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Data Structures for Large Propositional Formulas

In some applications, large propositional formulas are reused repeatedly

We need data structures that

• provide a compact representation of formulas
(or the Boolean functions they represent)

• facilitate Boolean operations on these formulas
(e.g., building conjunctions of them);

• facilitate checking properties of these formulas
(e.g., satisfiability, equivalence„ . . . )

4 / 34



Data Structures for Large Propositional Formulas

In some applications, large propositional formulas are reused repeatedly

For example, wemay
• build a conjunction of several formulas
• negate a formula
• check if two formulas are equivalent
• . . .

We need data structures that
• provide a compact representation of formulas
(or the Boolean functions they represent)

• facilitate Boolean operations on these formulas
(e.g., building conjunctions of them);

• facilitate checking properties of these formulas
(e.g., satisfiability, equivalence„ . . . )

4 / 34



Data Structures for Large Propositional Formulas

In some applications, large propositional formulas are reused repeatedly

We need data structures that

• provide a compact representation of formulas
(or the Boolean functions they represent)

• facilitate Boolean operations on these formulas
(e.g., building conjunctions of them);

• facilitate checking properties of these formulas
(e.g., satisfiability, equivalence„ . . . )

4 / 34



Splitting Tree

A = (q→ p) ∧ r → (p↔ r)

(q→ p) ∧ r → (p↔ r) ∧ q

¬q ∧ r → ¬r ∧ q r → r ∧ q

p =
0 p = 1

¬r >

q =
0 q

=
1

¬r r → r

q =
0 q

=
1

> ⊥

r
=
0 r

=
1

> ⊥

r
=
0 r

=
1

> >

r
=
0 r

=
1

The semantics of formula A is preserved: the tree encodes all models of A

Any formula with the same tree has exactly the samemodels as A

5 / 34



Splitting Tree

A = (q→ p) ∧ r → (p↔ r)

(q→ p) ∧ r → (p↔ r) ∧ q

¬q ∧ r → ¬r ∧ q r → r ∧ q

p =
0 p = 1

¬r >

q =
0 q

=
1

¬r r → r

q =
0 q

=
1

> ⊥

r
=
0 r

=
1

> ⊥

r
=
0 r

=
1

> >

r
=
0 r

=
1

Let us ignore the concrete formulas in the tree

The semantics of formula A is preserved: the tree encodes all models of A

Any formula with the same tree has exactly the samemodels as A

5 / 34



Splitting Tree

A = (q→ p) ∧ r → (p↔ r)

(q→ p) ∧ r → (p↔ r) ∧ q

¬q ∧ r → ¬r ∧ q r → r ∧ q

p =
0 p = 1

¬r >

q =
0 q

=
1

¬r r → r

q =
0 q

=
1

> ⊥

r
=
0 r

=
1

> ⊥

r
=
0 r

=
1

> >

r
=
0 r

=
1

The semantics of formula A is preserved: the tree encodes all models of A

Any formula with the same tree has exactly the samemodels as A

5 / 34



Splitting Tree

A = (q→ p) ∧ r → (p↔ r)

(q→ p) ∧ r → (p↔ r) ∧ q

¬q ∧ r → ¬r ∧ q r → r ∧ q

p =
0 p = 1

¬r >

q =
0 q

=
1

¬r r → r

q =
0 q

=
1

> ⊥

r
=
0 r

=
1

> ⊥

r
=
0 r

=
1

> >

r
=
0 r

=
1

The semantics of formula A is preserved: the tree encodes all models of A

Any formula with the same tree has exactly the samemodels as A

5 / 34



Binary Decision Tree
B = {0, 1}

Note: propositional formulas also represent Boolean functions

Example:

A1 = p1 → p2 f1 : B× B→ B
A2 = p2 ↔ p3 f2 : B× B→ B
A3 = p ∧ q f3 : B× B→ B
A4 = (p1 → p2) ∧ (p2 ↔ p3) f4 : B× B× B→ B

f4(p1, p2, p3) := if p1 then (if p2 then p3 else 0) else if (p2 = p3) then 1 else 0

Exercise: Convince yourself that for any interpretation I,

I |= A4 i� f4(I(p1), I(p2), I(p3)) = 1
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Binary Decision Tree

p

q q
0 1

r 1

0 1

r r

0 1

1 0

0 1

1 0

0 1

1 1
0 1

p

q q

r 1 r r

1 0 1 0 1 1

A circled node, e.g., p , denotes the decision on the (input) variable in the node

