
CS:4350 Logic in Computer Science

Propositional Logic of Finite Domains

Cesare Tinelli

Spring 2021

1 / 22

Credits

These slides are largely based on slides originally developed by Andrei Voronkov
at the University of Manchester. Adapted by permission.

2 / 22

Outline

Propositional Logic of Finite Domains
Logic andmodeling
State-changing systems
PLFD
PLFD and propositional logic
Tableau system for PLFD

3 / 22

Logic and Modeling

Satisfiability-checking in propositional logic has many applications

Unfortunately, there is a gap between real-life problems and their representation
in propositional logic

Many application domains have special modeling languages for describing
problems
because propositional logic is not convenient for modeling

However, in many cases, problems expressed in these languages can then be
translated to propositional logic

4 / 22

Logic and Modeling

Satisfiability-checking in propositional logic has many applications

Unfortunately, there is a gap between real-life problems and their representation
in propositional logic

Many application domains have special modeling languages for describing
problems
because propositional logic is not convenient for modeling

However, in many cases, problems expressed in these languages can then be
translated to propositional logic

4 / 22

Logic and Modeling

Satisfiability-checking in propositional logic has many applications

Unfortunately, there is a gap between real-life problems and their representation
in propositional logic

Many application domains have special modeling languages for describing
problems
because propositional logic is not convenient for modeling

However, in many cases, problems expressed in these languages can then be
translated to propositional logic

4 / 22

Logic and Modeling

Satisfiability-checking in propositional logic has many applications

Unfortunately, there is a gap between real-life problems and their representation
in propositional logic

Many application domains have special modeling languages for describing
problems
because propositional logic is not convenient for modeling

However, in many cases, problems expressed in these languages can then be
translated to propositional logic

4 / 22

Logic and Modeling

Satisfiability-checking in propositional logic has many applications

Unfortunately, there is a gap between real-life problems and their representation
in propositional logic

Many application domains have special modeling languages for describing
problems
because propositional logic is not convenient for modeling

However, in many cases, problems expressed in these languages can then be
translated to propositional logic

4 / 22

Circuit Design

library ieee;
use ieee.std_logic_1164.all;
entity FULL_ADDER is

port (A, B, Cin : in std_logic;
Sum, Cout : out std_logic);

end FULL_ADDER;
architecture BEHAV_FA of FULL_ADDER is
signal int1, int2, int3: std_logic;
begin
P1: process (A, B)

begin
int1<= A xor B;
int2<= A and B;

end process;
P2: process (int1, int2, Cin)

begin
Sum <= int1 xor Cin;
int3 <= int1 and Cin;
Cout <= int2 or int3;

end process;
end BEHAV_FA;

Circuit: propositional logic

Design: high-level
description (VHDL)

5 / 22

Circuit Design

library ieee;
use ieee.std_logic_1164.all;
entity FULL_ADDER is

port (A, B, Cin : in std_logic;
Sum, Cout : out std_logic);

end FULL_ADDER;
architecture BEHAV_FA of FULL_ADDER is
signal int1, int2, int3: std_logic;
begin
P1: process (A, B)

begin
int1<= A xor B;
int2<= A and B;

end process;
P2: process (int1, int2, Cin)

begin
Sum <= int1 xor Cin;
int3 <= int1 and Cin;
Cout <= int2 or int3;

end process;
end BEHAV_FA;

Circuit: propositional logic

Design: high-level
description (VHDL)

5 / 22

Scheduling

6 / 22

Constraints on Solutions

1. Rooms should have enough
seats

2. Instructors cannot teach
two courses at the same
time

3. Prof. Nightowl cannot teach
at 9am

4. . . .

7 / 22

State-changing systems

Our main interest from now on is modeling state-changing systems

We assume a discrete notion of time, with each time corresponding to a step taken
by the system

Informally

Formally

At each step, the system is in a partic-
ular state

This state canbecharacterizedbyval-
ues of a set of variables, called the
state variables.

The system state changes over time
There are actions (controlled or not)
that change the state

Actions change values of some state
variables

8 / 22

State-changing systems

Our main interest from now on is modeling state-changing systems

We assume a discrete notion of time, with each time corresponding to a step taken
by the system

Informally Formally

At each step, the system is in a partic-
ular state

This state canbecharacterizedbyval-
ues of a set of variables, called the
state variables.

