CS:4350 Logic in Computer Science

Binary Decision Diagrams

Cesare Tinelli

Spring 2021

Credits

These slides are largely based on slides originally developed by **Andrei Voronkov** at the University of Manchester. Adapted by permission.

Outline

Binary Decision Diagrams

Binary Decision Trees If-then-else Normal Form Binary Decision Diagrams OBDD algorithms

Data Structures for Large Propositional Formulas

In some applications, large propositional formulas are reused repeatedly

Data Structures for Large Propositional Formulas

In some applications, large propositional formulas are reused repeatedly

For example, we may

- build a conjunction of several formulas
- negate a formula
- check if two formulas are equivalent
- ...

Data Structures for Large Propositional Formulas

In some applications, large propositional formulas are reused repeatedly

We need data structures that

- provide a compact representation of formulas (or the Boolean functions they represent)
- facilitate Boolean operations on these formulas (e.g., building conjunctions of them);
- facilitate checking properties of these formulas (e.g., satisfiability, equivalence,...)

$$A = (q \to p) \land r \to (p \leftrightarrow r)$$

$$A = (q \to p) \land r \to (p \leftrightarrow r)$$

Let us ignore the concrete formulas in the tree

$$A = (q \to p) \land r \to (p \leftrightarrow r)$$

The semantics of formula A is preserved: the tree encodes all models of A

$$A = (q \to p) \land r \to (p \leftrightarrow r)$$

The semantics of formula A is preserved: the tree encodes all models of A

Any formula with the same tree has exactly the same models as A

$$\mathbb{B} = \{0,1\}$$

Note: propositional formulas also represent Boolean functions

Example:

$$A_{1} = \rho_{1} \rightarrow \rho_{2} \qquad f_{1} : \mathbb{B} \times \mathbb{B} \rightarrow \mathbb{B}$$

$$A_{2} = \rho_{2} \leftrightarrow \rho_{3} \qquad f_{2} : \mathbb{B} \times \mathbb{B} \rightarrow \mathbb{B}$$

$$A_{3} = \rho \wedge q \qquad f_{3} : \mathbb{B} \times \mathbb{B} \rightarrow \mathbb{B}$$

$$A_{4} = (\rho_{1} \rightarrow \rho_{2}) \wedge (\rho_{2} \leftrightarrow \rho_{3}) \qquad f_{4} : \mathbb{B} \times \mathbb{B} \times \mathbb{B} \rightarrow \mathbb{B}$$

 $f_4(p_1,p_2,p_3) := if p_1$ then (if p_2 then p_3 else 0) else if $(p_2=p_3)$ then 1 else 0

Exercise: Convince yourself that for any interpretation \mathcal{I} ,

$$\mathcal{I} \models A_4 \text{ iff } f_4(\mathcal{I}(p_1), \mathcal{I}(p_2), \mathcal{I}(p_3)) = 1$$

$$\mathbb{B}=\{0,1\}$$

Note: propositional formulas also represent Boolean functions

Example:

$$\begin{array}{lll} A_1 & = & p_1 \rightarrow p_2 & & f_1 : \mathbb{B} \times \mathbb{B} \rightarrow \mathbb{B} \\ A_2 & = & p_2 \leftrightarrow p_3 & & f_2 : \mathbb{B} \times \mathbb{B} \rightarrow \mathbb{B} \\ A_3 & = & p \wedge q & & f_3 : \mathbb{B} \times \mathbb{B} \rightarrow \mathbb{B} \\ A_4 & = & (p_1 \rightarrow p_2) \wedge (p_2 \leftrightarrow p_3) & f_4 : \mathbb{B} \times \mathbb{B} \times \mathbb{B} \rightarrow \mathbb{B} \end{array}$$

$$f_4(p_1, p_2, p_3) := if p_1 then (if p_2 then p_3 else 0) else if (p_2 = p_3) then 1 else 0$$