Leaf nodes are squared, e.g., 1 , and denote output values

Solid lines correspond to value 1 and dashed lines to value 0 for the variable
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Nodes as “if _ then _ else” tests

p

q q

r 1 r r

1 0 1 0 1 1

if p then

q

r r

1 0 1 1
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q

r 1

1 0
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Nodes as “if-then-else” tests

if p then

q

r r

1 0 1 1

else

q

r 1

1 0

if p then if q then

r

1 1

else

r

1 0
else if q then 1

else

r

1 0
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Tests correspond to “if-then-else”

if p then if q then if r then 1
else 1

else if r then 1
else 0

else if q then 1
else if r then 1

else 0

Note:
if A then B else C ≡ (A→ B) ∧ (¬A→ C)
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If-Then-Else Normal Form

Any formula can be converted to an equivalent one in If-Then-Else Normal Form:

• The only connectives are if _ then _ else _,>, and⊥

• All guard formulas A in if A then B else C are atomic
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Evaluating the Formula

We can evaluate a formula on in interpretation I if we know its binary decision tree

Example I = { p 7→ 0, q 7→ 0, r 7→ 1 }

p

q q

r 1 r r

1 0 1 0 1 1

Any formula with this decision tree is false in this interpretation
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Properties
Properties of binary decision trees (n = number of vars, s = tree size):

• Size s is exponential in n in the worst case
• Checking truth in an interpretation can be done in time linear in n
• Satisfiability/validity checking can be done in time linear in s
• Equivalence checking is very hard
• Some boolean operations, (∧) are hard to implement

One needs data structures that

• facilitate checking properties of formulas, e.g., satisfiability or equivalence
• facilitate boolean operations on formulas, e.g., conjunctions
• provide a compact representation of formulas, or the Boolean functions they
represent

Are binary decision trees compact?
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Algorithm for Building Binary Decision Trees

procedure bdt(A)
input: propositional formula A
output: a binary decision tree
parameters: function select_next_var
begin
A := simplify(A)
if A = ⊥ then return 0
if A = > then return 1
p := select_next_var(A)
return tree(bdt(A⊥p ), p, bdt(A>p ))
end

• simplify(A) as in the splitting
procedure

• tree(T1, p, T2) builds the tree:

p

T1 T2

Note resemblance to the splitting procedure!
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Example

Splitting Procedure

(q→ p) ∧ r → (p↔ r) ∧ q

¬q ∧ r → ¬r ∧ q r → r ∧ q

p =
0 p = 1

¬r >

q =
0 q

=
1

¬r r → r

q =
0 q

=
1

> ⊥

r
=
0 r

=
1

> ⊥

r
=
0 r

=
1

> >

r
=
0 r

=
1

Explored search tree (conceptual)

BDT Procedure

(q→ p) ∧ r → (p↔ r) ∧ q

p

¬q ∧ r → ¬r ∧ q r → r ∧ qq

¬r 1r

1 0

q

¬r r → rr

1 0

r

1 1

Returned decision tree (actual data structure)
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Redundant Tests

Are binary decision trees compact?

No
They may contain redundant tests (nodes):

p

q q

r 1 r r

1 11 0 1 0

16 / 34



Redundant Tests

Are binary decision trees compact? No

They may contain redundant tests (nodes):

p

q q

r 1 r r

1 11 0 1 0

16 / 34



Redundant Tests

Are binary decision trees compact? No
They may contain redundant tests (nodes):

p

q q

r 1 r r

1 11 0 1 0

16 / 34



Isomorphic Subtrees
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Binary Decision Diagrams

A binary decision diagram, or BDD, is a directed acyclic graph (built like a BDT but)
containing

• no redundant nodes
• no isomorphic subgraphs
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From BDTs to BDDs
Binary Decision Tree ⇒ Binary Decision Diagram

p

q q

r

1 0

1 r

1 0

r

1 1

p

q q

r

1 0

1 r

1 0

r

1 1

1. Merge isomorphic subgraphs
2. Eliminate redundant node

The original diagram and the reduced one represent the same Boolean function

Compact formula for that function: (¬q ∧ ¬r) ∨ q

Evenmore compact formula: ¬r ∨ q
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Properties

What is the complexity of satisfiability, validity and equivalence checking for BDDs?