The system state changes over time
There are actions (controlled or not)
that change the state

Actions change values of some state
variables

8 / 22

State-changing systems

Our main interest from now on is modeling state-changing systems

We assume a discrete notion of time, with each time corresponding to a step taken
by the system

Informally Formally

At each step, the system is in a partic-
ular state

This state canbecharacterizedbyval-
ues of a set of variables, called the
state variables.

The system state changes over time
There are actions (controlled or not)
that change the state

Actions change values of some state
variables

8 / 22

Computational systems are state-changing systems

Reactive systems:
systems that maintain an ongoing interaction with their environment rather
than produce some final value upon termination

Examples: air tra�ic control system, controllers in mechanical devices
(microwaves, tra�ic lights, trains, planes, . . .)

Concurrent systems
Systems executing simultaneously, and potentially interacting with each
other.

Examples: operating systems, networks, . . .

9 / 22

Computational systems are state-changing systems

Reactive systems:
systems that maintain an ongoing interaction with their environment rather
than produce some final value upon termination

Examples: air tra�ic control system, controllers in mechanical devices
(microwaves, tra�ic lights, trains, planes, . . .)

Concurrent systems
Systems executing simultaneously, and potentially interacting with each
other.

Examples: operating systems, networks, . . .

9 / 22

Reasoning about state-changing systems

1. Build a formal model the state-changing systemwhich describes, in
particular, its temporal behavior or some abstraction of it

2. Use a logic to specify and verify properties of the system

10 / 22

Reasoning about state-changing systems

1. Build a formal model the state-changing systemwhich describes, in
particular, its temporal behavior or some abstraction of it

2. Use a logic to specify and verify properties of the system

10 / 22

Propositional Logic of Finite Domains (PLFD)

Our first step to modeling state-changing systems:

introduce a logic for expressing state variables and their values

PLFD is a family of logics

Each instance of PLFD is characterized by
• a set X of variables
• a set V of values
• a mapping dom from X to subsets of V , such that
for every x ∈ X, dom(x) is a non-empty finite set, the domain for x

11 / 22

Propositional Logic of Finite Domains (PLFD)

Our first step to modeling state-changing systems:

introduce a logic for expressing state variables and their values

PLFD is a family of logics

Each instance of PLFD is characterized by
• a set X of variables
• a set V of values
• a mapping dom from X to subsets of V , such that
for every x ∈ X, dom(x) is a non-empty finite set, the domain for x

11 / 22

Propositional Logic of Finite Domains (PLFD)

Our first step to modeling state-changing systems:

introduce a logic for expressing state variables and their values

PLFD is a family of logics

Each instance of PLFD is characterized by
• a set X of variables
• a set V of values
• a mapping dom from X to subsets of V , such that
for every x ∈ X, dom(x) is a non-empty finite set, the domain for x

11 / 22

Syntax of PLFD

Formulas:

• For all x ∈ X and v ∈ dom(x), the equality x = v is a formula, also called
atomic formula, or simply atom

• Other formulas are built from atomic formulas as in propositional logic, using
the connectives>,⊥,∧,∨,¬,→, and↔

12 / 22

Syntax of PLFD

Formulas:

• For all x ∈ X and v ∈ dom(x), the equality x = v is a formula, also called
atomic formula, or simply atom

• Other formulas are built from atomic formulas as in propositional logic, using
the connectives>,⊥,∧,∨,¬,→, and↔

12 / 22

Semantics

Consider a set X of variables and a set V of values for them

Interpretation: a mapping I : X → V such that I(x) ∈ dom(x) for all x ∈ X

We extend interpretations tomappings from formulas to Boolean values as follows
1. I(x = v) = 1 i� I(x) = v
2. If formula is not atomic, then as for propositional formulas

The definitions of truth, models, entailment, validity, satisfiability, and
equivalence are defined exactly as in propositional logic

13 / 22

Semantics

Consider a set X of variables and a set V of values for them

Interpretation: a mapping I : X → V such that I(x) ∈ dom(x) for all x ∈ X

We extend interpretations tomappings from formulas to Boolean values as follows
1. I(x = v) = 1 i� I(x) = v
2. If formula is not atomic, then as for propositional formulas

