CS:4350 Logic in Computer Science
 Quantified Boolean Formulas

Cesare Tinelli

Spring 2021

Credits

These slides are largely based on slides originally developed by Andrei Voronkov at the University of Manchester. Adapted by permission.

Outline

Quantified Boolean Formulas
Syntax and Semantics
Free and Bound Variables
Prenex Form
Satisfiability Checking
Splitting
Conjunctive Normal Form
DPLL
QBF and BDDs

Two-Player Games

Does she have a winning strategy?

Two-Player Games

Given: a propositional formula G with variables $p_{1}, q_{1}, \ldots, p_{n}, q_{n}$

Two-Player Games

Given: a propositional formula G with variables $p_{1}, q_{1}, \ldots, p_{n}, q_{n}$
There are two players: P and Q

Two-Player Games

Given: a propositional formula G with variables $p_{1}, q_{1}, \ldots, p_{n}, q_{n}$
There are two players: P and Q
At step k each player makes a move:

Two-Player Games

Given: a propositional formula G with variables $p_{1}, q_{1}, \ldots, p_{n}, q_{n}$
There are two players: P and Q
At step k each player makes a move:

1. the player P can choose a Boolean value for the variable p_{k}

Two-Player Games

Given: a propositional formula G with variables $p_{1}, q_{1}, \ldots, p_{n}, q_{n}$
There are two players: P and Q
At step k each player makes a move:

1. the player P can choose a Boolean value for the variable p_{k}
2. the player Q can choose a Boolean value for the variable q_{k}

Two-Player Games

Given: a propositional formula G with variables $p_{1}, q_{1}, \ldots, p_{n}, q_{n}$
There are two players: P and Q
At step k each player makes a move:

1. the player P can choose a Boolean value for the variable p_{k}
2. the player Q can choose a Boolean value for the variable q_{k}

Player P wins if after n steps the chosen values satisfy formula G

Suppose Both Players Make no Errors: Who Wins?

Consider several special cases:
Outcome

Suppose Both Players Make no Errors: Who Wins?

Consider several special cases:

Outcome

Suppose Both Players Make no Errors: Who Wins?

Consider several special cases:

| | G |
| :---: | :--- |\quad Outcome \quad P wins with $\left\{p_{1} \mapsto 1\right\}$

Suppose Both Players Make no Errors: Who Wins?

Consider several special cases:

	G	Outcome
1.	p_{1}	P wins with $\left\{p_{1} \mapsto 1\right\}$
2.	$p_{1} \rightarrow q_{1}$	

Suppose Both Players Make no Errors: Who Wins?

Consider several special cases:

	G	Outcome
1.	p_{1}	P wins with $\left\{p_{1} \mapsto 1\right\}$
2.	$p_{1} \rightarrow q_{1}$	P wins with $\left\{p_{1} \mapsto 0\right\}$

Suppose Both Players Make no Errors: Who Wins?

Consider several special cases:

	G	Outcome
1.	p_{1}	P wins with $\left\{p_{1} \mapsto 1\right\}$
2.	$p_{1} \rightarrow q_{1}$	P wins with $\left\{p_{1} \mapsto 0\right\}$
3.	$q_{1} \rightarrow q_{2}$	

Suppose Both Players Make no Errors: Who Wins?

Consider several special cases:

	G	Outcome
1.	p_{1}	P wins with $\left\{p_{1} \mapsto 1\right\}$
2.	$p_{1} \rightarrow q_{1}$	P wins with $\left\{p_{1} \mapsto 0\right\}$
3.	$q_{1} \rightarrow q_{2}$	G has no p_{i} vars, P 's choices are immaterial

Suppose Both Players Make no Errors: Who Wins?

Consider several special cases:

	G	Outcome
1.	p_{1}	P wins with $\left\{p_{1} \mapsto 1\right\}$
2.	$p_{1} \rightarrow q_{1}$	P wins with $\left\{p_{1} \mapsto 0\right\}$
3.	$q_{1} \rightarrow q_{2}$	G has no p_{i} vars, P's choices are immaterial
4.	$q_{1} \rightarrow q_{1}$	

Suppose Both Players Make no Errors: Who Wins?

Consider several special cases:

	G	Outcome
1.	p_{1}	P wins with $\left\{p_{1} \mapsto 1\right\}$
2.	$p_{1} \rightarrow q_{1}$	P wins with $\left\{p_{1} \mapsto 0\right\}$
3.	$q_{1} \rightarrow q_{2}$	G has no p_{i} vars, P 's choices are immaterial
4.	$q_{1} \rightarrow q_{1}$	G is valid, P always wins!

Suppose Both Players Make no Errors: Who Wins?

Consider several special cases:

	G	Outcome
1.	p_{1}	P wins with $\left\{p_{1} \mapsto 1\right\}$
2.	$p_{1} \rightarrow q_{1}$	P wins with $\left\{p_{1} \mapsto 0\right\}$
3.	$q_{1} \rightarrow q_{2}$	G has no p_{i} vars, P 's choices are immaterial
4.	$q_{1} \rightarrow q_{1}$	G is valid, P always wins!
5.	$p_{1} \wedge \neg p_{1}$	

Suppose Both Players Make no Errors: Who Wins?

Consider several special cases:

	G	Outcome
1.	p_{1}	P wins with $\left\{p_{1} \mapsto 1\right\}$
2.	$p_{1} \rightarrow q_{1}$	P wins with $\left\{p_{1} \mapsto 0\right\}$
3.	$q_{1} \rightarrow q_{2}$	G has no p_{i} vars, P 's choices are immaterial
4.	$q_{1} \rightarrow q_{1}$	G is valid, P always wins!
5.	$p_{1} \wedge \neg p_{1}$	G is unsatisfiable, Q always wins!

Suppose Both Players Make no Errors: Who Wins?

Consider several special cases:

	G	Outcome
1.	p_{1}	P wins with $\left\{p_{1} \mapsto 1\right\}$
2.	$p_{1} \rightarrow q_{1}$	P wins with $\left\{p_{1} \mapsto 0\right\}$
3.	$q_{1} \rightarrow q_{2}$	G has no p_{i} vars, P 's choices are immaterial
4.	$q_{1} \rightarrow q_{1}$	G is valid, P always wins!
5.	$p_{1} \wedge \neg p_{1}$	G is unsatisfiable, Q always wins!
6.	$p_{1} \leftrightarrow q_{1}$	

Suppose Both Players Make no Errors: Who Wins?

Consider several special cases:

	G	Outcome
1.	p_{1}	P wins with $\left\{p_{1} \mapsto 1\right\}$
2.	$p_{1} \rightarrow q_{1}$	P wins with $\left\{p_{1} \mapsto 0\right\}$
3.	$q_{1} \rightarrow q_{2}$	G has no p_{i} vars, P 's choices are immaterial
4.	$q_{1} \rightarrow q_{1}$	G is valid, P always wins!
5.	$p_{1} \wedge \neg p_{1}$	G is unsatisfiable, Q always wins!
6.	$p_{1} \leftrightarrow q_{1}$	each move by P can be beaten by Q

Winning Strategy

Problem: does P have a winning strategy?

Winning Strategy

Problem: does P have a winning strategy?
P has a winning strategy
iff
there exists a move for P (a value for p_{1}) such that

Winning Strategy

Problem: does P have a winning strategy?
P has a winning strategy
iff
there exists a move for P (a value for p_{1}) such that for all moves of Q (values for q_{1})

Winning Strategy

Problem: does P have a winning strategy?
P has a winning strategy
iff
there exists a move for P (a value for p_{1}) such that
for all moves of Q (values for q_{1})
there exists a move for P (a value for p_{2}) such that

Winning Strategy

Problem: does P have a winning strategy?
P has a winning strategy
iff
there exists a move for P (a value for p_{1}) such that for all moves of Q (values for q_{1})
there exists a move for P (a value for p_{2}) such that for all moves of Q (values for q_{2})

Winning Strategy

Problem: does P have a winning strategy?
P has a winning strategy
iff
there exists a move for P (a value for p_{1}) such that for all moves of Q (values for q_{1})
there exists a move for P (a value for p_{2}) such that for all moves of Q (values for q_{2})

Winning Strategy

Problem: does P have a winning strategy?
P has a winning strategy
iff
there exists a move for P (a value for p_{1}) such that for all moves of Q (values for q_{1})
there exists a move for P (a value for p_{2}) such that for all moves of Q (values for q_{2})
there exists a move for P (a value for p_{n}) such that

Winning Strategy

Problem: does P have a winning strategy?
P has a winning strategy
iff
there exists a move for P (a value for p_{1}) such that for all moves of Q (values for q_{1})
there exists a move for P (a value for p_{2}) such that for all moves of Q (values for q_{2})
there exists a move for P (a value for p_{n}) such that for all moves of Q (values for q_{n})

Winning Strategy

Problem: does P have a winning strategy?

P has a winning strategy
iff
there exists a move for P (a value for p_{1}) such that for all moves of Q (values for q_{1})
there exists a move for P (a value for p_{2}) such that for all moves of Q (values for q_{2})
there exists a move for P (a value for p_{n}) such that for all moves of Q (values for q_{n}) the formula G is satisfiable

Winning Strategy

Problem: does P have a winning strategy?

P has a winning strategy
iff
there exists a move for P (a value for p_{1}) such that
for all moves of Q (values for q_{1})
there exists a move for P (a value for p_{2}) such that for all moves of Q (values for q_{2})
there exists a move for P (a value for p_{n}) such that for all moves of Q (values for q_{n}) the formula G is satisfiable

The existence of a winning strategy can be expressed by the quantified Boolean formula

$$
\exists p_{1} \forall q_{1} \exists p_{2} \forall q_{2} \ldots \exists p_{n} \forall q_{n} G
$$

Quantified Boolean Formulas

Propositional Formula:

- Every Boolean variable is a (propositional) formula
- T and \perp are formulas
- If F is a PF, then $\neg F$ is a formula
- If F_{1}, \ldots, F_{n} are formulas, where $n \geq 2$, then $\left(F_{1} \wedge \cdots \wedge F_{n}\right)$ and $\left(F_{1} \vee \cdots \vee F_{n}\right)$ are formulas
- If F and G are formulas, then $(F \rightarrow G)$ and $(F \leftrightarrow G)$ are formulas

Quantified Boolean Formulas

Propositional Formula:

- Every Boolean variable is a (propositional) formula
- T and \perp are formulas
- If F is a PF, then $\neg F$ is a formula
- If F_{1}, \ldots, F_{n} are formulas, where $n \geq 2$, then $\left(F_{1} \wedge \cdots \wedge F_{n}\right)$ and $\left(F_{1} \vee \cdots \vee F_{n}\right)$ are formulas
- If F and G are formulas, then $(F \rightarrow G)$ and $(F \leftrightarrow G)$ are formulas

Quantified Boolean Formulas (QBFs):

- Every propositional formula is a QBF
- If p is a Boolean variable and F is a QBF, then $\forall p F$ and $\exists p F$ are QBFs

Quantifiers

- \forall is called the universal quantifier (symbol)
- \exists is called the existential quantifier (symbol)
- $\forall p F$ is read as "for all p, F "
- $\exists p F$ is read as "there exists p such that F " or "for some p, F "

Changing interpretations pointwise

Let \mathcal{I} be an interpretation
Notation:

$$
\mathcal{I}[p \mapsto b](q) \stackrel{\text { def }}{=} \begin{cases}\mathcal{I}(q), & \text { if } p \neq q \\ b, & \text { if } p=q\end{cases}
$$

