,DC,AL)

Group X - (CS,SE,DC,AI)

Group ¥ - (CS,SE,DC,AI)

Group Z - (CS,SE,DC,AL)

Lab grouping A+Z

Lab grouping C+X

Lab grouping D+E+Y

Lab grouping D+Y

Lab grouping M+W

Service Units

Taking BMAN courseunits A+B.

Year 2

Al Second Year
Joint Hons (CM)

Joint Hons (CSE)

Joint Hons (CSwBM)

Lab Group F

Lab Group G

Lab Group H

Lab Group 1

Single Hons (CBA)

Single Hons (CS, SE, DC, AI)

Year 3

% All Former Sol
All Third Years

Joint Hons (CM)

Joint Hons (CSwBM)

Single Hons (CBA)

Single Hons (Computer Science)

single Hons (Internet Computing)

Single Hons (Software Engineering - Informatics)

Room Timetables
UG Teaching Rooms

s 633 24 seats
5 Advisory 7 seats
S LFS 9 seats
& 1re 9 seats

S ouFis 70seats
S LF17 27 seats

S 1406 20 seats

S IT407 100 seats

PG Teaching Rooms
© 2.19 100 seats

= 2.15 40 seats

UG Labs

S Toot1 40 seats

S Toot0 28 seats

% Collab 2 4 Pods seats

Collab 1 8 Pods seats
PEVELab ? seats

& G23 65 seats

S 3rdlab 61 seats

S UNIX 70seats

(Al labs]

Meeting Rooms
5120 ?seats

233 15seats
5 Atlas 1 28 seats
S Atlas 2 22 seats

1401 24 seats

Mercury 24 seats

—_

Rooms should have enough
seats

Instructors cannot teach
two courses at the same
time

Prof. Nightowl cannot teach
at9am

/22

State-changing systems

Our main interest from now on is modeling state-changing systems

8/22

State-changing systems
Our main interest from now on is modeling state-changing systems

We assume a discrete notion of time, with each time corresponding to a step taken
by the system

8/22

State-changing systems

Our main interest from now on is modeling state-changing systems

We assume a discrete notion of time, with each time corresponding to a step taken

by the system

Informally

Formally

At each step, the system is in a partic-
ular state

This state can be characterized by val-
ues of a set of variables, called the
state variables.

The system state changes over time

There are actions (controlled or not)
that change the state

Actions change values of some state
variables

8/22

Computational systems are state-changing systems

Reactive systems:
systems that maintain an ongoing interaction with their environment rather
than produce some final value upon termination

Examples: air traffic control system, controllers in mechanical devices
(microwaves, traffic lights, trains, planes, ...)

9/22

Computational systems are state-changing systems

Reactive systems:
systems that maintain an ongoing interaction with their environment rather
than produce some final value upon termination

Examples: air traffic control system, controllers in mechanical devices
(microwaves, traffic lights, trains, planes, ...)

Concurrent systems
Systems executing simultaneously, and potentially interacting with each
other.

Examples: operating systems, networks, ...

9/22

Reasoning about state-changing systems

1. Build a formal model the state-changing system which describes, in
particular, its temporal behavior or some abstraction of it

10/22

Reasoning about state-changing systems

1. Build a formal model the state-changing system which describes, in
particular, its temporal behavior or some abstraction of it

2. Use a logic to specify and verify properties of the system

10/22

Propositional Logic of Finite Domains (PLFD)

Our first step to modeling state-changing systems:

introduce a logic for expressing state variables and their values

/22

Propositional Logic of Finite Domains (PLFD)

Our first step to modeling state-changing systems:

introduce a logic for expressing state variables and their values

PLFD is a family of logics

n/22

Propositional Logic of Finite Domains (PLFD)

Our first step to modeling state-changing systems:

introduce a logic for expressing state variables and their values
PLFD is a family of logics

Each instance of PLFD is characterized by
® aset X of variables
® asetl/ ofvalues
® amapping dom from X to subsets of I/, such that
for every x € X, dom(x) is a non-empty finite set, the domain for x

n/22

Syntax of PLFD

Formulas:

® Forallx € Xand v € dom(x), the equality x = v is a formula, also called
atomic formula, or simply atom

12/22

Syntax of PLFD

Formulas:

® Forallx € Xand v € dom(x), the equality x = v is a formula, also called
atomic formula, or simply atom

® Other formulas are built from atomic formulas as in propositional logic, using
the connectives T, L, A, V, =, —, and <

12/22

Semantics

Consider a set X of variables and a set I/ of values for them

Interpretation: a mapping Z : X — V such that Z(x) € dom(x) forallx € X

13/22

Semantics

Consider a set X of variables and a set I/ of values for them
Interpretation: a mapping Z : X — V such that Z(x) € dom(x) forallx € X

We extend interpretations to mappings from formulas to Boolean values as follows
1. Z(x=v)=1iff Z(x) = v
2. If formulais not atomic, then as for propositional formulas

13/22

Semantics

Consider a set X of variables and a set I/ of values for them
Interpretation: a mapping Z : X — V such that Z(x) € dom(x) forallx € X

We extend interpretations to mappings from formulas to Boolean values as follows
1. Z(x=v)=1iff Z(x) = v
2. If formulais not atomic, then as for propositional formulas

The definitions of truth, models, entailment, validity, satisfiability, and
equivalence are defined exactly as in propositional logic

13/22

Example

If dom(x) = { a,b,c},then the following is a formula which is valid:

X=a—X=bVx=c

14/22

Example

If dom(x) = { a,b,c},then the following is a formula which is valid:

X=a—X=bVx=c

In contrast, if dom(x) = { a, b, c, d }, then the formula above is not valid

14/22

Example

If dom(x) = { a,b,c},then the following is a formula which is valid:

X=a—X=bVx=c

In contrast, if dom(x) = { a, b, c, d }, then the formula above is not valid

asitis falsifiedby Z = {x > d }:

{x—d}Fx=a—=x=bVvx=c

14/22

Example: microwave

variable domain of values

mode {idle, micro, grill, defrost }

door { open, closed }

content { none, burger, pizza, cabbage }

user { nobody, student, prof staff }

temperature | {0, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250 }

mode = grill — door = closed A\ —~(temperature = 0) A —(user = nobody)

15/22

Propositional Logic as PLFD

Consider propositional variables as variables over the domain { 0,1}
Instead of atoms pusep = 1

One canalsouse p = 0 for —p, since (p = 0) = —(p =1)

16/22

Propositional Logic as PLFD

Consider propositional variables as variables over the domain { 0,1 }
Instead of atoms p usep =1

Onecanalsousep = 0 for —p,since (p = 0) = —(p =1)
This transformation preserves models. For example, the models of
pAqG— —r

are exactly the models of

p=1Nqg=1—=r=0

16/22

Propositional variables in PLFD

We say that p is a boolean variable if dom(p) = { 0,1}

In instances of PLFD with both boolean and non-boolean, we will use boolean
variables as in propositional logic:

® pinstead of p =1
® —pinsteadofp =0

17/22

Translation of PLFD into Propositional Logic

1. Introduce a propositional variable x, for each variable x and value v € dom(x)

2. Replace every atom x = v by x,

3. Add domain axiom for each variable x:

(X, V- VX,) A /\(ﬁxvs V —xy,)

i<j

where dom(x) = { v, ..., Vn }

18/22

Example
To check satisfiability of the formula
—(x=bVx=c)
where dom(x) = { a, b, ¢ }, we have to check satisfiability of the formula

(Xa VXb VX) A (—Xa V=) A (X V —X) A (5Xp V —Xe) A(Xp V Xc)

domain axiom

19/22

Example
To check satisfiability of the formula
—(x=bVx=c)
where dom(x) = { a, b, ¢ }, we have to check satisfiability of the formula

(Xa VXb VX) A (—Xa V=) A (X V —X) A (5Xp V —Xe) A(Xp V Xc)

domain axiom

Domain axiom for mode in microwave:
(modejge V modemicro V modegri V Modegerrost) /\
(—=modejge V ~modemicr) A
(ﬂmode,-d/e \Y ﬂmodeg,,-,,) A\
(—modeige V ~modegeost) A
(=modemicro V —modegin) A
(_‘mOdemicro \ _‘mOdedefrost) A
(—modegyiy V =modegefrost)

19/22

Preservation of models

Suppose that 7 is a propositional model of all the domain axioms

Define a PLFD interpretation 7’ as follows:

T'(x)=v def 7 = X,

Theorem 1
Let F" be a PLFD formula and F be obtained by translating F’ to propositional logic. If
7T = F,thenT' |= F.

20/22

Tableau System for PLFD

® Usesigned formulas

® Use new kind of atomic formula: x € {v;,....v,}
equivalenttox = v, V- -V x =v,
(also using x € {v} instead of x = v)
e Abbreviations: instead of (x € D) write x € D, instead of (x € D)° write x ¢ D

® Tableau rules for PL + new tableau rules:

x¢D ~» xe&dom(x)\D
xeDbDy,xebD, ~~ xeDND,

e Abranchis closed if it contains T°%, | ",orx € {}

21/22

D~ d D
Example x € Dy, XX€€D2 ~ i g D?r:w(gz\

Let’s prove the validity of

((user € {nobody} — content € {none}) A

(user € {prof} — content € {none, cabbage}) A
(user € {staff} — content € {none, burger})

) — (content € {pizza} — user € {student})

by deriving a closed tableaux from F°

22/22

X¢€D ~» xé&dom(x)\D

Example XED,XED, ~ x€EDND,

(((user € {nobody} — content € {none}) A (user € {prof} — content € {none, cabbage}) A
(user € {staff} — content € {none, burger})) — (content € {pizza} — user € {student}))°

((user € {nobody} — content € {none}) A (user € {prof} — content € {none, cabbage}) A
(user € {staff} — content € {none, burger}))'
(content € {pizza} — user € {student})°

(user € {nobody} — content € {none})'
(user € {prof} — content € {none, cabbage})'
(user € {staff} — content € {none, burger})'

content € {pizza}
user ¢ {student}

user € {nobody, prof, staff }

22/22

Example, continued o,

~

~

x € dom(x) \ D
x€DiND;

I
(user € {nobody} — content € {none})'

(user € {prof} — content € {none, cabbage})'
(user € {staff} — content € {none, burger})'

content € {pizza}
user & {student}

user € {nobody, prof, staff }

— ~

content € {none} user ¢ {nobody}

content € {} user € {student, prof, staff }
closed |

user € {prof, staff }

PN

user ¢ {prof} content € {none, cabbage}

22/22

	Propositional Logic of Finite Domains
	Logic and modeling
	State-changing systems
	PLFD
	PLFD and propositional logic
	Tableau system for PLFD