The definitions of truth, models, entailment, validity, satisfiability, and
equivalence are defined exactly as in propositional logic

13 / 22

Semantics

Consider a set X of variables and a set V of values for them

Interpretation: a mapping I : X → V such that I(x) ∈ dom(x) for all x ∈ X

We extend interpretations tomappings from formulas to Boolean values as follows
1. I(x = v) = 1 i� I(x) = v
2. If formula is not atomic, then as for propositional formulas

The definitions of truth, models, entailment, validity, satisfiability, and
equivalence are defined exactly as in propositional logic

13 / 22

Example

If dom(x) = { a, b, c }, then the following is a formula which is valid:

¬x = a→ x = b ∨ x = c

In contrast, if dom(x) = { a, b, c, d }, then the formula above is not valid

as it is falsified by I = { x 7→ d }:

{ x 7→ d } 6|= ¬x = a→ x = b ∨ x = c

14 / 22

Example

If dom(x) = { a, b, c }, then the following is a formula which is valid:

¬x = a→ x = b ∨ x = c

In contrast, if dom(x) = { a, b, c, d }, then the formula above is not valid

as it is falsified by I = { x 7→ d }:

{ x 7→ d } 6|= ¬x = a→ x = b ∨ x = c

14 / 22

Example

If dom(x) = { a, b, c }, then the following is a formula which is valid:

¬x = a→ x = b ∨ x = c

In contrast, if dom(x) = { a, b, c, d }, then the formula above is not valid

as it is falsified by I = { x 7→ d }:

{ x 7→ d } 6|= ¬x = a→ x = b ∨ x = c

14 / 22

Example: microwave

variable domain of values
mode { idle,micro, grill, defrost }
door { open, closed }
content { none, burger, pizza, cabbage }
user { nobody, student, prof , sta� }
temperature { 0, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250 }

mode = grill→ door = closed ∧ ¬(temperature = 0) ∧ ¬(user = nobody)

15 / 22

Propositional Logic as PLFD

Consider propositional variables as variables over the domain { 0, 1 }
Instead of atoms p use p = 1

One can also use p = 0 for¬p, since (p = 0) ≡ ¬(p = 1)

This transformation preserves models. For example, the models of

p ∧ q→ ¬r

are exactly the models of

p = 1 ∧ q = 1→ r = 0

16 / 22

Propositional Logic as PLFD

Consider propositional variables as variables over the domain { 0, 1 }
Instead of atoms p use p = 1

One can also use p = 0 for¬p, since (p = 0) ≡ ¬(p = 1)

This transformation preserves models. For example, the models of

p ∧ q→ ¬r

are exactly the models of

p = 1 ∧ q = 1→ r = 0

16 / 22

Propositional variables in PLFD

We say that p is a boolean variable if dom(p) = { 0, 1 }

In instances of PLFD with both boolean and non-boolean, we will use boolean
variables as in propositional logic:
• p instead of p = 1
• ¬p instead of p = 0

17 / 22

Translation of PLFD into Propositional Logic

1. Introduce a propositional variable xv for each variable x and value v ∈ dom(x)

2. Replace every atom x = v by xv

3. Add domain axiom for each variable x:

(xv1 ∨ · · · ∨ xvn) ∧
∧
i<j

(¬xvi ∨ ¬xvj)

where dom(x) = { v1, . . . , vn }

18 / 22

Example
To check satisfiability of the formula

¬(x = b ∨ x = c)

where dom(x) = { a, b, c }, we have to check satisfiability of the formula

(xa ∨ xb ∨ xc) ∧ (¬xa ∨ ¬xb) ∧ (¬xa ∨ ¬xc) ∧ (¬xb ∨ ¬xc)︸ ︷︷ ︸
domain axiom

∧¬(xb ∨ xc)

Domain axiom for mode in microwave:
(modeidle ∨modemicro ∨modegrill ∨modedefrost) ∧
(¬modeidle ∨ ¬modemicro) ∧
(¬modeidle ∨ ¬modegrill) ∧
(¬modeidle ∨ ¬modedefrost) ∧
(¬modemicro ∨ ¬modegrill) ∧
(¬modemicro ∨ ¬modedefrost) ∧
(¬modegrill ∨ ¬modedefrost)