Changing interpretations pointwise

Let \mathcal{I} be an interpretation
Notation:

$$
\mathcal{I}[p \mapsto b](q) \stackrel{\text { def }}{=} \begin{cases}\mathcal{I}(q), & \text { if } p \neq q \\ b, & \text { if } p=q\end{cases}
$$

Example: $\mathcal{I}=\{p \mapsto 1, q \mapsto 0, r \mapsto 1\}$

$$
\begin{aligned}
& \mathcal{I}[q \mapsto 1]=\{p \mapsto 1, q \mapsto 1, r \mapsto 1\} \\
& \mathcal{I}[q \mapsto 0]=\{p \mapsto 1, q \mapsto 0, r \mapsto 1\}=\mathcal{I} \\
& \mathcal{I}[p \mapsto 0]=\{p \mapsto 0, q \mapsto 0, r \mapsto 1\}
\end{aligned}
$$

QBF Semantics

1. $\mathcal{I}(T)=1$ and $\mathcal{I}(\perp)=0$
2. $\mathcal{I}\left(F_{1} \wedge \cdots \wedge F_{n}\right)=1$ iff $\mathcal{I}\left(F_{i}\right)=1$ for all i
3. $\mathcal{I}\left(F_{1} \vee \cdots \vee F_{n}\right)=1$ iff $\mathcal{I}\left(F_{i}\right)=1$ for some i
4. $\mathcal{I}(\neg F)=1$ iff $\mathcal{I}(F)=0$
5. $\mathcal{I}(F \rightarrow G)=1$ iff $\mathcal{I}(F)=0 \operatorname{or} \mathcal{I}(G)=1$
6. $\mathcal{I}(F \leftrightarrow G)=1$ iff $\mathcal{I}(F)=\mathcal{I}(G)$

QBF Semantics

1. $\mathcal{I}(T)=1$ and $\mathcal{I}(\perp)=0$
2. $\mathcal{I}\left(F_{1} \wedge \cdots \wedge F_{n}\right)=1$ iff $\mathcal{I}\left(F_{i}\right)=1$ for all i
3. $\mathcal{I}\left(F_{1} \vee \cdots \vee F_{n}\right)=1$ iff $\mathcal{I}\left(F_{i}\right)=1$ for some i
4. $\mathcal{I}(\neg F)=1$ iff $\mathcal{I}(F)=0$
5. $\mathcal{I}(F \rightarrow G)=1$ iff $\mathcal{I}(F)=0 \operatorname{or} \mathcal{I}(G)=1$
6. $\mathcal{I}(F \leftrightarrow G)=1$ iff $\mathcal{I}(F)=\mathcal{I}(G)$
7. $\mathcal{I}(\forall p F)=1$ iff $\mathcal{I}[p \mapsto 0](F)=1$ and $\mathcal{I}[p \mapsto 1](F)=1$
8. $\mathcal{I}(\exists p F)=1$ iff $\mathcal{I}[p \mapsto 0](F)=1 \operatorname{or} \mathcal{I}[p \mapsto 1](F)=1$

Evaluating a formula: and-or trees

How to evaluate $\forall p \exists q(p \leftrightarrow q)$ on the interpretation $\{p \mapsto 1, q \mapsto 0\}$

Evaluating a formula: and-or trees

How to evaluate $\forall p \exists q(p \leftrightarrow q)$ on the interpretation $\{p \mapsto 1, q \mapsto 0\}$

Notation: Denote any interpretation $\left\{p \mapsto b_{1}, q \mapsto b_{2}\right\}$ by $\mathcal{I}_{b_{1} b_{2}}$

Evaluating a formula: and-or trees

How to evaluate $\forall p \exists q(p \leftrightarrow q)$ on the interpretation $\{p \mapsto 1, q \mapsto 0\}$

Notation: Denote any interpretation $\left\{p \mapsto b_{1}, q \mapsto b_{2}\right\}$ by $\mathcal{I}_{b_{1} b_{2}}$

$$
\mathcal{I}_{10} \models \forall p \exists q(p \leftrightarrow q)
$$

Evaluating a formula: and-or trees

How to evaluate $\forall p \exists q(p \leftrightarrow q)$ on the interpretation $\{p \mapsto 1, q \mapsto 0\}$

Notation: Denote any interpretation $\left\{p \mapsto b_{1}, q \mapsto b_{2}\right\}$ by $\mathcal{I}_{b_{1} b_{2}}$

$$
\mathcal{I}_{10} \models \forall p \exists q(p \leftrightarrow q) \quad \Leftrightarrow \quad \begin{aligned}
& \mathcal{I}_{00} \models \exists q(p \leftrightarrow q) \\
& \mathcal{I}_{10} \models \exists q(p \leftrightarrow q)
\end{aligned} \text { and }
$$

Evaluating a formula: and-or trees

How to evaluate $\forall p \exists q(p \leftrightarrow q)$ on the interpretation $\{p \mapsto 1, q \mapsto 0\}$

Notation: Denote any interpretation $\left\{p \mapsto b_{1}, q \mapsto b_{2}\right\}$ by $\mathcal{I}_{b_{1} b_{2}}$

$$
\mathcal{I}_{10} \models \forall p \exists q(p \leftrightarrow q) \quad \Leftrightarrow \quad \begin{aligned}
& \mathcal{I}_{00} \models \exists q(p \leftrightarrow q) \\
& \mathcal{I}_{10} \models \exists q(p \leftrightarrow q)
\end{aligned} \text { and }
$$

$$
\Leftrightarrow \quad \begin{aligned}
& \begin{array}{l}
\mathcal{I}_{00} \models p \leftrightarrow q \\
\mathcal{I}_{01} \models p \leftrightarrow q
\end{array} \quad \text { or } \\
& \\
& \begin{array}{l}
\mathcal{I}_{10} \models p \leftrightarrow q \\
\mathcal{I}_{11} \models p \leftrightarrow q
\end{array} \text { or } \\
&
\end{aligned} \quad \text { and }
$$

Evaluating a formula: and-or trees

Evaluating a formula

Notation: Denote any interpretation $\left\{p \mapsto b_{1}, q \mapsto b_{2}\right\}$ by $\mathcal{I}_{b_{1} b_{2}}$ Use wildcards * to denote any Boolean value

$$
\mathcal{I}_{* *} \models \forall p \exists q(p \leftrightarrow q)
$$

Evaluating a formula

Notation: Denote any interpretation $\left\{p \mapsto b_{1}, q \mapsto b_{2}\right\}$ by $\mathcal{I}_{b_{1} b_{2}}$ Use wildcards * to denote any Boolean value

$$
\mathcal{I}_{* *} \models \forall p \exists q(p \leftrightarrow q) \Leftrightarrow \quad \begin{aligned}
& \mathcal{I}_{0 *}=\exists q(p \leftrightarrow q) \\
& \mathcal{I}_{1 *} \models \exists q(p \leftrightarrow q)
\end{aligned} \text { and }
$$

Evaluating a formula

Notation: Denote any interpretation $\left\{p \mapsto b_{1}, q \mapsto b_{2}\right\}$ by $\mathcal{I}_{b_{1} b_{2}}$ Use wildcards * to denote any Boolean value

$$
\mathcal{I}_{* *} \models \forall p \exists q(p \leftrightarrow q) \Leftrightarrow \begin{aligned}
& \mathcal{I}_{0 *}=\exists q(p \leftrightarrow q) \\
& \mathcal{I}_{1 *} \models \exists q(p \leftrightarrow q)
\end{aligned} \text { and }
$$

$$
\Leftrightarrow \quad \begin{array}{ll}
\begin{array}{l}
\mathcal{I}_{00} \models p \leftrightarrow q \\
\mathcal{I}_{01} \models p \leftrightarrow q
\end{array} & \text { or } \\
& \text { and } \\
\begin{array}{l}
\mathcal{I}_{10} \models p \leftrightarrow q \\
\mathcal{I}_{11} \models p \leftrightarrow q
\end{array} & \text { or } \\
\end{array} \quad
$$

Evaluating a formula

Notation: Denote any interpretation $\left\{p \mapsto b_{1}, q \mapsto b_{2}\right\}$ by $\mathcal{I}_{b_{1} b_{2}}$ Use wildcards * to denote any Boolean value

$$
\mathcal{I}_{* *} \models \forall p \exists q(p \leftrightarrow q) \quad \Leftrightarrow \quad \begin{aligned}
& \mathcal{I}_{0 *}=\exists q(p \leftrightarrow q) \\
& \mathcal{I}_{1 *} \models \exists q(p \leftrightarrow q)
\end{aligned} \text { and }
$$

The variables p and q are bound by the quantifiers $\forall p$ and $\exists q$, so the value of the formula does not depend on the values p and q

Subformula

Propositional formulas:

- F is the immediate subformula of $\neg F$
- F_{1}, \ldots, F_{n} are the immediate subformulas of $F_{1} \wedge \cdots \wedge F_{n}$
- F_{1}, \ldots, F_{n} are the immediate subformulas of $F_{1} \vee \cdots \vee F_{n}$
- F_{1} and F_{2} are the immediate subformulas of $F_{1} \rightarrow F_{2}$
- F_{1} and F_{2} are the immediate subformulas of $F_{1} \leftrightarrow F_{2}$
- ...

Subformula

Propositional formulas:

- F is the immediate subformula of $\neg F$
- F_{1}, \ldots, F_{n} are the immediate subformulas of $F_{1} \wedge \cdots \wedge F_{n}$
- F_{1}, \ldots, F_{n} are the immediate subformulas of $F_{1} \vee \cdots \vee F_{n}$
- F_{1} and F_{2} are the immediate subformulas of $F_{1} \rightarrow F_{2}$
- F_{1} and F_{2} are the immediate subformulas of $F_{1} \leftrightarrow F_{2}$
- ...

Quantified Boolean formulas:

- F is the immediate subformula of $\forall p F$ and of $\exists p F$

Positions and polarity by example

Positions and polarity by example

Positions and polarity by example

Positions and Polarity

Let $\left.F\right|_{\pi}=A$
Propositional formulas:

- If A has the form $\neg A_{1}$, then $\pi .1$ is a position in $F,\left.F\right|_{\pi .1} \stackrel{\text { def }}{=} A_{1}$ and $\operatorname{pol}(F, \pi .1) \stackrel{\text { def }}{=}-\operatorname{pol}(F, \pi)$
- If A has the form $A_{1} \wedge \cdots \wedge A_{n}$ or $A_{1} \vee \cdots \vee A_{n}$ and $i \in\{1, \ldots, n\}$, then $\pi . i$ is a position in F and $p o l(F, \pi, i) \stackrel{\text { def }}{=} \operatorname{pol}(F, \pi)$

Positions and Polarity

Let $\left.F\right|_{\pi}=A$

Propositional formulas:

- If A has the form $\neg A_{1}$, then $\pi .1$ is a position in $F,\left.F\right|_{\pi .1} \stackrel{\text { def }}{=} A_{1}$ and $\operatorname{pol}(F, \pi .1) \stackrel{\text { def }}{=}-\operatorname{pol}(F, \pi)$
- If A has the form $A_{1} \wedge \cdots \wedge A_{n}$ or $A_{1} \vee \cdots \vee A_{n}$ and $i \in\{1, \ldots, n\}$, then $\pi . i$ is a position in F and $p o l(F, \pi . i) \stackrel{\text { def }}{=} \operatorname{pol}(F, \pi)$
- ...