• Satisfiability checking can be done in constant time
• Validity checking can be done in constant time
• Equivalence checking

is still very hard (exponential in the number of vars)

• Some Boolean operations (∧)

are still hard to implement

q

r
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Ordered BDDs

p
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1

Problem: variables are checked in a di�erent order on di�erent branches
Idea:
• introduce an order> on variables
• perform tests in this order in each branch

We then we obtain ordered binary decision diagrams, or OBDDs
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OBDDs Properties
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Integrating a node in a dag
All OBDD algorithms will use the same procedure for integrating a node in a dag

procedure integrate(n1, p, n2)
parameters: global dag D
input: variable p, nodes n1, n2 in D representing formulas F1, F2
output: node n in (modified) D representing if p then F1 else F2
begin
if n1 = n2 then return n1
if D contains a node n having the form

p

n1 n2
then return n
else add to D a new node n of the form

p

n1 n2
return n

end

23 / 34



Integrating a node in a dag
procedure integrate(n1, p, n2)
parameters: global dag D
input: variable p, nodes n1, n2 in D representing formulas F1, F2
output: node n in (modified) D representing if p then F1 else F2

begin
if n1 = n2 then return n1
if D contains a node n having the form

p

n1 n2
then return n
else add to D a new node n of the form

p

n1 n2
return n

end

23 / 34



Integrating a node in a dag
procedure integrate(n1, p, n2)
parameters: global dag D
input: variable p, nodes n1, n2 in D representing formulas F1, F2
output: node n in (modified) D representing if p then F1 else F2
begin
if n1 = n2 then return n1

if D contains a node n having the form
p

n1 n2
then return n
else add to D a new node n of the form

p

n1 n2
return n

end

23 / 34



Integrating a node in a dag
procedure integrate(n1, p, n2)
parameters: global dag D
input: variable p, nodes n1, n2 in D representing formulas F1, F2
output: node n in (modified) D representing if p then F1 else F2
begin
if n1 = n2 then return n1
if D contains a node n having the form

p

n1 n2
then return n

else add to D a new node n of the form
p

n1 n2
return n

end

23 / 34



Integrating a node in a dag
procedure integrate(n1, p, n2)
parameters: global dag D
input: variable p, nodes n1, n2 in D representing formulas F1, F2
output: node n in (modified) D representing if p then F1 else F2
begin
if n1 = n2 then return n1
if D contains a node n having the form

p

n1 n2
then return n
else add to D a new node n of the form

p

n1 n2
return n

end

23 / 34



Building OBDDs
procedure obdd(F)
input: propositional formula F
parameters: global dag D
output: a node n in (modified) Dwhich represents F
begin
F := simplify(F) // usual simplifications with rewrite rules
if F = ⊥ then return 0
if F = > then return 1
p := max_variable(F) // var of F highest in variable ordering
n1 := obdd(F⊥p )
n2 := obdd(F>p )
return integrate(n1, p, n2)
end

• obdd puts together the algorithms for building BDTs and for eliminating
redundancies

• Redundancy elimination is performed by integrate
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Building OBDDs, Example

Global dag D
obdd((q→ p) ∧ r → (p↔ r) ∧ q)

p p

r

10

We return the new node rooted at q

Note: The application of this procedure modified the global dag
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Algorithms on OBDDs

Let f(x1, . . . , xn)
def
= x1 ∨ . . . ∨ xn

Let D1, . . . ,Dn be OBDDs representing formulas F1, . . . , Fn, respectively

How do we compute the OBDD representing f(F1, . . . , Fn)?

• We fix the same variable ordering for all OBDDs
• We assume isomorphic subdags are shared across di�erent OBDDs
• We use one fundamental property of if _ then _ else _
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Exercise in Compiler Optimization

• Consider the expression in Java

(C, C++, Perl, . . . )

((x > 0) ? y1 : y2) + ((x > 0) ? z1 : z2)

• Can we simplify it?
• Suppose x > 0 evaluates to true. Then,
((x > 0) ? y1 : y2) evaluates to y1 and
((x > 0) ? z1 : z2) evaluates to z1, so the sum evaluates to y1 + z1

• Suppose x > 0 evaluates to false. Then,
((x > 0) ? y1 : y2) evaluates to y2 and
((x > 0) ? z1 : z2) evaluates to z2, so the sum evaluates to y2 + z2

• To simplify the expression, we could use the following property:
(E ? E1 : E2) + (E ? F1 : F2) = E ? (E1 + F1) : (F2 + F2)

That is, (E ? _ : _) commutes with +
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((x > 0) ? y1 : y2) evaluates to y1 and
((x > 0) ? z1 : z2) evaluates to z1, so the sum evaluates to y1 + z1

• Suppose x > 0 evaluates to false. Then,
((x > 0) ? y1 : y2) evaluates to y2 and
((x > 0) ? z1 : z2) evaluates to z2, so the sum evaluates to y2 + z2

• To simplify the expression, we could use the following property:
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Fundamental property of if-then-else

