CS:4350 Logic in Computer Science

Propositional Logic of Finite Domains

Cesare Tinelli

Spring 2021

Credits

These slides are largely based on slides originally developed by **Andrei Voronkov** at the University of Manchester. Adapted by permission.

Outline

Propositional Logic of Finite Domains

Logic and modeling
State-changing systems
PLFD
PLFD and propositional logic
Tableau system for PLFD

Satisfiability-checking in propositional logic has many applications

Unfortunately, there is a gap between real-life problems and their representation in propositional logic

Many application domains have special modeling languages for describing problems

because propositional logic is not convenient for modeling

Satisfiability-checking in propositional logic has many applications

Unfortunately, there is a gap between real-life problems and their representation in propositional logic

Many application domains have special modeling languages for describing problems

because propositional logic is not convenient for modeling

Satisfiability-checking in propositional logic has many applications

Unfortunately, there is a gap between real-life problems and their representation in propositional logic

Many application domains have special modeling languages for describing problems

because propositional logic is not convenient for modeling

Satisfiability-checking in propositional logic has many applications

Unfortunately, there is a gap between real-life problems and their representation in propositional logic

Many application domains have special modeling languages for describing problems

because propositional logic is not convenient for modeling

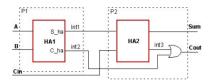
Satisfiability-checking in propositional logic has many applications

Unfortunately, there is a gap between real-life problems and their representation in propositional logic

Many application domains have special modeling languages for describing problems

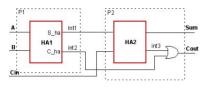
because propositional logic is not convenient for modeling

Circuit Design



Circuit: propositional logic

Circuit Design

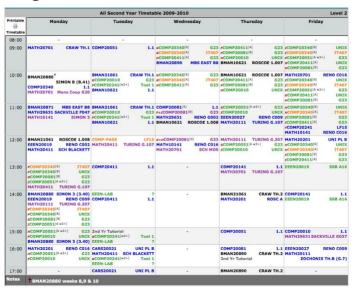


```
library ieee;
use ieee.std logic 1164.all:
entity FULL ADDER is
  port (A, B, Cin : in std_logic;
    Sum. Cout : out std_logic);
end FULL_ADDER:
architecture BEHAV FA of FULL ADDER is
signal int1, int2, int3; std logic;
begin
P1: process (A. B)
  begin
    int1<= A xor B:
    int2<= A and B:
  end process:
P2: process (int1, int2, Cin)
  begin
    Sum <= int1 xor Cin:
    int3 <= int1 and Cin:
    Cout <= int2 or int3:
  end process;
end BEHAV FA:
```

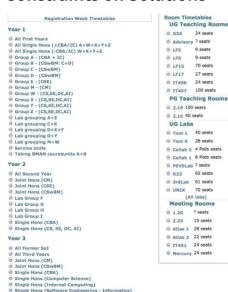
Circuit: propositional logic

Design: high-level description (VHDL)

Scheduling



Constraints on Solutions



- Rooms should have enough seats
- 2. Instructors cannot teach two courses at the same time
- Prof. Nightowl cannot teach at 9am
- 4. ...

State-changing systems

Our main interest from now on is modeling state-changing systems

We assume a discrete notion of time, with each time corresponding to a *step* taken by the system

State-changing systems

Our main interest from now on is modeling state-changing systems

We assume a discrete notion of time, with each time corresponding to a *step* taken by the system

State-changing systems

Our main interest from now on is modeling state-changing systems

We assume a discrete notion of time, with each time corresponding to a *step* taken by the system

Informally	Formally
At each step, the system is in a particular state	This state can be characterized by values of a set of variables, called the state variables.
The system state changes over time There are actions (controlled or not) that change the state	Actions change values of some state variables

Computational systems are state-changing systems

Reactive systems:

systems that maintain an ongoing interaction with their environment rather than produce some final value upon termination

Examples: air traffic control system, controllers in mechanical devices (microwaves, traffic lights, trains, planes, ...)

Concurrent systems

Systems executing simultaneously, and potentially interacting with each other.

Examples: operating systems, networks, . . .

Computational systems are state-changing systems

Reactive systems:

systems that maintain an ongoing interaction with their environment rather than produce some final value upon termination

Examples: air traffic control system, controllers in mechanical devices (microwaves, traffic lights, trains, planes, ...)