Quantified Boolean formulas:

- If A has the form $\forall p B$ or $\exists p B$, then $\pi .1$ is a position in $F,\left.F\right|_{\pi .1} \stackrel{\text { def }}{=} B$ and $p o l(F, \pi .1) \stackrel{\text { def }}{=} \operatorname{pol}(F, \pi)$

Free and bound variables by example

Free and bound occurrences in programs

- Free variables in formulas are analogous to global variables in programs
- Bound variables in formulas are analogous to local variables in programs

```
int offset_sym_diff(int i, int j)
{
    int k = i > j ? i - j : j - i;
    return a + k
}
sum = i + offset_sym_diff(3,4);
```


Free and bound occurrences in programs

- Free variables in formulas are analogous to global variables in programs
- Bound variables in formulas are analogous to local variables in programs

Free and bound occurrences of variables

Let F be a QBF and p be atom of at position π
The occurrence of p at position π in F is bound if π can be represented as a concatenation of two strings $\pi_{1} \pi_{2}$ such that $\left.F\right|_{\pi_{1}}$ has the form $\forall p G$ or $\exists p G$

Free and bound occurrences of variables

Let F be a QBF and p be atom of at position π
The occurrence of p at position π in F is bound if π can be represented as a concatenation of two strings $\pi_{1} \pi_{2}$ such that $\left.F\right|_{\pi_{1}}$ has the form $\forall p G$ or $\exists p G$ A bound occurrence of p is an occurrence in the scope of $\forall p$ or $\exists p$

Free and bound occurrences of variables

Let F be a QBF and p be atom of at position π
The occurrence of p at position π in F is bound if π can be represented as a concatenation of two strings $\pi_{1} \pi_{2}$ such that $\left.F\right|_{\pi_{1}}$ has the form $\forall p G$ or $\exists p G$ A bound occurrence of p is an occurrence in the scope of $\forall p$ or $\exists p$

Free occurrence: not bound

Free and bound occurrences of variables

Let F be a QBF and p be atom of at position π

The occurrence of p at position π in F is bound if π can be represented as a concatenation of two strings $\pi_{1} \pi_{2}$ such that $\left.F\right|_{\pi_{1}}$ has the form $\forall p G$ or $\exists p G$ A bound occurrence of p is an occurrence in the scope of $\forall p$ or $\exists p$

Free occurrence: not bound
Free (bound) variable of a formula: a variable with at least one free (bound) occurrence

Free and bound occurrences of variables

Let F be a QBF and p be atom of at position π

The occurrence of p at position π in F is bound if π can be represented as a concatenation of two strings $\pi_{1} \pi_{2}$ such that $\left.F\right|_{\pi_{1}}$ has the form $\forall p G$ or $\exists p G$ A bound occurrence of p is an occurrence in the scope of $\forall p$ or $\exists p$

Free occurrence: not bound
Free (bound) variable of a formula: a variable with at least one free (bound) occurrence

Closed formula: formula with no free variables

Only free variables matter for truth

The truth value of a QBF formula F depends only on the values of its free variables:

Lemma 1
Suppose $\mathcal{I}_{1}(p)=\mathcal{I}_{2}(p)$ for all free variables p of F. Then

$$
I_{1} \models F \text { iff } I_{2} \models F
$$

Only free variables matter for truth

The truth value of a QBF formula F depends only on the values of its free variables:

Lemma 1
Suppose $\mathcal{I}_{1}(p)=\mathcal{I}_{2}(p)$ for all free variables p of F. Then

$$
I_{1} \models F \text { iff } I_{2} \models F
$$

Theorem 2
Let F be a closed formula and let $\mathcal{I}_{1}, \mathcal{I}_{2}$ be two interpretations. Then

$$
I_{1} \models F \text { iff } I_{2} \models F
$$

Truth, Validity and Satisfiability

Validity and satisfiability are defined as for propositional formulas

Truth, Validity and Satisfiability

Validity and satisfiability are defined as for propositional formulas
There is no difference between these notions for closed formulas:
Lemma 3
For every interpretation I and closed formula F the following statements are equivalent: (i) $\mathcal{I} \models$ F; (ii) F is satisfiable; and (iii) F is valid.

Truth, Validity and Satisfiability

Validity and satisfiability are defined as for propositional formulas
There is no difference between these notions for closed formulas:
Lemma 3
For every interpretation I and closed formula F the following statements are equivalent: (i) $\mathcal{I} \models$ F; (ii) F is satisfiable; and (iii) F is valid.

Satisfiability can be expressed through satisfiability/validity of closed formulas:
Lemma 4
Let F be a formula with free variables p_{1}, \ldots, p_{n}.

- F is satisfiable iff $\exists p_{1} \ldots \exists p_{n} F$ is satisfiable/valid
- F is valid iff the formula $\forall p_{1} \ldots \forall p_{n} F$ is satisfiable/valid

Substitutions for propositional formulas

Substitution: F_{p}^{G} : denotes the formula obtained from F by replacing all occurrences of the variable p by G

Substitutions for propositional formulas

Substitution: F_{p}^{G} : denotes the formula obtained from F by replacing all occurrences of the variable p by G

Example:

$$
((p \vee s) \wedge(q \rightarrow p))_{p}^{(l \wedge s)}=((l \wedge s) \vee s) \wedge(q \rightarrow(l \wedge s))
$$

Substitutions for propositional formulas

Substitution: F_{p}^{G} : denotes the formula obtained from F by replacing all occurrences of the variable p by G

Example:

$$
((p \vee s) \wedge(q \rightarrow p))_{p}^{(l \wedge s)}=((l \wedge s) \vee s) \wedge(q \rightarrow(l \wedge s))
$$

Property: Applying any substitution to a valid formula results in a valid formula

Substitution for quantified formulas

Some problems...

Substitution for quantified formulas

Some problems...

Consider $\exists q(\neg p \leftrightarrow q)$

Substitution for quantified formulas

Some problems ...

Consider $\exists q(\neg p \leftrightarrow q)$
We cannot simply replace variables by formulas any more:
$\exists(r \rightarrow r)(\neg p \leftrightarrow r \rightarrow r)$???

Substitution for quantified formulas

Some problems ...
Consider $\exists q(\neg p \leftrightarrow q)$
We cannot simply replace variables by formulas any more:
$\exists(r \rightarrow r)(\neg p \leftrightarrow r \rightarrow r)$???
Free variables are parameters: we can only substitute for parameters. But a variable can have both free and bound occurrences in a formula, e.g.,

$$
\forall p((p \rightarrow q) \vee \neg p) \wedge(q \vee(q \rightarrow p))
$$

Renaming bound variables

Notation: $\exists \forall$: any of \exists, \forall

Renaming bound variables

Notation: $\exists \forall$: any of \exists, \forall

Renaming bound variables in $F[\exists \forall p G]$:

1. Take a fresh variable q (i.e., a variable not occurring in F)
2. Replace all free occurrences of p in G (not in F !) by q, obtaining G^{\prime}
3. Consider $F\left[\exists \forall q G^{\prime}\right]$

Renaming bound variables

Notation: $\exists \forall$: any of \exists, \forall

Renaming bound variables in $F[\exists \forall p G]$:

1. Take a fresh variable q (i.e., a variable not occurring in F)
2. Replace all free occurrences of p in G (not in F !) by q, obtaining G^{\prime}
3. Consider $F\left[\exists \forall q G^{\prime}\right]$

Example:

$$
\begin{aligned}
& \exists r(\forall p((p \rightarrow r) \wedge p)) \vee p \quad \text { rename } p \text { to } q \text { obtaining } \\
& \exists r(\forall q((q \rightarrow r) \wedge q)) \vee p
\end{aligned}
$$

Renaming bound variables

Notation: $\exists \forall$: any of \exists, \forall
Renaming bound variables in $F[\exists \forall p G]$:

1. Take a fresh variable q (i.e., a variable not occurring in F)
2. Replace all free occurrences of p in G (not in F !) by q, obtaining G^{\prime}
3. Consider $F\left[\exists \forall q G^{\prime}\right]$

Example:

$$
\begin{aligned}
& \exists r(\forall p((p \rightarrow r) \wedge p)) \vee p \quad \text { rename } p \text { to } q \text { obtaining } \\
& \exists r(\forall q((q \rightarrow r) \wedge q)) \vee p
\end{aligned}
$$

Lemma 5
$F[\exists \forall p G] \equiv F\left[\exists \forall q G^{\prime}\right]$

Free and bound variables by example

Rectified formulas

Rectified formula F:

1. no variable appears both free and bound in F
2. for every variable p, there is at most one occurrence of quantifier $\exists \forall p$ in F

Rectified formulas

Rectified formula F:

1. no variable appears both free and bound in F
2. for every variable p, there is at most one occurrence of quantifier $\exists \forall p$ in F

Any formula can be rectified by renaming its bound variables

Rectified formulas

Rectified formula F:

1. no variable appears both free and bound in F
2. for every variable p, there is at most one occurrence of quantifier $\exists \forall p$ in F

Any formula can be rectified by renaming its bound variables
We can use the usual notation F_{p}^{G} for substitutions into a rectified formula F, assuming p occurs only free in F

Rectification: Example

$$
p \rightarrow \exists p(p \wedge \forall p(p \vee r \rightarrow \neg p))
$$

Rectification: Example

$$
p \rightarrow \exists p(p \wedge \forall p(p \vee r \rightarrow \neg p))
$$

Rectification: Example

$$
\begin{aligned}
& p \rightarrow \exists p(p \wedge \forall p(p \vee r \rightarrow \neg p)) \Rightarrow \\
& p \rightarrow \exists p\left(p \wedge \forall p_{1}\left(p_{1} \vee r \rightarrow \neg p_{1}\right)\right)
\end{aligned}
$$

Rectification: Example

$$
\begin{aligned}
& p \rightarrow \exists p(p \wedge \forall p(p \vee r \rightarrow \neg p)) \Rightarrow \\
& p \rightarrow \exists p\left(p \wedge \forall p_{1}\left(p_{1} \vee r \rightarrow \neg p_{1}\right)\right) \Rightarrow \\
& p \rightarrow \exists p_{2}\left(p_{2} \wedge \forall p_{1}\left(p_{1} \vee r \rightarrow \neg p_{1}\right)\right)
\end{aligned}
$$

Another problem

$\exists q(\neg p \leftrightarrow q) \quad$ This formula is valid (whatever p is, choose the opposite for q)

Another problem

$\exists q(\neg p \leftrightarrow q) \quad$ This formula is valid (whatever p is, choose the opposite for q)
substitute p by q

Another problem

$\exists q(\neg p \leftrightarrow q) \quad$ This formula is valid (whatever p is, choose the opposite for q)
substitute p by q
$\exists q(\neg q \leftrightarrow q) \quad$ This formula is unsatisfiable!