Exercise: Convince yourself that for any interpretation \mathcal{I}

$$\mathcal{I} \models A_4 \text{ iff } f_4(\mathcal{I}(p_1), \mathcal{I}(p_2), \mathcal{I}(p_3)) = 1$$

$$\mathbb{B}=\{0,1\}$$

Note: propositional formulas also represent Boolean functions

Example:

$$A_{1} = p_{1} \rightarrow p_{2} \qquad f_{1} : \mathbb{B} \times \mathbb{B} \rightarrow \mathbb{B}$$

$$A_{2} = p_{2} \leftrightarrow p_{3} \qquad f_{2} : \mathbb{B} \times \mathbb{B} \rightarrow \mathbb{B}$$

$$A_{3} = p \wedge q \qquad f_{3} : \mathbb{B} \times \mathbb{B} \rightarrow \mathbb{B}$$

$$A_{4} = (p_{1} \rightarrow p_{2}) \wedge (p_{2} \leftrightarrow p_{3}) \qquad f_{4} : \mathbb{B} \times \mathbb{B} \times \mathbb{B} \rightarrow \mathbb{B}$$

$$f_4(p_1, p_2, p_3) := if p_1 then (if p_2 then p_3 else 0) else if (p_2 = p_3) then 1 else 0$$

Exercise: Convince yourself that for any interpretation \mathcal{I} ,

$$\mathcal{I} \models A_4 \text{ iff } f_4(\mathcal{I}(p_1), \mathcal{I}(p_2), \mathcal{I}(p_3)) = 1$$

A circled node, e.g., (P), denotes the decision on the (input) variable in the node

A circled node, e.g., , denotes the decision on the (input) variable in the node Leaf nodes are squared, e.g., , and denote output values

A circled node, e.g., \bigcirc , denotes the decision on the (input) variable in the node Leaf nodes are squared, e.g., $\boxed{1}$, and denote output values

Solid lines correspond to value 1 and dashed lines to value 0 for the variable

Nodes as "if _ then _ else" tests

Nodes as "if-then-else" tests

Tests correspond to "if-then-else"

Note:

if A then B else C \equiv $(A o B)\wedge(
eg A o C)$

Tests correspond to "if-then-else"

Note:

if A then B else
$$C \equiv (A \rightarrow B) \land (\neg A \rightarrow C)$$

If-Then-Else Normal Form

Any formula can be converted to an equivalent one in *If-Then-Else Normal Form*:

- The only connectives are if $_$ then $_$ else $_$, \top , and \bot
- All guard formulas A in if A then B else C are atomic

Example
$$\mathcal{I} = \{ p \mapsto 0, q \mapsto 0, r \mapsto 1 \}$$

Example
$$\mathcal{I} = \{ p \mapsto 0, q \mapsto 0, r \mapsto 1 \}$$

Example
$$\mathcal{I} = \{ p \mapsto 0, q \mapsto 0, r \mapsto 1 \}$$

Example
$$\mathcal{I} = \{ p \mapsto 0, q \mapsto 0, r \mapsto 1 \}$$

We can evaluate a formula on in interpretation \mathcal{I} if we know its binary decision tree

Example
$$\mathcal{I} = \{ p \mapsto 0, q \mapsto 0, r \mapsto 1 \}$$

Any formula with this decision tree is false in this interpretation

Properties of binary decision trees (n = number of vars, s = tree size):

Properties of binary decision trees (n = number of vars, s = tree size):

• Size *s* is exponential in *n* in the worst case

Properties of binary decision trees (n = number of vars, s = tree size):

• Size s is exponential in n in the worst case

One needs data structures that

Properties of binary decision trees (n = number of vars, s = tree size):

- Size s is exponential in n in the worst case
- Checking truth in an interpretation can be done in time linear in n

One needs data structures that

Properties of binary decision trees (n = number of vars, s = tree size):

- Size *s* is exponential in *n* in the worst case
- Checking truth in an interpretation can be done in time linear in n
- Satisfiability/validity checking can be done in time linear in s