19 / 22

Example
To check satisfiability of the formula

¬(x = b ∨ x = c)

where dom(x) = { a, b, c }, we have to check satisfiability of the formula

(xa ∨ xb ∨ xc) ∧ (¬xa ∨ ¬xb) ∧ (¬xa ∨ ¬xc) ∧ (¬xb ∨ ¬xc)︸ ︷︷ ︸
domain axiom

∧¬(xb ∨ xc)

Domain axiom for mode in microwave:
(modeidle ∨modemicro ∨modegrill ∨modedefrost) ∧
(¬modeidle ∨ ¬modemicro) ∧
(¬modeidle ∨ ¬modegrill) ∧
(¬modeidle ∨ ¬modedefrost) ∧
(¬modemicro ∨ ¬modegrill) ∧
(¬modemicro ∨ ¬modedefrost) ∧
(¬modegrill ∨ ¬modedefrost)

19 / 22

Preservation of models

Suppose that I is a propositional model of all the domain axioms

Define a PLFD interpretation I ′ as follows:

I ′(x) = v def
= I |= xv

Theorem 1
Let F′ be a PLFD formula and F be obtained by translating F′ to propositional logic. If
I |= F, then I ′ |= F′.

20 / 22

Tableau System for PLFD

• Use signed formulas
• Use new kind of atomic formula: x ∈ {v1, . . . , vn}
equivalent to x = v1 ∨ · · · ∨ x = vn
(also using x ∈ {v} instead of x = v)

• Abbreviations: instead of (x ∈ D)1 write x ∈ D, instead of (x ∈ D)0 write x 6∈ D
• Tableau rules for PL + new tableau rules:

x 6∈ D x ∈ dom(x) \ D
x ∈ D1, x ∈ D2 x ∈ D1 ∩ D2

• A branch is closed if it contains>0,⊥1, or x ∈ {}

21 / 22

Example

, continued

Let’s prove the validity of

F =

((user ∈ {nobody} → content ∈ {none}) ∧
(user ∈ {prof} → content ∈ {none, cabbage}) ∧
(user ∈ {sta�} → content ∈ {none, burger})
) → (content ∈ {pizza} → user ∈ {student})

by deriving a closed tableaux from F0

22 / 22

x 6∈ D x ∈ dom(x) \ D
x ∈ D1, x ∈ D2 x ∈ D1 ∩ D2

Example

, continued

(((user ∈ {nobody} → content ∈ {none}) ∧ (user ∈ {prof} → content ∈ {none, cabbage}) ∧
(user ∈ {sta�} → content ∈ {none, burger})) → (content ∈ {pizza} → user ∈ {student}))0

((user ∈ {nobody} → content ∈ {none}) ∧ (user ∈ {prof} → content ∈ {none, cabbage}) ∧
(user ∈ {sta�} → content ∈ {none, burger}))1
(content ∈ {pizza} → user ∈ {student})0

(user ∈ {nobody} → content ∈ {none})1
(user ∈ {prof} → content ∈ {none, cabbage})1
(user ∈ {sta�} → content ∈ {none, burger})1

content ∈ {pizza}
user 6∈ {student}

user ∈ {nobody, prof , sta�}

22 / 22

x 6∈ D x ∈ dom(x) \ D
x ∈ D1, x ∈ D2 x ∈ D1 ∩ D2

Example, continued
...

(user ∈ {nobody} → content ∈ {none})1
(user ∈ {prof} → content ∈ {none, cabbage})1
(user ∈ {sta�} → content ∈ {none, burger})1

content ∈ {pizza}
user 6∈ {student}

user ∈ {nobody, prof , sta�}

content ∈ {none}

content ∈ {}
closed

user 6∈ {nobody}

user ∈ {student, prof , sta�}

user ∈ {prof , sta�}

user 6∈ {prof}

...

content ∈ {none, cabbage}

...

22 / 22

x 6∈ D x ∈ dom(x) \ D
x ∈ D1, x ∈ D2 x ∈ D1 ∩ D2

	Propositional Logic of Finite Domains
	Logic and modeling
	State-changing systems
	PLFD
	PLFD and propositional logic
	Tableau system for PLFD