Another problem

$\exists q(\neg p \leftrightarrow q) \quad$ This formula is valid (whatever p is, choose the opposite for q)
substitute p by q
$\exists q(\neg q \leftrightarrow q) \quad$ This formula is unsatisfiable! Substitutions below a quantifier should not lead to variable capturing

Another restriction

Suppose we want to substitute G for p in $F[p]$
Requirement: no free variables in G become bound in F_{p}^{G}

Another restriction

Suppose we want to substitute G for p in $F[p]$
Requirement: no free variables in G become bound in F_{p}^{G}
(In previous example, $(\exists q(\neg p \leftrightarrow q))_{p}^{q}$ does not satisfy this requirement)

Another restriction

Suppose we want to substitute G for p in $F[p]$
Requirement: no free variables in G become bound in F_{p}^{G}
(In previous example, $(\exists q(\neg p \leftrightarrow q))_{p}^{q}$ does not satisfy this requirement)
Uniform solution: renaming of bound variables

Example:
Since $\exists q(\neg p \leftrightarrow q) \equiv \exists r(\neg p \leftrightarrow r)$
we can use $(\exists r(\neg p \leftrightarrow r))_{p}^{q}$ instead of $(\exists q(\neg p \leftrightarrow q))_{p}^{q}$

Another restriction

Suppose we want to substitute G for p in $F[p]$
Requirement: no free variables in G become bound in F_{p}^{G}
(In previous example, $(\exists q(\neg p \leftrightarrow q))_{p}^{q}$ does not satisfy this requirement)

Equivalent replacement

Lemma 6
Let \mathcal{I} be an interpretation and $\mathcal{I} \models F_{1} \leftrightarrow F_{2}$. Then $\mathcal{I} \models G\left[F_{1}\right] \leftrightarrow G\left[F_{2}\right]$.

Equivalent replacement

Lemma 6
Let \mathcal{I} be an interpretation and $\mathcal{I} \models F_{1} \leftrightarrow F_{2}$. Then $\mathcal{I} \models G\left[F_{1}\right] \leftrightarrow G\left[F_{2}\right]$.

Theorem 7 (Equivalent Replacement)
Let $F_{1} \equiv F_{2}$. Then $G\left[F_{1}\right] \equiv G\left[F_{2}\right]$.

More equivalences

Theorem 8
The following holds for all QBFs F:

1. $\forall p_{1} \forall p_{2} F \equiv \forall p_{2} \forall p_{1} F$
2. $\exists p_{1} \exists p_{2} F \equiv \exists p_{2} \exists p_{1} F$
3. $\exists \nexists p F \equiv F$ if p does not occur free in F

More equivalences

Theorem 8
The following holds for all QBFs F:

1. $\forall p_{1} \forall p_{2} F \equiv \forall p_{2} \forall p_{1} F$
2. $\exists p_{1} \exists p_{2} F \equiv \exists p_{2} \exists p_{1} F$
3. $\exists \forall p F \equiv F$ if p does not occur free in F

Note: In general, $\exists p_{1} \forall p_{2} F \not \equiv \forall p_{2} \exists p_{1} F$

More equivalences

Theorem 8
The following holds for all QBFs F:

1. $\forall p_{1} \forall p_{2} F \equiv \forall p_{2} \forall p_{1} F$
2. $\exists p_{1} \exists p_{2} F \equiv \exists p_{2} \exists p_{1} F$
3. $\exists \nexists p F \equiv F$ if p does not occur free in F

Note: In general, $\exists p_{1} \forall p_{2} F \not \equiv \forall p_{2} \exists p_{1} F$
Example:

- $\forall p \exists q(p \leftrightarrow q) \equiv \top$

More equivalences

Theorem 8
The following holds for all QBFs F:

1. $\forall p_{1} \forall p_{2} F \equiv \forall p_{2} \forall p_{1} F$
2. $\exists p_{1} \exists p_{2} F \equiv \exists p_{2} \exists p_{1} F$
3. $\exists \nexists p F \equiv F$ if p does not occur free in F

Note: In general, $\exists p_{1} \forall p_{2} F \not \equiv \forall p_{2} \exists p_{1} F$
Example:

- $\forall p \exists q(p \leftrightarrow q) \equiv T$
- $\exists q \forall p(p \leftrightarrow q) \equiv \perp$

Prenex form

Quantifier-free formula: no quantifiers (that is, propositional)

Prenex form

Quantifier-free formula: no quantifiers (that is, propositional)

Prenex formula: formula of the form

with G quantifier-free

Prenex form

Quantifier-free formula: no quantifiers (that is, propositional)

Prenex formula: formula of the form

with G quantifier-free
Outermost prefix of $\exists \forall_{1} p_{1} \cdots \exists \forall_{n} p_{n} G$: the longest subsequence $\exists \exists_{1} p_{1} \cdots \exists \exists_{k} p_{k}$ of $\exists \forall_{1} p_{1} \cdots \exists \forall_{n} p_{n}$ such that $\exists \exists_{1}=\cdots=\exists \forall_{k}$

Prenex form

Quantifier-free formula: no quantifiers (that is, propositional)

Prenex formula: formula of the form

with G quantifier-free
Outermost prefix of $\exists \forall_{1} p_{1} \cdots \exists \forall_{n} p_{n} G$: the longest subsequence $\exists \exists_{1} p_{1} \cdots \exists \exists_{k} p_{k}$ of $\exists \forall_{1} p_{1} \cdots \exists \forall_{n} p_{n}$ such that $\exists \forall_{1}=\cdots=\exists \forall_{k}$

Example

- outermost prefix of $\forall p \forall q \exists r(r \wedge p \rightarrow q)$: $\forall p \forall q$
- outermost prefix of $\exists p \forall q \exists r(r \wedge p \rightarrow q): \exists p$

Prenex form

Quantifier-free formula: no quantifiers (that is, propositional)

Prenex formula: formula of the form

with G quantifier-free
Outermost prefix of $\exists \forall_{1} p_{1} \cdots \exists \forall_{n} p_{n} G$: the longest subsequence $\exists \exists_{1} p_{1} \cdots \exists \exists_{k} p_{k}$ of $\exists \forall_{1} p_{1} \cdots \exists \forall_{n} p_{n}$ such that $\exists \forall_{1}=\cdots=\exists \forall_{k}$

A formula F is a prenex form of a formula G if F is prenex and $F \equiv G$

Conversion to prenex form, Example I

Conversion to prenex form, Example I

$$
\begin{array}{ll}
\exists q(q \rightarrow p) \rightarrow \neg \forall r(r \rightarrow p) \vee p & \Rightarrow \\
\forall q((q \rightarrow p) \rightarrow \neg \forall r(r \rightarrow p) \vee p) & \Rightarrow \\
\forall q((q \rightarrow p) \rightarrow \exists r \neg(r \rightarrow p) \vee p) & \Rightarrow \\
\forall q((q \rightarrow p) \rightarrow \exists r(\neg(r \rightarrow p) \vee p)) & \Rightarrow \\
\forall q \exists r((q \rightarrow p) \rightarrow \neg(r \rightarrow p) \vee p) &
\end{array}
$$

Prenexing rules

$$
\begin{aligned}
\left(\exists \forall p F_{1}\right) \wedge \cdots \wedge F_{n} \Rightarrow & \exists \forall p\left(F_{1} \wedge \cdots \wedge F_{n}\right) \\
\left(\exists \forall p F_{1}\right) \vee \cdots \vee F_{n} \Rightarrow & \exists p p\left(F_{1} \vee \cdots \vee F_{n}\right) \\
\left(\forall p F_{1}\right) \rightarrow F_{2} \Rightarrow \exists p\left(F_{1} \rightarrow F_{2}\right) & F_{1} \rightarrow\left(\exists p F_{2}\right) \Rightarrow \exists p\left(F_{1} \rightarrow F_{2}\right) \\
\left(\exists p F_{1}\right) \rightarrow F_{2} \Rightarrow \forall p\left(F_{1} \rightarrow F_{2}\right) & F_{1} \rightarrow\left(\forall p F_{2}\right) \Rightarrow \forall p\left(F_{1} \rightarrow F_{2}\right) \\
\neg \forall p F \Rightarrow \exists p \neg F & \neg \exists p F \Rightarrow \forall p \neg F
\end{aligned}
$$

Conversion to prenex form, Example II

$$
\begin{array}{ll}
\exists q(q \rightarrow p) \rightarrow \neg \forall r(r \rightarrow p) \vee p & \Rightarrow \\
\exists q(q \rightarrow p) \rightarrow \exists r \neg(r \rightarrow p) \vee p & \Rightarrow \\
\exists q(q \rightarrow p) \rightarrow \exists r(\neg(r \rightarrow p) \vee p) & \Rightarrow \\
\exists r(\exists q(q \rightarrow p) \rightarrow \neg(r \rightarrow p) \vee p) & \Rightarrow \\
\exists r \forall q((q \rightarrow p) \rightarrow \neg(r \rightarrow p) \vee p) &
\end{array}
$$

Checking the satisfiability of QBFs

The algorithms for propositional satisfiability or validity can be adapted to QBF We will see:

- Splitting
- DPLL

Checking the satisfiability of QBFs

The algorithms for propositional satisfiability or validity can be adapted to QBF We will see:

- Splitting
- DPLL

Recall:

1. $F\left(p_{1}, \ldots, p_{n}\right)$ is satisfiable iff $\exists p_{1} \cdots \exists p_{n} F\left(p_{1}, \ldots, p_{n}\right)$ is satisfiable
2. $F\left(p_{1}, \ldots, p_{n}\right)$ is valid iff $\forall p_{1} \cdots \forall p_{n} F\left(p_{1}, \ldots, p_{n}\right)$ is satisfiable
3. A closed QBF is either always true (valid) or false (unsatisfiable)

Checking the satisfiability of QBFs

The algorithms for propositional satisfiability or validity can be adapted to QBF We will see:

- Splitting
- DPLL

Recall:

1. $F\left(p_{1}, \ldots, p_{n}\right)$ is satisfiable iff $\exists p_{1} \ldots \exists p_{n} F\left(p_{1}, \ldots, p_{n}\right)$ is satisfiable
2. $F\left(p_{1}, \ldots, p_{n}\right)$ is valid iff $\forall p_{1} \ldots \forall p_{n} F\left(p_{1}, \ldots, p_{n}\right)$ is satisfiable
3. A closed QBF is either always true (valid) or false (unsatisfiable)

The algorithms will check whether a closed formula is valid or unsatisfiable

Splitting: foundations

Lemma 9

- A closed formula $\forall p F$ evaluates to true iff both F_{p}^{\perp} and F_{p}^{\top} evaluate to true.
- A closed formula $\exists p F$ evaluates to true iff either F_{p}^{\perp} or F_{p}^{\top} evaluates to true.