One needs data structures that

Properties of binary decision trees (n = number of vars, s = tree size):

- Size *s* is exponential in *n* in the worst case
- Checking truth in an interpretation can be done in time linear in n
- Satisfiability/validity checking can be done in time linear in s

One needs data structures that

Properties of binary decision trees (n = number of vars, s = tree size):

- Size *s* is exponential in *n* in the worst case
- Checking truth in an interpretation can be done in time linear in n
- Satisfiability/validity checking can be done in time linear in s
- Equivalence checking is very hard

One needs data structures that

Properties of binary decision trees (n = number of vars, s = tree size):

- Size *s* is exponential in *n* in the worst case
- Checking truth in an interpretation can be done in time linear in n
- Satisfiability/validity checking can be done in time linear in s
- Equivalence checking is very hard

One needs data structures that

- facilitate checking properties of formulas, e.g., satisfiability or equivalence
- facilitate boolean operations on formulas, e.g., conjunctions

Properties of binary decision trees (n = number of vars, s = tree size):

- Size *s* is exponential in *n* in the worst case
- Checking truth in an interpretation can be done in time linear in n
- Satisfiability/validity checking can be done in time linear in s
- Equivalence checking is very hard
- Some boolean operations, (∧) are hard to implement

One needs data structures that

- facilitate checking properties of formulas, e.g., satisfiability or equivalence
- facilitate boolean operations on formulas, e.g., conjunctions

Properties of binary decision trees (n = number of vars, s = tree size):

- Size *s* is exponential in *n* in the worst case
- Checking truth in an interpretation can be done in time linear in n
- Satisfiability/validity checking can be done in time linear in s
- Equivalence checking is very hard
- Some boolean operations, (∧) are hard to implement

One needs data structures that

- facilitate checking properties of formulas, e.g., satisfiability or equivalence
- facilitate boolean operations on formulas, e.g., conjunctions
- provide a compact representation of formulas, or the Boolean functions they represent

Properties of binary decision trees (n = number of vars, s = tree size):

- Size *s* is exponential in *n* in the worst case
- Checking truth in an interpretation can be done in time linear in n
- Satisfiability/validity checking can be done in time linear in s
- Equivalence checking is very hard
- Some boolean operations, (△) are hard to implement

One needs data structures that

- facilitate checking properties of formulas, e.g., satisfiability or equivalence
- facilitate boolean operations on formulas, e.g., conjunctions
- provide a compact representation of formulas, or the Boolean functions they represent

Are binary decision trees compact?

Algorithm for Building Binary Decision Trees

```
procedure bdt(A)
input: propositional formula A
output: a binary decision tree
parameters: function select_next_var
begin
A := simplify(A)
if A = \bot then return \bigcirc
if A = T then return 1
 p := select_next_var(A)
return tree(bdt(A_n^{\perp}), p, bdt(A_n^{\perp}))
end
```

- *simplify*(*A*) as in the splitting procedure
- $tree(T_1, p, T_2)$ builds the tree:

Algorithm for Building Binary Decision Trees

```
procedure bdt(A)
input: propositional formula A
output: a binary decision tree
parameters: function select_next_var
begin
A := simplify(A)
if A = \bot then return \bigcirc
if A = T then return 1
 p := select_next_var(A)
return tree(bdt(A_n^{\perp}), p, bdt(A_n^{\perp}))
end
```

- *simplify*(*A*) as in the splitting procedure
- $tree(T_1, p, T_2)$ builds the tree:

Note resemblance to the splitting procedure!

Splitting Procedure

Explored search tree (conceptual)

$$(q \rightarrow p) \land r \rightarrow (p \leftrightarrow r) \land q$$

Splitting Procedure

Explored search tree (conceptual)

Returned decision tree (actual data structure)

Redundant Tests

Are binary decision trees compact?