Concurrent systems

Systems executing simultaneously, and potentially interacting with each other.

Examples: operating systems, networks, ...

Reasoning about state-changing systems

1. Build a formal model the state-changing system which describes, in particular, its temporal behavior or some abstraction of it

Use a logic to specify and verify properties of the system

Reasoning about state-changing systems

1. Build a formal model the state-changing system which describes, in particular, its temporal behavior or some abstraction of it

2. Use a logic to specify and verify properties of the system

Propositional Logic of Finite Domains (PLFD)

Our first step to modeling state-changing systems:

introduce a logic for expressing state variables and their values

PLFD is a family of logics

Each instance of PLFD is characterized by

- a set X of variables
- a set // of values
- a mapping dom from X to subsets of V, such that for every x ∈ X, dom(x) is a non-empty finite set, the domain for X

Propositional Logic of Finite Domains (PLFD)

Our first step to modeling state-changing systems:

introduce a logic for expressing state variables and their values

PLFD is a family of logics

Each instance of PLFD is characterized by

- a set X of variables
- a set // of values
- a mapping dom from X to subsets of V, such that for every x ∈ X, dom(x) is a non-empty finite set, the domain for x

Propositional Logic of Finite Domains (PLFD)

Our first step to modeling state-changing systems:

introduce a logic for expressing state variables and their values

PLFD is a family of logics

Each instance of PLFD is characterized by

- a set X of variables
- a set V of values
- a mapping dom from X to subsets of V, such that for every x ∈ X, dom(x) is a non-empty finite set, the domain for x

Syntax of PLFD

Formulas:

- For all x ∈ X and v ∈ dom(x), the equality x = v is a formula, also called atomic formula, or simply atom
- Other formulas are built from atomic formulas as in propositional logic, using the connectives T, ⊥, ∧, ∨, ¬, →, and ↔

Syntax of PLFD

Formulas:

- For all x ∈ X and v ∈ dom(x), the equality x = v is a formula, also called atomic formula, or simply atom
- Other formulas are built from atomic formulas as in propositional logic, using the connectives \top , \bot , \wedge , \vee , \neg , \rightarrow , and \leftrightarrow

Semantics

Consider a set X of variables and a set V of values for them

Interpretation: a mapping $\mathcal{I}: X \to V$ such that $\mathcal{I}(x) \in dom(x)$ for all $x \in X$

We extend interpretations to mappings from formulas to Boolean values as follows

- 1. $\mathcal{I}(x=v)=1$ iff $\mathcal{I}(x)=v$
- 2. If formula is not atomic, then as for propositional formulas

The definitions of truth, models, entailment, validity, satisfiability, and equivalence are defined exactly as in propositional logic

Semantics

Consider a set X of variables and a set V of values for them

Interpretation: a mapping $\mathcal{I}: X \to V$ such that $\mathcal{I}(x) \in dom(x)$ for all $x \in X$

We extend interpretations to mappings from formulas to Boolean values as follows

- 1. I(x = v) = 1 iff I(x) = v
- 2. If formula is not atomic, then as for propositional formulas

The definitions of truth, models, entailment, validity, satisfiability, and equivalence are defined exactly as in propositional logic

Semantics

Consider a set X of variables and a set V of values for them

Interpretation: a mapping $\mathcal{I}: X \to V$ such that $\mathcal{I}(x) \in dom(x)$ for all $x \in X$

We extend interpretations to mappings from formulas to Boolean values as follows

- 1. I(x = v) = 1 iff I(x) = v
- 2. If formula is not atomic, then as for propositional formulas

The definitions of truth, models, entailment, validity, satisfiability, and equivalence are defined exactly as in propositional logic

If $dom(x) = \{a, b, c\}$, then the following is a formula which is valid:

$$\neg x = a \rightarrow x = b \lor x = c$$

In contrast, if $dom(x) = \{ a, b, c, d \}$, then the formula above is *not* valic as it is falsified by $\mathcal{I} = \{ x \mapsto d \}$:

$$\{x \mapsto d\} \not\models \neg x = a \to x = b \lor x = c$$

If $dom(x) = \{a, b, c\}$, then the following is a formula which is valid:

$$\neg x = a \rightarrow x = b \lor x = c$$

In contrast, if $dom(x) = \{a, b, c, d\}$, then the formula above is *not* valid as it is falsified by $\mathbb{Z} = \{x \in \mathcal{A}\}$:

$$\{x \mapsto d\} \not\models \neg x = a \to x = b \lor x = c$$

If $dom(x) = \{a, b, c\}$, then the following is a formula which is valid:

$$\neg x = a \rightarrow x = b \lor x = c$$

In contrast, if $dom(x) = \{a, b, c, d\}$, then the formula above is *not* valid as it is falsified by $\mathcal{I} = \{x \mapsto d\}$:

$$\{x \mapsto d\} \not\models \neg x = a \rightarrow x = b \lor x = c$$

Example: microwave

variable	domain of values
mode	{ idle, micro, grill, defrost }
door	{ open, closed }
content	{ none, burger, pizza, cabbage }
user	{ nobody, student, prof, staff }
temperature	$\{0, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250\}$

```
\mathsf{mode} = \mathit{grill} \to \mathsf{door} = \mathit{closed} \land \neg (\mathsf{temperature} = 0) \land \neg (\mathsf{user} = \mathit{nobody})
```

Propositional Logic as PLFD

Consider propositional variables as variables over the domain $\{0,1\}$ Instead of atoms p use p=1

One can also use
$$p=0$$
 for $\neg p$, since $(p=0) \equiv \neg (p=1)$

This transformation preserves models. For example, the models of

$$p \land q \rightarrow \neg r$$

are exactly the models of

$$p = 1 \land q = 1 \rightarrow r = 0$$

Propositional Logic as PLFD

Consider propositional variables as variables over the domain $\{0,1\}$ Instead of atoms p use p=1

One can also use p=0 for $\neg p$, since $(p=0) \equiv \neg (p=1)$

This transformation preserves models. For example, the models of

$$p \land q \rightarrow \neg r$$

are exactly the models of

$$p=1 \land q=1 \rightarrow r=0$$

Propositional variables in PLFD

We say that p is a boolean variable if $dom(p) = \{0, 1\}$

In instances of PLFD with both boolean and non-boolean, we will use boolean variables as in propositional logic:

- p instead of p = 1
- $\neg p$ instead of p = 0

Translation of PLFD into Propositional Logic

- 1. Introduce a propositional variable x_v for each variable x and value $v \in dom(x)$
- 2. Replace every atom x = v by x_v
- 3. Add domain axiom for each variable x:

$$(x_{v_1} \vee \cdots \vee x_{v_n}) \wedge \bigwedge_{i < j} (\neg x_{v_i} \vee \neg x_{v_j})$$

where
$$dom(x) = \{ v_1, ..., v_n \}$$

To check satisfiability of the formula

$$\neg(x=b\vee x=c)$$

where $dom(x) = \{a, b, c\}$, we have to check satisfiability of the formula

$$\underbrace{(x_a \lor x_b \lor x_c) \land (\neg x_a \lor \neg x_b) \land (\neg x_a \lor \neg x_c) \land (\neg x_b \lor \neg x_c)}_{\text{domain axiom}} \land \neg (x_b \lor x_c)$$

To check satisfiability of the formula

$$\neg(x=b\vee x=c)$$

where $dom(x) = \{a, b, c\}$, we have to check satisfiability of the formula

$$\underbrace{(x_a \lor x_b \lor x_c) \land (\neg x_a \lor \neg x_b) \land (\neg x_a \lor \neg x_c) \land (\neg x_b \lor \neg x_c)}_{\text{domain axiom}} \land \neg (x_b \lor x_c)$$

Domain axiom for mode in microwave:

$$\begin{array}{l} \left(\mathsf{mode}_{\textit{idle}} \lor \mathsf{mode}_{\textit{micro}} \lor \mathsf{mode}_{\textit{grill}} \lor \mathsf{mode}_{\textit{defrost}} \right) \land \\ \left(\neg \mathsf{mode}_{\textit{idle}} \lor \neg \mathsf{mode}_{\textit{micro}} \right) \land \\ \left(\neg \mathsf{mode}_{\textit{idle}} \lor \neg \mathsf{mode}_{\textit{grill}} \right) \land \\ \left(\neg \mathsf{mode}_{\textit{idle}} \lor \neg \mathsf{mode}_{\textit{defrost}} \right) \land \\ \left(\neg \mathsf{mode}_{\textit{micro}} \lor \neg \mathsf{mode}_{\textit{grill}} \right) \land \\ \left(\neg \mathsf{mode}_{\textit{micro}} \lor \neg \mathsf{mode}_{\textit{defrost}} \right) \land \\ \left(\neg \mathsf{mode}_{\textit{grill}} \lor \neg \mathsf{mode}_{\textit{defrost}} \right) \end{aligned}$$