Splitting

Simplification rules for T :

$$
\begin{gathered}
\neg \top \Rightarrow \perp \\
\top \wedge F_{1} \wedge \cdots \wedge F_{n} \Rightarrow F_{1} \wedge \cdots \wedge F_{n} \\
\top \vee F_{1} \vee \cdots \vee F_{n} \Rightarrow \top \\
F \rightarrow \top \Rightarrow \top \quad \top \rightarrow F \Rightarrow F \\
F \leftrightarrow \top\rceil \Rightarrow F \quad \top \leftrightarrow F \Rightarrow F
\end{gathered}
$$

Simplification rules for \perp :

$$
\begin{gathered}
\neg \perp \Rightarrow \top \\
\perp \wedge F_{1} \wedge \cdots \wedge F_{n} \Rightarrow \perp \\
\perp \vee F_{1} \vee \cdots \vee F_{n} \Rightarrow F_{1} \vee \cdots \vee F_{n} \\
F \rightarrow \perp \Rightarrow \neg F \quad \perp \rightarrow F \Rightarrow \top \\
F \leftrightarrow \perp \Rightarrow \neg F \quad \perp \leftrightarrow F \Rightarrow \neg F
\end{gathered}
$$

Splitting

Simplification rules for T :

$$
\begin{gathered}
\neg \top \Rightarrow \perp \\
\top \wedge F_{1} \wedge \cdots \wedge F_{n} \Rightarrow F_{1} \wedge \cdots \wedge F_{n} \\
\top \vee F_{1} \vee \cdots \vee F_{n} \Rightarrow \top \\
F \rightarrow \top \Rightarrow \top \quad \top \rightarrow F \Rightarrow F \\
F \leftrightarrow \top\rceil \Rightarrow F \quad \top \leftrightarrow F \Rightarrow F \\
\forall p \top \Rightarrow \top \\
\exists p \top \Rightarrow \top
\end{gathered}
$$

Simplification rules for \perp :

$$
\begin{gathered}
\neg \perp \Rightarrow \top \\
\perp \wedge F_{1} \wedge \cdots \wedge F_{n} \Rightarrow \perp \\
\perp \vee F_{1} \vee \cdots \vee F_{n} \Rightarrow F_{1} \vee \cdots \vee F_{n} \\
F \rightarrow \perp \Rightarrow \neg F \quad \perp \rightarrow F \Rightarrow \top \\
F \leftrightarrow \perp \Rightarrow \neg F \quad \perp \leftrightarrow F \Rightarrow \neg F \\
\forall p \perp \Rightarrow \perp \\
\exists p \perp \Rightarrow \perp
\end{gathered}
$$

Splitting, Example

$$
\forall p \exists q(p \leftrightarrow q)
$$

Splitting, Example

$$
\begin{aligned}
& \quad \forall p \exists q(p \leftrightarrow q) \\
& p=0 \\
& \exists q(\neg q)
\end{aligned}
$$

Splitting, Example

$$
\begin{aligned}
& \quad \exists q \forall p(p \leftrightarrow q) \\
& q=0
\end{aligned} \quad \vee \mathrm{l}
$$

Splitting, Example

Splitting, Example

Splitting, Example

Splitting, Example

Splitting, Example

Splitting, Example

Splitting, Example

To minimize search the selection of variable values is best seen as a two-player game:
by selecting a value for $\exists q$ one is trying to make the formula true, by selecting a value for $\forall p$ one is trying to make the formula false

Splitting algorithm

Notation: if $\boldsymbol{p}=\left(p_{1}, \ldots, p_{k}\right)$ then $\exists \forall p F$ denotes $\exists \forall p_{1} \cdots \exists \forall p_{k} F$

Splitting algorithm

```
procedure splitting(F)
input: closed rectified prenex formula F
output: 0 or 1
parameters: function select_variable_value // selects a variable from the outermost prefix
begin // of F as well as a Boolean value for it
    F := simplify (F) // apply extended simplification rules to completion
    if F}=\perp\mathrm{ then return 0
    if F=T then return 1
    // else F has the form }\exists\forallp\mp@subsup{F}{}{\prime}\mathrm{ where p is F's outermost prefix
    (p,b) := select_variable_value(F)
    Let G be obtained from F by deleting p from p
    if }b=0\mathrm{ then }A:=\perp;B:= T else A := T; B:= 
    b := splitting(GG
    case (b, \exists})\mathrm{ ) of
    (0,\forall)=> return 0
    (0,\exists)=> return splitting(G}\mp@subsup{G}{p}{B}
    (1,\forall)=> return splitting ( G G
    (1,\exists)=> return 1
end
```


Conjunctive Normal Form

For more efficient algorithms we need QBFs to be in a convenient normal form

Conjunctive Normal Form

For more efficient algorithms we need QBFs to be in a convenient normal form
Our next aim is to modify CNF and DPLL to deal with quantified Boolean formulas

Conjunctive Normal Form

For more efficient algorithms we need QBFs to be in a convenient normal form
Our next aim is to modify CNF and DPLL to deal with quantified Boolean formulas

A quantified Boolean formula F is in Conjunctive Normal Form (CNF), if

- it is either \perp, or \top, or
- it has the form

$$
\exists \forall_{1} p_{1} \cdots \exists \forall_{n} p_{n}\left(C_{1} \wedge \cdots \wedge C_{m}\right)
$$

where C_{1}, \ldots, C_{m} are clauses

Conjunctive Normal Form

For more efficient algorithms we need QBFs to be in a convenient normal form

Our next aim is to modify CNF and DPLL to deal with quantified Boolean formulas

A quantified Boolean formula F is in Conjunctive Normal Form (CNF), if

- it is either \perp, or \top, or
- it has the form

$$
\exists \forall_{1} p_{1} \cdots \exists \forall_{n} p_{n}\left(C_{1} \wedge \cdots \wedge C_{m}\right)
$$

where C_{1}, \ldots, C_{m} are clauses

Example:

$$
\forall p \exists q \exists s((\neg p \vee s \vee q) \wedge(s \vee \neg q) \wedge \neg s))
$$

CNF rules

Prenexing rules
+
propositional CNF rules:

$$
\begin{aligned}
F \leftrightarrow G & \Rightarrow(\neg F \vee G) \wedge(\neg G \vee F) \\
F \rightarrow G & \Rightarrow \neg F \vee G \\
\neg(F \wedge G) & \Rightarrow \neg F \vee \neg G \\
\neg(F \vee G) & \Rightarrow \neg F \wedge \neg G \\
\neg \neg F & \Rightarrow F \\
\left(F_{1} \wedge \cdots \wedge F_{m}\right) \vee G_{1} \vee \cdots \vee G_{n} \Rightarrow & \left(F_{1} \vee G_{1} \vee \cdots \vee G_{n}\right) \\
& \\
& \left(F_{m} \vee G_{1} \vee \cdots \vee G_{n}\right)
\end{aligned}
$$

DPLL for quantified boolean formulas

Input:
Q: quantifier sequence $\exists \forall_{1} p_{1} \cdots \exists \exists_{n} \boldsymbol{p}_{n}$
S : set of clauses with variables from $p_{1}, \ldots, \boldsymbol{p}_{n}$

Main components:
Unit propagation
Splitting on literals

Unit Propagation

Q: quantifier sequence S : current clause set

Propositional formulas:
For each unit clause L in S

1. remove all clauses containing literal \angle from S
2. remove every literal \bar{L} from remaining clauses

Unit Propagation

Q: quantifier sequence S : current clause set

Propositional formulas:
For each unit clause L in S

1. remove all clauses containing literal \angle from S
2. remove every literal \bar{L} from remaining clauses

Quantified Boolean formulas:
For each unit clause L in S of the form p or $\neg p$

Unit Propagation

Q: quantifier sequence S : current clause set

Propositional formulas:
For each unit clause L in S

1. remove all clauses containing literal \angle from S
2. remove every literal \bar{L} from remaining clauses

Quantified Boolean formulas:

For each unit clause L in S of the form p or $\neg p$

- If Q does not contain p or contains $\exists p$,

1. remove all clauses containing literal L from S
2. remove every literal \bar{L} from remaining clauses

Unit Propagation

Q: quantifier sequence S : current clause set

Propositional formulas:
For each unit clause L in S

1. remove all clauses containing literal \angle from S
2. remove every literal \bar{L} from remaining clauses

Quantified Boolean formulas:

For each unit clause L in S of the form p or $\neg p$

- If Q does not contain p or contains $\exists p$,

1. remove all clauses containing literal \angle from S
2. remove every literal \bar{L} from remaining clauses

- otherwise (Q contains $\forall p$), add \square to S

DPLL algorithm

Why do we add \square to S when Q is $\forall p \exists \exists_{1} p_{1} \ldots \exists \exists_{m} p_{m}$ and

$$
S \text { is }\left\{p, C_{1}, \ldots, C_{n}\right\}\left(\operatorname{or}\left\{\neg p, C_{1}, \ldots, C_{n}\right\}\right) ?
$$

DPLL algorithm

Why do we add \square to S when Q is $\forall p \exists \forall_{1} p_{1} \cdots \exists \forall_{m} p_{m}$ and

$$
S \text { is }\left\{p, C_{1}, \ldots, C_{n}\right\}\left(\operatorname{or}\left\{\neg p, C_{1}, \ldots, C_{n}\right\}\right) ?
$$

Because

1. The intended input formula is

$$
G=\forall p \exists \exists_{1} q_{1} \cdots \exists \exists_{m} q_{m}\left(p \wedge C_{1} \wedge \cdots \wedge C_{m}\right)
$$

DPLL algorithm

Why do we add \square to S when Q is $\forall p \exists \forall_{1} p_{1} \cdots \exists \forall_{m} p_{m}$ and

$$
S \text { is }\left\{p, C_{1}, \ldots, C_{n}\right\}\left(\operatorname{or}\left\{\neg p, C_{1}, \ldots, C_{n}\right\}\right) ?
$$

Because

1. The intended input formula is

$$
G=\forall p \exists \exists_{1} q_{1} \cdots \exists \exists_{m} q_{m}\left(p \wedge C_{1} \wedge \cdots \wedge C_{m}\right)
$$

2. $G \equiv \exists \forall_{1} q_{1} \cdots \exists \forall_{m} q_{m}\left(\left(p \wedge C_{1} \wedge \cdots \wedge C_{m}\right)_{p}^{\perp} \wedge\left(p \wedge C_{1} \wedge \cdots \wedge C_{m}\right)_{p}^{\top}\right)$

DPLL algorithm

Why do we add \square to S when Q is $\forall p \exists \forall_{1} p_{1} \cdots \exists \forall_{m} p_{m}$ and

$$
S \text { is }\left\{p, C_{1}, \ldots, C_{n}\right\}\left(\operatorname{or}\left\{\neg p, C_{1}, \ldots, C_{n}\right\}\right) ?
$$

Because

1. The intended input formula is

$$
G=\forall p \exists \exists_{1} q_{1} \cdots \exists \exists_{m} q_{m}\left(p \wedge C_{1} \wedge \cdots \wedge C_{m}\right)
$$

2. $G \equiv \exists \exists_{1} q_{1} \cdots \nexists_{m} q_{m}\left(\left(p \wedge C_{1} \wedge \cdots \wedge C_{m}\right)_{p}^{\perp} \wedge\left(p \wedge C_{1} \wedge \cdots \wedge C_{m}\right)_{p}^{\top}\right)$

$$
=\exists \forall_{1} q_{1} \cdots \exists \forall_{m} q_{m}\left(\perp \wedge\left(C_{1} \wedge \cdots \wedge C_{m}\right)_{p}^{\perp} \wedge\left(p \wedge C_{1} \wedge \cdots \wedge C_{m}\right)_{p}^{\top}\right)
$$

DPLL algorithm

Why do we add \square to S when Q is $\forall p \exists \forall_{1} p_{1} \cdots \exists \forall_{m} p_{m}$ and S is $\left\{p, C_{1}, \ldots, C_{n}\right\}\left(\operatorname{or}\left\{\neg p, C_{1}, \ldots, C_{n}\right\}\right)$?