Redundant Tests

Are binary decision trees compact? No

Redundant Tests

Are binary decision trees compact? No They may contain redundant tests (nodes):

Isomorphic Subtrees

Are binary decision trees compact? No

Isomorphic Subtrees

Are binary decision trees compact? No They may contain isomorphic subtrees:

Binary Decision Diagrams

A *binary decision diagram*, or *BDD*, is a directed acyclic graph (built like a BDT but) containing

- no redundant nodes
- no isomorphic subgraphs

Binary Decision Tree

- 1. Merge isomorphic subgraphs
- 2. Eliminate redundant node

Binary Decision Tree

- 1. Merge isomorphic subgraphs
- 2. Eliminate redundant node

Binary Decision Tree

- 1. Merge isomorphic subgraphs
- 2. Eliminate redundant node

Binary Decision Tree

- 1. Merge isomorphic subgraphs
- 2. Eliminate redundant node

Binary Decision Tree

- 1. Merge isomorphic subgraphs
- 2. Eliminate redundant node

Binary Decision Tree

- 1. Merge isomorphic subgraphs
- 2. Eliminate redundant node

Binary Decision Tree

- 1. Merge isomorphic subgraphs
- 2. Eliminate redundant node

Binary Decision Tree

- 1. Merge isomorphic subgraphs
- 2. Eliminate redundant node

Binary Decision Tree

- 1. Merge isomorphic subgraphs
- 2. Eliminate redundant node

The original diagram and the *reduced* one represent the same Boolean function

Binary Decision Tree

Binary Decision Diagram

The original diagram and the *reduced* one represent the same Boolean function

Compact formula for that function: $(\neg q \land \neg r) \lor q$

Even more compact formula: $\neg r \lor q$

- Satisfiability checking can be done in constant time
- Validity checking can be done in constant time
- Equivalence checking
- Some Boolean operations (A)

- Satisfiability checking can be done in constant time
- Validity checking can be done in constant time
- Equivalence checking
- Some Boolean operations (A)

- Satisfiability checking can be done in constant time
- Validity checking can be done in constant time
- Equivalence checking
- Some Boolean operations (△)

- Satisfiability checking can be done in constant time
- Validity checking can be done in constant time
- Equivalence checking
- Some Boolean operations (A)

- Satisfiability checking can be done in constant time
- Validity checking can be done in constant time
- Equivalence checking
- Some Boolean operations (A)

Properties

What is the complexity of satisfiability, validity and equivalence checking for BDDs?

- Satisfiability checking can be done in constant time
- Validity checking can be done in constant time
- Equivalence checking is still very hard (exponential in the number of vars)
- Some Boolean operations (A)

Properties

What is the complexity of satisfiability, validity and equivalence checking for BDDs?

- Satisfiability checking can be done in constant time
- Validity checking can be done in constant time
- Equivalence checking is still very hard (exponential in the number of vars)
- Some Boolean operations (△)

Properties

What is the complexity of satisfiability, validity and equivalence checking for BDDs?

- Satisfiability checking can be done in constant time
- Validity checking can be done in constant time
- Equivalence checking is still very hard (exponential in the number of vars)
- Some Boolean operations (△) are still hard to implement

Problem: variables are checked in a different order on different branches

Problem: variables are checked in a different order on different branches **Idea:**

- introduce an order > on variables
- perform tests in this order in each branch

Problem: variables are checked in a different order on different branches **Idea:**

- introduce an order > on variables
- perform tests in this order in each branch

We then we obtain ordered binary decision diagrams, or OBDDs

OBDDs Properties

- Satisfiability checking in constant time
- Validity checking in constant time

OBDDs Properties

- Satisfiability checking in constant time
- Validity checking in constant time
- Equivalence checking in constant time

OBDDs Properties

- Satisfiability checking in constant time
- Validity checking in constant time
- Equivalence checking in constant time
- Boolean operations (∧) easy to implement