In fact, for any predicate P,
if P then _ else _ commutes with any function f :

f(if P then l1 else r1, . . . , if P then ln else rn ) = if P then f(l1, . . . , ln) else f(r1, . . . , rn)

Hence, to apply f to n OBDDs rooted at variable p,

1. Apply f to the subdags corresponding to p = 0, obtaining a dag D0
2. Apply f to the subdags corresponding to p = 1, obtaining a dag D1

3. Build and return the dag

p

D0 D1
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Negation

¬(if p then L else R) ≡ if p then ¬L else ¬R

procedure negation(n)
parameters: global dag D
input: node n representing formula F in D
output: a node n′ representing ¬F in (modified) D
begin
if n is 1 then return 0
if n is 0 then return 1
p := max_variable(n)
(l, r) := (neg(n), pos(n))

// negative and positive subdiagram of n

l′ := negation(l)
r′ := negation(r)
return integrate(l′, p, r′)
end
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Disjunction
(if p then L1 else R1) ∨ (if p then L1 else R1) ≡ if p then L1 ∨ L2 else R1 ∨ R2

procedure disjunction(n1, . . . , nm)
parameters: global dag D
input: 1 or more nodes n1, . . . , nm representing F1, . . . , Fm in D
output: a node n representing F1 ∨ · · · ∨ Fm in (modified) D
begin
ifm = 1 then return n1
if some ni is 1 then return 1
if some ni is 0 then return disjunction(n1, . . . , ni−1, ni+1, . . . , nm)
p := max_variable(n1, . . . , nm)
forall i = 1 . . .m
if ni is labelled by p
then (li, ri) := (neg(ni), pos(ni))
else (li, ri) := (ni, ni) // (*)

l := disjunction(l1, . . . , lm)
r := disjunction(r1, . . . , rm)
return integrate(l, p, r)
end
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(*) Consider fictitious
redundantnodekiwith
ni = neg(ki) = pos(ki)



Example: Disjunction
Computing (¬p ∧ r) ∨ (p ∧ r)where a represents ¬p ∧ r and b represents p ∧ r:

a p b p

c r

0 01 1
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Example: Disjunction
Computing (¬p ∧ r) ∨ (p ∧ r)where a represents ¬p ∧ r and b represents p ∧ r:

a p b p

c r

0 01 1

dis(a, b) = c
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Exercise
Compute (¬p ∧ r) ∨ r where a represents ¬p ∧ r and c represents r:

a p b p

c r

0 01 1

disj(a, c)
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Disjunction (recall)
procedure disjunction(n1, . . . , nm)
parameters: global dag D
input: 1 or more nodes n1, . . . , nm representing F1, . . . , Fm in D
output: a node n representing F1 ∨ · · · ∨ Fm in (modified) D
begin
ifm = 1 then return n1
if some ni is 1 then return 1
if some ni is 0 then
return disjunction(n1, . . . , ni−1, ni+1, . . . , nm)
p := max_variable(n1, . . . , nm)
forall i = 1 . . .m
if ni is labelled by p
then (li, ri) := (neg(ni), pos(ni))
else (li, ri) := (ni, ni)

l := disjunction(l1, . . . , lm)
r := disjunction(r1, . . . , rm)
return integrate(l, p, r)
end
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F ∨ ⊥ ≡ F



Conjunction
procedure conjunction(n1, . . . , nm)
parameters: global dag D
input: 1 or more nodes n1, . . . , nm representing F1, . . . , Fm in D
output: a node n representing F1 ∧ · · · ∧ Fm in (modified) D
begin
ifm = 1 then return n1
if some ni is 0 then return 0

if some ni is 1 then
return conjunction(n1, . . . , ni−1, ni+1, . . . , nm)
p := max_variable(n1, . . . , nm)
forall i = 1 . . .m
if ni is labelled by p
then (li, ri) := (neg(ni), pos(ni))
else (li, ri) := (ni, ni)

l := conjunction(l1, . . . , lm)
r := conjunction(r1, . . . , rm)
return integrate(l, p, r)
end
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F ∧ ⊥ ≡ ⊥
F ∧ > ≡ F



Other connectives

procedure implication(n1, n2)
parameters: global dag D
input: nodes n1, n2 representing formulas F1, F2 in D
output: a node n representing F1 → F2 in (modified) D
begin
return disjunction(negation(n1), n2)
end

procedure bi_implication(n1, n2)
parameters: global dag D
input: nodes n1, n2 representing formulas F1, F2 in D
output: a node n representing F1 ↔ F2 in (modified) D
begin
return conjunction(implication(n1, n2), implication(n2, n1))
end
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