Because

1. The intended input formula is

$$
G=\forall p \exists \exists_{1} q_{1} \cdots \exists \exists_{m} q_{m}\left(p \wedge C_{1} \wedge \cdots \wedge C_{m}\right)
$$

2. $G \equiv \exists \forall_{1} q_{1} \cdots \exists \exists_{m} q_{m}\left(\left(p \wedge C_{1} \wedge \cdots \wedge C_{m}\right)_{p}^{\perp} \wedge\left(p \wedge C_{1} \wedge \cdots \wedge C_{m}\right)_{p}^{\top}\right)$

$$
\begin{aligned}
& =\exists \forall_{1} q_{1} \cdots \exists \exists_{m} q_{m}\left(\perp \wedge\left(C_{1} \wedge \cdots \wedge C_{m}\right)_{p}^{\perp} \wedge\left(p \wedge C_{1} \wedge \cdots \wedge C_{m}\right)_{p}^{\top}\right) \\
& \equiv \exists \forall_{1} q_{1} \cdots \exists \forall_{m} q_{m} \perp \\
& \equiv \perp
\end{aligned}
$$

DPLL algorithm

Why do we add \square to S when Q is $\forall p \exists \forall_{1} p_{1} \cdots \exists \forall_{m} p_{m}$ and S is $\left\{p, C_{1}, \ldots, C_{n}\right\}\left(\operatorname{or}\left\{\neg p, C_{1}, \ldots, C_{n}\right\}\right)$?

Because

1. The intended input formula is

$$
G=\forall p \exists \exists_{1} q_{1} \cdots \exists \exists_{m} q_{m}\left(p \wedge C_{1} \wedge \cdots \wedge C_{m}\right)
$$

2. $G \equiv \exists \forall_{1} q_{1} \cdots \exists \exists_{m} q_{m}\left(\left(p \wedge C_{1} \wedge \cdots \wedge C_{m}\right)_{p}^{\perp} \wedge\left(p \wedge C_{1} \wedge \cdots \wedge C_{m}\right)_{p}^{\top}\right)$

$$
\begin{aligned}
& =\exists \forall_{1} q_{1} \cdots \exists \exists_{m} q_{m}\left(\perp \wedge\left(C_{1} \wedge \cdots \wedge C_{m}\right)_{p}^{\perp} \wedge\left(p \wedge C_{1} \wedge \cdots \wedge C_{m}\right)_{p}^{\top}\right) \\
& \equiv \exists \forall_{1} q_{1} \cdots \exists \forall_{m} q_{m} \perp \\
& \equiv \perp
\end{aligned}
$$

DPLL algorithm

Why do we add \square to S when Q is $\forall p \exists \exists_{1} p_{1} \cdots \exists \exists_{m} p_{m}$ and

$$
S \text { is }\left\{p, C_{1}, \ldots, C_{n}\right\}\left(\operatorname{or}\left\{\neg p, C_{1}, \ldots, C_{n}\right\}\right) ?
$$

Alternatively, using the game metaphor, because
the \forall-player wants to falsify the formula

DPLL algorithm

$$
\begin{aligned}
& \text { Why do we add } \square \text { to } S \text { when } Q \text { is } \forall p \exists \forall_{1} p_{1} \ldots \exists \forall_{m} p_{m} \text { and } \\
& \left.\qquad S \text { is }\left\{p, C_{1}, \ldots, C_{n}\right\} \text { (or }\left\{\neg p, C_{1}, \ldots, C_{n}\right\}\right) \text { ? }
\end{aligned}
$$

Alternatively, using the game metaphor, because

$$
\text { the } \forall \text {-player wants to falsify the formula }
$$

Winning move for the \forall-player:
select the value for p that falsifies the unit clause p, and hence the whole CNF

DPLL algorithm

Why do we add \square to S when Q is $\forall p \exists \forall_{1} p_{1} \ldots \exists \forall_{m} p_{m}$ and S is $\left\{p, C_{1}, \ldots, C_{n}\right\}\left(\operatorname{or}\left\{\neg p, C_{1}, \ldots, C_{n}\right\}\right)$?

Alternatively, using the game metaphor, because
the \forall-player wants to falsify the formula

Winning move for the \forall-player:
select the value for p that falsifies the unit clause p, and hence the whole CNF
(argument is similar for $\left\{\neg p, C_{1}, \ldots, C_{n}\right\}$)

DPLL, Example

$$
\begin{gathered}
\exists p \forall q \exists r \\
p \vee q \vee \neg r \\
p \vee \neg q \vee r \\
\neg p \vee q \vee r \\
\neg p \vee q \vee \neg r
\end{gathered}
$$

DPLL, Example

DPLL algorithm

```
procedure DPLL(Q,S)
input: quantifier sequence Q = \exists\mp@subsup{\forall}{1}{}\mp@subsup{p}{1}{}\cdots\exists\mp@subsup{\forall}{n}{}\mp@subsup{p}{n}{}\mathrm{ ,}
    clause set S with vars from Q
output: 0 or 1
parameters: function select_variable_value
begin
    S := unit_propagate(Q,S)
    if S is empty then return 1
    if S contains }\square\mathrm{ then return 0
    (p,b) := select_variable_value( }\mp@subsup{\boldsymbol{p}}{1}{},S
    Let Q' be obtained from Q by deleting }\exists\mp@subsup{\exists}{1}{}p\mathrm{ from }\mp@subsup{\exists}{1}{}\mp@subsup{p}{1}{
    if b=0 then L := \negp
        else L := p
    case (DPLL(Q',S\cup{L}),\exists})\mathrm{ of
    (0,\forall)=> return 0
    (0,\exists)=>return DPLL(Q',S\cup{位})
    (1,\forall)=> return DPLL(Q', S\cup{位})
    (1,\exists)=> return 1
end
```


Improving DPLL with further simplifications

$$
\exists p \exists q \forall r \exists s((p \vee \neg r) \wedge(\neg q \vee r) \wedge(\neg p \vee q \vee s) \wedge(\neg p \vee q \vee r \vee \neg s))
$$

Improving DPLL with further simplifications

$$
\exists p \exists q \forall r \exists s((p \vee \neg r) \wedge(\neg q \vee r) \wedge(\neg p \vee q \vee s) \wedge(\neg p \vee q \vee r \vee \neg s))
$$

- We can treat $\neg r$ in $p \vee \neg r$ as 0 without loss of generality

Improving DPLL with further simplifications

$$
\begin{aligned}
& \exists p \exists q \forall r \exists s((p \vee \neg r) \wedge(\neg q \vee r) \wedge(\neg p \vee q \vee s) \wedge(\neg p \vee q \vee r \vee \neg s)) \Rightarrow \\
& \exists p \exists q \forall r \exists s(p \wedge(\neg q \vee r) \wedge(\neg p \vee q \vee s) \wedge(\neg p \vee q \vee r \vee \neg s))
\end{aligned}
$$

- We can treat $\neg r$ in $p \vee \neg r$ as 0 without loss of generality

Improving DPLL with further simplifications

$$
\begin{aligned}
& \exists p \exists q \forall r \exists s((p \vee \neg r) \wedge(\neg q \vee r) \wedge(\neg p \vee q \vee s) \wedge(\neg p \vee q \vee r \vee \neg s)) \Rightarrow \\
& \exists p \exists q \forall r \exists s(p \wedge(\neg q \vee r) \wedge(\neg p \vee q \vee s) \wedge(\neg p \vee q \vee r \vee \neg s))
\end{aligned}
$$

- We can treat $\neg r$ in $p \vee \neg r$ as 0 without loss of generality
- We can apply unit propagation

Improving DPLL with further simplifications

$$
\begin{aligned}
& \exists p \exists q \forall r \exists s((p \vee \neg r) \wedge(\neg q \vee r) \wedge(\neg p \vee q \vee s) \wedge(\neg p \vee q \vee r \vee \neg s)) \Rightarrow \\
& \exists p \exists q \forall r \exists s(p \wedge(\neg q \vee r) \wedge(\neg p \vee q \vee s) \wedge(\neg p \vee q \vee r \vee \neg s)) \Rightarrow \\
& \exists q \forall r \exists s((\neg q \vee r) \wedge(q \vee s) \wedge(q \vee r \vee \neg s))
\end{aligned}
$$

- We can treat $\neg r$ in $p \vee \neg r$ as 0 without loss of generality
- We can apply unit propagation

Improving DPLL with further simplifications

$$
\begin{aligned}
& \exists p \exists q \forall r \exists s((p \vee \neg r) \wedge(\neg q \vee r) \wedge(\neg p \vee q \vee s) \wedge(\neg p \vee q \vee r \vee \neg s)) \Rightarrow \\
& \exists p \exists q \forall r \exists s(p \wedge(\neg q \vee r) \wedge(\neg p \vee q \vee s) \wedge(\neg p \vee q \vee r \vee \neg s)) \Rightarrow \\
& \exists q \forall r \exists s((\neg q \vee r) \wedge(q \vee s) \wedge(q \vee r \vee \neg s))
\end{aligned}
$$

- We can treat $\neg r$ in $p \vee \neg r$ as 0 without loss of generality
- We can apply unit propagation
- We can treat r as 0 everywhere without loss of generality

Improving DPLL with further simplifications

$$
\begin{aligned}
& \exists p \exists q \forall r \exists s((p \vee \neg r) \wedge(\neg q \vee r) \wedge(\neg p \vee q \vee s) \wedge(\neg p \vee q \vee r \vee \neg s)) \Rightarrow \\
& \exists p \exists q \forall r \exists s(p \wedge(\neg q \vee r) \wedge(\neg p \vee q \vee s) \wedge(\neg p \vee q \vee r \vee \neg s)) \Rightarrow \\
& \exists q \forall r \exists s((\neg q \vee r) \wedge(q \vee s) \wedge(q \vee r \vee \neg s)) \Rightarrow \\
& \exists q \exists s(\neg q \wedge(q \vee s) \wedge(q \vee \neg s))
\end{aligned}
$$

- We can treat $\neg r$ in $p \vee \neg r$ as 0 without loss of generality
- We can apply unit propagation
- We can treat r as 0 everywhere without loss of generality

Improving DPLL with further simplifications

$$
\begin{aligned}
& \exists p \exists q \forall r \exists s((p \vee \neg r) \wedge(\neg q \vee r) \wedge(\neg p \vee q \vee s) \wedge(\neg p \vee q \vee r \vee \neg s)) \Rightarrow \\
& \exists p \exists q \forall r \exists s(p \wedge(\neg q \vee r) \wedge(\neg p \vee q \vee s) \wedge(\neg p \vee q \vee r \vee \neg s)) \Rightarrow \\
& \exists q \forall r \exists s((\neg q \vee r) \wedge(q \vee s) \wedge(q \vee r \vee \neg s)) \Rightarrow \\
& \exists q \exists s(\neg q \wedge(q \vee s) \wedge(q \vee \neg s))
\end{aligned}
$$

- We can treat $\neg r$ in $p \vee \neg r$ as 0 without loss of generality
- We can apply unit propagation
- We can treat r as 0 everywhere without loss of generality
- We can apply unit propagation to $\neg q$

Improving DPLL with further simplifications

$$
\begin{aligned}
& \exists p \exists q \forall r \exists s((p \vee \neg r) \wedge(\neg q \vee r) \wedge(\neg p \vee q \vee s) \wedge(\neg p \vee q \vee r \vee \neg s)) \Rightarrow \\
& \exists p \exists q \forall r \exists s(p \wedge(\neg q \vee r) \wedge(\neg p \vee q \vee s) \wedge(\neg p \vee q \vee r \vee \neg s)) \Rightarrow \\
& \exists q \forall r \exists s((\neg q \vee r) \wedge(q \vee s) \wedge(q \vee r \vee \neg s)) \Rightarrow \\
& \exists q \exists s(\neg q \wedge(q \vee s) \wedge(q \vee \neg s)) \Rightarrow \\
& \exists s(s \wedge \neg s)
\end{aligned}
$$