Preservation of models

Suppose that $\ensuremath{\mathcal{I}}$ is a propositional model of all the domain axioms

Define a PLFD interpretation \mathcal{I}' as follows:

$$\mathcal{I}'(x) = v \stackrel{\mathrm{def}}{=} \mathcal{I} \models x_v$$

Theorem 1

Let F' be a PLFD formula and F be obtained by translating F' to propositional logic. If $\mathcal{I} \models F$, then $\mathcal{I}' \models F'$.

Tableau System for PLFD

- Use signed formulas
- Use new kind of atomic formula: x ∈ {v₁,...,v_n} equivalent to x = v₁ ∨···∨ x = v_n
 (also using x ∈ {v} instead of x = v)
- Abbreviations: instead of $(x \in D)^1$ write $x \in D$, instead of $(x \in D)^0$ write $x \notin D$
- Tableau rules for PL + new tableau rules:

$$x \notin D \longrightarrow x \in dom(x) \setminus D$$

 $x \in D_1, x \in D_2 \longrightarrow x \in D_1 \cap D_2$

• A branch is closed if it contains T^0 , L^1 , or $x \in \{\}$

```
x \notin D \longrightarrow x \in dom(x) \setminus D
x \in D_1, x \in D_2 \longrightarrow x \in D_1 \cap D_2
```

Let's prove the validity of

```
F = \begin{array}{l} ((\mathsf{user} \in \{\mathsf{nobody}\} \to \mathsf{content} \in \{\mathsf{none}\}) \ \land \\ (\mathsf{user} \in \{\mathsf{prof}\} \to \mathsf{content} \in \{\mathsf{none}, \mathsf{cabbage}\}) \ \land \\ (\mathsf{user} \in \{\mathsf{staff}\} \to \mathsf{content} \in \{\mathsf{none}, \mathsf{burger}\}) \\ ) \to (\mathsf{content} \in \{\mathsf{pizza}\} \to \mathsf{user} \in \{\mathsf{student}\}) \end{array}
```

by deriving a closed tableaux from F^0

```
x \notin D \quad \leadsto \quad x \in dom(x) \setminus D
x \in D_1, x \in D_2 \quad \leadsto \quad x \in D_1 \cap D_2
```

```
(((user \in \{nobody\} \rightarrow content \in \{none\}) \land (user \in \{prof\} \rightarrow content \in \{none, cabbage\}) \land
 (user \in \{staff\} \rightarrow content \in \{none, burger\})) \rightarrow (content \in \{pizza\} \rightarrow user \in \{student\}))^0
((\mathsf{user} \in \{\mathsf{nobody}\} \to \mathsf{content} \in \{\mathsf{none}\}) \land (\mathsf{user} \in \{\mathsf{prof}\} \to \mathsf{content} \in \{\mathsf{none}, \mathsf{cabbage}\}) \land 
                                     (user \in \{staff\} \rightarrow content \in \{none, burger\})^1
                                        (content \in \{pizza\} \rightarrow user \in \{student\})^0
                                        (user \in \{nobodv\} \rightarrow content \in \{none\})^1
                                    (user \in \{prof\} \rightarrow content \in \{none, cabbage\})^1
                                     (user \in \{staff\} \rightarrow content \in \{none, burger\})^1
                                                         content \in \{pizza\}
                                                          user ∉ {student}
                                                  user \in \{nobody, prof, staff\}
```

Example, continued

```
x \not\in D \quad \rightsquigarrow \quad x \in dom(x) \setminus D
x \in D_1, \ x \in D_2 \quad \rightsquigarrow \quad x \in D_1 \cap D_2
```

```
(user \in \{nobody\} \rightarrow content \in \{none\})^1
(user \in \{prof\} \rightarrow content \in \{none, cabbage\})^1
(user \in \{staff\} \rightarrow content \in \{none, burger\})^1
                 content \in \{pizza\}
                  user ∉ {student}
           user \in \{nobodv, prof, staff\}
  content \in \{none\}
                                 user ∉ {nobody}
     content \in \{\} user \in \{student, prof, staff\}
         closed
                                user \in \{prof, staff\}
                     user \not\in \{prof\} content \in \{none, cabbage\}
```