- We can treat $\neg r$ in $p \vee \neg r$ as 0 without loss of generality
- We can apply unit propagation
- We can treat r as 0 everywhere without loss of generality
- We can apply unit propagation to $\neg q$

Improving DPLL with further simplifications

$$
\begin{aligned}
& \exists p \exists q \forall r \exists s((p \vee \neg r) \wedge(\neg q \vee r) \wedge(\neg p \vee q \vee s) \wedge(\neg p \vee q \vee r \vee \neg s)) \Rightarrow \\
& \exists p \exists q \forall r \exists s(p \wedge(\neg q \vee r) \wedge(\neg p \vee q \vee s) \wedge(\neg p \vee q \vee r \vee \neg s)) \Rightarrow \\
& \exists q \forall r \exists s((\neg q \vee r) \wedge(q \vee s) \wedge(q \vee r \vee \neg s)) \Rightarrow \\
& \exists q \exists s(\neg q \wedge(q \vee s) \wedge(q \vee \neg s)) \Rightarrow \\
& \exists s(s \wedge \neg s) \Rightarrow
\end{aligned}
$$

- We can treat $\neg r$ in $p \vee \neg r$ as 0 without loss of generality
- We can apply unit propagation
- We can treat r as 0 everywhere without loss of generality
- We can apply unit propagation to $\neg q$
- We can apply unit propagation to s

Pure literal rule

Q : quantifier sequence
S : current clause set
L : literal of the form p or $\neg p$

Suppose L is pure in S (i.e., \bar{L} does not occur in S). Then:

- If p is existentially quantified in Q, we can remove all clauses containing L

Pure literal rule

Q : quantifier sequence S : current clause set
L : literal of the form p or $\neg p$

Suppose L is pure in S (i.e., \bar{L} does not occur in S). Then:

- If p is existentially quantified in Q, we can remove all clauses containing L
- if p is universally quantified in Q, we can remove L from all clauses

Pure literal rule

Q: quantifier sequence
S : current clause set
L : literal of the form p or $\neg p$

Suppose L is pure in S (i.e., \bar{L} does not occur in S). Then:

- If p is existentially quantified in Q, we can remove all clauses containing L
- if p is universally quantified in Q, we can remove L from all clauses

Why?

Pure literal rule

Q: quantifier sequence
S : current clause set
L : literal of the form p or $\neg p$

Suppose L is pure in S (i.e., \bar{L} does not occur in S). Then:

- If p is existentially quantified in Q, we can remove all clauses containing L
- if p is universally quantified in Q, we can remove L from all clauses

Why?

- The \exists-player will make L true (satisfying all clauses containing L)

Pure literal rule

Q: quantifier sequence
S : current clause set
L : literal of the form p or $\neg p$

Suppose L is pure in S (i.e., \bar{L} does not occur in S). Then:

- If p is existentially quantified in Q, we can remove all clauses containing L
- if p is universally quantified in Q, we can remove L from all clauses

Why?

- The \exists-player will make L true (satisfying all clauses containing L)
- The \forall-player will make L false (so it can be removed from those clauses that contain L)

Universal literal deletion

Q: quantifier sequence
S : clause set
p, q : variables

- p is existential in Q if Q contains $\exists p$
- q is universal in Q if Q contains $\forall q$

Universal literal deletion

$Q:$ quantifier sequence
S : clause set
p, q : variables

- p is existential in Q if Q contains $\exists p$
- q is universal in Q if Q contains $\forall q$
- p is quantified before a variable q if p occurs before q in Q

Universal literal deletion

Q: quantifier sequence
S: clause set
p, q : variables

- p is existential in Q if Q contains $\exists p$
- q is universal in Q if Q contains $\forall q$
- p is quantified before a variable q if p occurs before q in Q

Example: $\operatorname{In} Q=\forall q \exists p \forall r$
q is quantified before both p and r; and p is quantified before r

Universal literal deletion

Q: quantifier sequence
S : clause set
p, q : variables

- p is existential in Q if Q contains $\exists p$
- q is universal in Q if Q contains $\forall q$
- p is quantified before a variable q if p occurs before q in Q

Theorem 10

Suppose that

1. C is a clause in S;
2. a variable q occurring in C is universal in Q;
3. all existential variables of Q in C are quantified before q.

Then deleting the literal containing q from C does not change the truth value of $Q S$.

Universal literal deletion

Intuition behind Theorem 10
Consider a clause C from S of the form

$$
L_{1} \vee \cdots \vee L_{n} \vee(\neg) q_{1} \vee \cdots \vee(\neg) q_{m}
$$

where all existential variables of Q in C are quantified before q_{1}, \ldots, q_{m}

Universal literal deletion

Intuition behind Theorem 10
Consider a clause C from S of the form

$$
L_{1} \vee \cdots \vee L_{n} \vee(\neg) q_{1} \vee \cdots \vee(\neg) q_{m}
$$

where all existential variables of Q in C are quantified before q_{1}, \ldots, q_{m}
Consider the position before the q_{1}, \ldots, q_{m}-moves of the \forall-player

Universal literal deletion

Intuition behind Theorem 10
Consider a clause C from S of the form

$$
L_{1} \vee \cdots \vee L_{n} \vee(\neg) q_{1} \vee \cdots \vee(\neg) q_{m}
$$

where all existential variables of Q in C are quantified before q_{1}, \ldots, q_{m}
Consider the position before the q_{1}, \ldots, q_{m}-moves of the \forall-player

- If at least one of L_{1}, \ldots, L_{n} is true, then C is true regardless of the truth value of of $(\neg) q_{1}, \ldots,(\neg) q_{m}$

Universal literal deletion

Intuition behind Theorem 10
Consider a clause C from S of the form

$$
L_{1} \vee \cdots \vee L_{n} \vee(\neg) q_{1} \vee \cdots \vee(\neg) q_{m}
$$

where all existential variables of Q in C are quantified before q_{1}, \ldots, q_{m}
Consider the position before the q_{1}, \ldots, q_{m}-moves of the \forall-player

- If at least one of L_{1}, \ldots, L_{n} is true, then C is true regardless of the truth value of of $(\neg) q_{1}, \ldots,(\neg) q_{m}$
- If all of L_{1}, \ldots, L_{n} are false, the \forall-player will make all $(\neg) q_{1}, \ldots,(\neg) q_{m}$ false and win the game

Universal literal deletion

Intuition behind Theorem 10
Consider a clause C from S of the form

$$
L_{1} \vee \cdots \vee L_{n} \vee(\neg) q_{1} \vee \cdots \vee(\neg) q_{m}
$$

where all existential variables of Q in C are quantified before q_{1}, \ldots, q_{m}
Consider the position before the q_{1}, \ldots, q_{m}-moves of the \forall-player

- If at least one of L_{1}, \ldots, L_{n} is true, then C is true regardless of the truth value of of $(\neg) q_{1}, \ldots,(\neg) q_{m}$
- If all of L_{1}, \ldots, L_{n} are false, the \forall-player will make all $(\neg) q_{1}, \ldots,(\neg) q_{m}$ false and win the game
In either case, the deletion of $(\neg) q_{1}, \ldots,(\neg) q_{m}$ will not change the final outcome

Example revisited

$$
\exists p \exists q \forall r \exists s((p \vee \neg r) \wedge(\neg q \vee r) \wedge(\neg p \vee q \vee s) \wedge(\neg p \vee q \vee r \vee \neg s))
$$

Example revisited

$$
\exists p \exists q \forall r \exists s((p \vee \neg r) \wedge(\neg q \vee r) \wedge(\neg p \vee q \vee s) \wedge(\neg p \vee q \vee r \vee \neg s))
$$

- Apply universal literal deletion to $p \vee \neg r$

Example revisited

$$
\begin{aligned}
& \exists p \exists q \forall r \exists s((p \vee \neg r) \wedge(\neg q \vee r) \wedge(\neg p \vee q \vee s) \wedge(\neg p \vee q \vee r \vee \neg s)) \Rightarrow \\
& \exists p \exists q \forall r \exists s(p \wedge(\neg q \vee r) \wedge(\neg p \vee q \vee s) \wedge(\neg p \vee q \vee r \vee \neg s))
\end{aligned}
$$

- Apply universal literal deletion to $p \vee \neg r$

Example revisited

$$
\begin{aligned}
& \exists p \exists q \forall r \exists s((p \vee \neg r) \wedge(\neg q \vee r) \wedge(\neg p \vee q \vee s) \wedge(\neg p \vee q \vee r \vee \neg s)) \Rightarrow \\
& \exists p \exists q \forall r \exists s(p \wedge(\neg q \vee r) \wedge(\neg p \vee q \vee s) \wedge(\neg p \vee q \vee r \vee \neg s))
\end{aligned}
$$

- Apply universal literal deletion to $p \vee \neg r$
- Apply unit propagation

Example revisited

$$
\begin{aligned}
& \exists p \exists q \forall r \exists s((p \vee \neg r) \wedge(\neg q \vee r) \wedge(\neg p \vee q \vee s) \wedge(\neg p \vee q \vee r \vee \neg s)) \Rightarrow \\
& \exists p \exists q \forall r \exists s(p \wedge(\neg q \vee r) \wedge(\neg p \vee q \vee s) \wedge(\neg p \vee q \vee r \vee \neg s)) \Rightarrow \\
& \exists q \forall r \exists s((\neg q \vee r) \wedge(q \vee s) \wedge(q \vee r \vee \neg s))
\end{aligned}
$$

- Apply universal literal deletion to $p \vee \neg r$
- Apply unit propagation

Example revisited

$$
\begin{aligned}
& \exists p \exists q \forall r \exists s((p \vee \neg r) \wedge(\neg q \vee r) \wedge(\neg p \vee q \vee s) \wedge(\neg p \vee q \vee r \vee \neg s)) \Rightarrow \\
& \exists p \exists q \forall r \exists s(p \wedge(\neg q \vee r) \wedge(\neg p \vee q \vee s) \wedge(\neg p \vee q \vee r \vee \neg s)) \Rightarrow \\
& \exists q \forall r \exists s((\neg q \vee r) \wedge(q \vee s) \wedge(q \vee r \vee \neg s))
\end{aligned}
$$

- Apply universal literal deletion to $p \vee \neg r$
- Apply unit propagation
- Apply the pure literal rule to r

Example revisited

$$
\begin{aligned}
& \exists p \exists q \forall r \exists s((p \vee \neg r) \wedge(\neg q \vee r) \wedge(\neg p \vee q \vee s) \wedge(\neg p \vee q \vee r \vee \neg s)) \Rightarrow \\
& \exists p \exists q \forall r \exists s(p \wedge(\neg q \vee r) \wedge(\neg p \vee q \vee s) \wedge(\neg p \vee q \vee r \vee \neg s)) \Rightarrow \\
& \exists q \forall r \exists s((\neg q \vee r) \wedge(q \vee s) \wedge(q \vee r \vee \neg s)) \Rightarrow \\
& \exists q \exists s(\neg q \wedge(q \vee s) \wedge(q \vee \neg s))
\end{aligned}
$$

- Apply universal literal deletion to $p \vee \neg r$
- Apply unit propagation
- Apply the pure literal rule to r

Example revisited

$$
\begin{aligned}
& \exists p \exists q \forall r \exists s((p \vee \neg r) \wedge(\neg q \vee r) \wedge(\neg p \vee q \vee s) \wedge(\neg p \vee q \vee r \vee \neg s)) \Rightarrow \\
& \exists p \exists q \forall r \exists s(p \wedge(\neg q \vee r) \wedge(\neg p \vee q \vee s) \wedge(\neg p \vee q \vee r \vee \neg s)) \Rightarrow \\
& \exists q \forall r \exists s((\neg q \vee r) \wedge(q \vee s) \wedge(q \vee r \vee \neg s)) \Rightarrow \\
& \exists q \exists s(\neg q \wedge(q \vee s) \wedge(q \vee \neg s))
\end{aligned}
$$

- Apply universal literal deletion to $p \vee \neg r$
- Apply unit propagation
- Apply the pure literal rule to r
- Apply unit propagation

Example revisited

$$
\begin{aligned}
& \exists p \exists q \forall r \exists s((p \vee \neg r) \wedge(\neg q \vee r) \wedge(\neg p \vee q \vee s) \wedge(\neg p \vee q \vee r \vee \neg s)) \Rightarrow \\
& \exists p \exists q \forall r \exists s(p \wedge(\neg q \vee r) \wedge(\neg p \vee q \vee s) \wedge(\neg p \vee q \vee r \vee \neg s)) \Rightarrow \\
& \exists q \forall r \exists s((\neg q \vee r) \wedge(q \vee s) \wedge(q \vee r \vee \neg s)) \Rightarrow \\
& \exists q \exists s(\neg q \wedge(q \vee s) \wedge(q \vee \neg s)) \Rightarrow \\
& \exists s(s \wedge \neg s)
\end{aligned}
$$

- Apply universal literal deletion to $p \vee \neg r$
- Apply unit propagation
- Apply the pure literal rule to r
- Apply unit propagation

Example revisited

$$
\begin{aligned}
& \exists p \exists q \forall r \exists s((p \vee \neg r) \wedge(\neg q \vee r) \wedge(\neg p \vee q \vee s) \wedge(\neg p \vee q \vee r \vee \neg s)) \Rightarrow \\
& \exists p \exists q \forall r \exists s(p \wedge(\neg q \vee r) \wedge(\neg p \vee q \vee s) \wedge(\neg p \vee q \vee r \vee \neg s)) \Rightarrow \\
& \exists q \forall r \exists s((\neg q \vee r) \wedge(q \vee s) \wedge(q \vee r \vee \neg s)) \Rightarrow \\
& \exists q \exists s(\neg q \wedge(q \vee s) \wedge(q \vee \neg s)) \Rightarrow \\
& \exists s(s \wedge \neg s) \Rightarrow
\end{aligned}
$$

- Apply universal literal deletion to $p \vee \neg r$
- Apply unit propagation
- Apply the pure literal rule to r
- Apply unit propagation

Quantified Boolean Formulas and BDDs

OBDDs are efficient data structures to represent propositional formulas

Quantified Boolean Formulas and BDDs

OBDDs are efficient data structures to represent propositional formulas Can we use them also to represent QBFs?

Quantified Boolean Formulas and BDDs

OBDDs are efficient data structures to represent propositional formulas Can we use them also to represent QBFs?

Quantification: given an OBDD representing a formula F, find an OBDD representing $\exists \forall_{1} p_{1} \cdots \exists \forall_{n} p_{n} F$

Quantified Boolean Formulas and BDDs

OBDDs are efficient data structures to represent propositional formulas Can we use them also to represent QBFs?

Quantification: given an OBDD representing a formula F, find an OBDD representing $\exists \exists_{1} p_{1} \cdots \exists \exists_{n} p_{n} F$

There is no simple algorithm for quantification over OBDDs in general, but there is one when $\exists \forall_{1} \cdots \exists \forall_{n}$ are the same quantifier

Quantification for OBDDs

We can rely on the following properties of QBFs:

- $\exists p$ (if p then F else $G) \equiv F \vee G$

Quantification for OBDDs

We can rely on the following properties of QBFs:

- $\exists p$ (if p then F else $G) \equiv F \vee G$
- $\forall p($ if p then F else $G) \equiv F \wedge G$

Quantification for OBDDs

We can rely on the following properties of QBFs:

- $\exists p$ (if p then F else $G) \equiv F \vee G$
- $\forall p$ (if p then F else $G) \equiv F \wedge G$
- $\exists \forall p$ (if q then F else $G) \equiv$ if q then $\exists \forall p F$ else $\exists \forall p G$ when $p \neq q$

\exists-quantification algorithm for OBDDs

```
procedure \existsquant({\mp@subsup{p}{1}{},\ldots,\mp@subsup{p}{k}{}},{\mp@subsup{n}{1}{},\ldots,\mp@subsup{n}{m}{}})
parameters: global dag D
input: nodes }\mp@subsup{n}{1}{},\ldots,\mp@subsup{n}{m}{}\mathrm{ representing }\mp@subsup{F}{1}{},\ldots,\mp@subsup{F}{m}{}\mathrm{ in }
output: a node n representing \exists\mp@subsup{p}{1}{}\cdots\exists\mp@subsup{p}{k}{}(\mp@subsup{F}{1}{}\vee\cdots\vee 㳖) in (modified) D
begin
    if m=0 then return 0
    if some ni is 1 then return 1
    if some n}\mp@subsup{n}{i}{}\mathrm{ is 0 then return }\exists\mathrm{ quant ({ pp, ,., pk}},{\mp@subsup{n}{1}{},\ldots,\mp@subsup{n}{i-1}{},\mp@subsup{n}{i+1}{},\ldots,\mp@subsup{n}{m}{}}
p := max_atom ( }\mp@subsup{n}{1}{},\ldots,\mp@subsup{n}{m}{}
forall i=1...m
    if }\mp@subsup{n}{i}{}\mathrm{ is labelled by p
    then (li, ri ) := (lo(ni), hi (ni))
    else (li, ri) := (n},\mp@subsup{n}{i}{},\mp@subsup{n}{i}{}
if p}\in{\mp@subsup{p}{1}{},\ldots,\mp@subsup{p}{k}{}
    then return \existsquant ({\mp@subsup{p}{1}{},\ldots,\mp@subsup{p}{k}{}}-{p},{\mp@subsup{l}{1}{},\ldots,\mp@subsup{l}{m}{},\mp@subsup{r}{1}{},\ldots,\mp@subsup{r}{m}{}})
    else
    k
    k}\mp@subsup{k}{2}{}:=\exists\operatorname{quant}({\mp@subsup{p}{1}{},\ldots,\mp@subsup{p}{k}{}},{\mp@subsup{r}{1}{},\ldots,\mp@subsup{r}{m}{}}
    return integrate( }\mp@subsup{k}{1}{},p,\mp@subsup{k}{2}{},D
end
```

Example

Variable order: $p>q>r$
Formula: $\exists p \exists r(p \leftrightarrow((p \rightarrow r) \leftrightarrow q))$

OBDD for $p \leftrightarrow((p \rightarrow r) \leftrightarrow q$:

Example

$$
\exists q u a n t(\{p, r\},\{a\})
$$

Example

Example

Example

Example

Example

Example

Example

\exists-quantification algorithm for OBDDs

```
procedure \existsquant ({\mp@subsup{p}{1}{},\ldots,\mp@subsup{p}{k}{}},{\mp@subsup{n}{1}{},\ldots,\mp@subsup{n}{m}{}})
parameters: global dag D
input: nodes }\mp@subsup{n}{1}{},\ldots,\mp@subsup{n}{m}{}\mathrm{ representing }\mp@subsup{F}{1}{},\ldots,\mp@subsup{F}{m}{}\mathrm{ in }
output: a node n representing \exists\mp@subsup{p}{1}{}\cdots\exists\mp@subsup{p}{k}{}(\mp@subsup{F}{1}{}\vee\cdots\vee 淐) in (modified) D
begin
    if m=0 then return 0
    if some n}\mp@subsup{n}{i}{}\mathrm{ is }1\mathrm{ then return 1
    if some n}\mp@subsup{n}{i}{}\mathrm{ is 0}\mathrm{ then return ヨquant ({ pp, ,., pk}},{\mp@subsup{n}{1}{},\ldots,\mp@subsup{n}{i-1}{},\mp@subsup{n}{i+1}{},\ldots,\mp@subsup{n}{m}{}}
p := max_atom ( }\mp@subsup{n}{1}{},\ldots,\mp@subsup{n}{m}{}
forall i=1...m
    if }\mp@subsup{n}{i}{}\mathrm{ is labelled by p
    then (li, ri ) := (lo(ni), hi (ni))
    else (li, ri) := (n},\mp@subsup{n}{i}{},\mp@subsup{n}{i}{}
if p}\in{\mp@subsup{p}{1}{},\ldots,\mp@subsup{p}{k}{}
    then return \existsquant ({\mp@subsup{p}{1}{},\ldots,\mp@subsup{p}{k}{}}-{p},{\mp@subsup{l}{1}{},\ldots,\mp@subsup{l}{m}{},\mp@subsup{r}{1}{},\ldots,\mp@subsup{r}{m}{}})
    else
    k
    k}\mp@subsup{k}{2}{}:=\existsquant({\mp@subsup{p}{1}{},\ldots,\mp@subsup{p}{k}{}},{\mp@subsup{r}{1}{},\ldots,\mp@subsup{r}{m}{}}
    return integrate( }\mp@subsup{k}{1}{},p,\mp@subsup{k}{2}{},D
end
```


\forall-quantification algorithm for OBDDs

```
procedure }\forall\mathrm{ quant ({ p
parameters: global dag D
input: nodes }\mp@subsup{n}{1}{},\ldots,\mp@subsup{n}{m}{}\mathrm{ representing F}\mp@subsup{F}{1}{},\ldots,\mp@subsup{F}{m}{}\mathrm{ in }
output: a node n representing }\forall\mp@subsup{p}{1}{}\cdots\forall\mp@subsup{p}{k}{}(\mp@subsup{F}{1}{}\wedge\cdots\wedge \cdots Fm) in (modified) D
begin
    if m=0 then return 1
    if some n}\mp@subsup{n}{i}{}\mathrm{ is 0 then return 0
    if some n}\mp@subsup{n}{i}{}\mathrm{ is 1 then return }\forall\mathrm{ quant ({}\mp@subsup{p}{1}{},\ldots,\mp@subsup{p}{k}{}},{\mp@subsup{n}{1}{},\ldots,\mp@subsup{n}{i-1}{},\mp@subsup{n}{i+1}{},\ldots,\mp@subsup{n}{m}{}}
p := max_atom ( }\mp@subsup{n}{1}{},\ldots,\mp@subsup{n}{m}{}
forall i=1...m
    if }\mp@subsup{n}{i}{}\mathrm{ is labelled by p
    then (li, ri}):=(lo(\mp@subsup{n}{i}{}),hi(\mp@subsup{n}{i}{})
    else (li, ri) := (n},\mp@subsup{n}{i}{},\mp@subsup{n}{i}{}
if }p\in{\mp@subsup{p}{1}{},\ldots,\mp@subsup{p}{k}{}
    then return \forallquant ({\mp@subsup{p}{1}{},\ldots,\mp@subsup{p}{k}{}}-{p},{\mp@subsup{l}{1}{},\ldots,\mp@subsup{l}{m}{},\mp@subsup{r}{1}{},\ldots,\mp@subsup{r}{m}{}})
    else
    k
    k}\mp@subsup{k}{2}{}:=\forall\operatorname{quant}({\mp@subsup{p}{1}{},\ldots,\mp@subsup{p}{k}{}},{\mp@subsup{r}{1}{},\ldots,\mp@subsup{r}{m}{}}
    return integrate(k, (k, k
end
```