All OBDD algorithms will use the same procedure for integrating a node in a dag

procedure $integrate(n_1, p, n_2)$ parameters: global dag Dinput: variable p, nodes n_1, n_2 in D representing formulas F_1, F_2 output: node n in (modified) D representing if p then F_1 else F_2

```
procedure integrate(n_1, p, n_2) parameters: global dag D input: variable p, nodes n_1, n_2 in D representing formulas F_1, F_2 output: node n in (modified) D representing if\ p\ then\ F_1\ else\ F_2 begin if n_1=n_2 then return n_1
```

end

```
procedure integrate(n_1, p, n_2)
parameters: global dag D
input: variable p, nodes n_1, n_2 in D representing formulas F_1, F_2
output: node n in (modified) D representing if p then F_1 else F_2
begin
if n_1 = n_2 then return n_1
if D contains a node n having the form
```


then return n

end

procedure $integrate(n_1, p, n_2)$ parameters: global dag Dinput: variable p, nodes n_1, n_2 in D representing formulas F_1, F_2 output: node n in (modified) D representing if p then F_1 else F_2 begin if $n_1 = n_2$ then return n_1 if D contains a node n having the form

then return n else add to D a new node n of the form

return n

Building OBDDs

```
procedure obdd(F)
input: propositional formula F
parameters: global dag D
output: a node n in (modified) D which represents F
begin
F := simplify(F) // usual simplifications with rewrite rules
if F = \bot then return \bigcirc
if F = \top then return \boxed{1}
p := max \ variable(F) // var of F highest in variable ordering
n_1 := obdd(F_n^{\perp})
n_2 := obdd(F_n^\top)
return integrate(n_1, p, n_2)
end
```

Building OBDDs

```
procedure obdd(F)
input: propositional formula F
parameters: global dag D
output: a node n in (modified) D which represents F
begin
F := simplify(F) // usual simplifications with rewrite rules
if F = 1 then return 0
if F = \top then return 1
p := max \ variable(F) // var of F highest in variable ordering
n_1 := obdd(F_n^{\perp})
n_2 := obdd(F_n^\top)
return integrate(n_1, p, n_2)
end
```

 obdd puts together the algorithms for building BDTs and for eliminating redundancies

Building OBDDs

```
procedure obdd(F)
input: propositional formula F
parameters: global dag D
output: a node n in (modified) D which represents F
begin
F := simplify(F) // usual simplifications with rewrite rules
if F = 1 then return 0
if F = \top then return 1
p := max \ variable(F) // var of F highest in variable ordering
n_1 := obdd(F_n^{\perp})
n_2 := obdd(F_n^\top)
return integrate(n_1, p, n_2)
end
```

- obdd puts together the algorithms for building BDTs and for eliminating redundancies
- Redundancy elimination is performed by integrate

$$obdd((q \rightarrow p) \land r \rightarrow (p \leftrightarrow r) \land q)$$

Global dag D

Global dag D

We return the new node rooted at q

Global dag D

We return the new node rooted at q

Note: The application of this procedure modified the global dag

Let
$$f(x_1, \ldots, x_n) \stackrel{\text{def}}{=} x_1 \vee \ldots \vee x_n$$

Let D_1, \ldots, D_n be OBDDs representing formulas F_1, \ldots, F_n , respectively

Let
$$f(x_1, \ldots, x_n) \stackrel{\text{def}}{=} x_1 \vee \ldots \vee x_n$$

Let D_1, \ldots, D_n be OBDDs representing formulas F_1, \ldots, F_n , respectively

Let
$$f(x_1, \ldots, x_n) \stackrel{\text{def}}{=} x_1 \vee \ldots \vee x_n$$

Let D_1, \ldots, D_n be OBDDs representing formulas F_1, \ldots, F_n , respectively

- We fix the same variable ordering for all OBDDs
- We assume isomorphic subdags are shared across different OBDDs
- We use one fundamental property of if _ then _ else _

Let
$$f(x_1, \ldots, x_n) \stackrel{\text{def}}{=} x_1 \vee \ldots \vee x_n$$

Let D_1, \ldots, D_n be OBDDs representing formulas F_1, \ldots, F_n , respectively

- We fix the same variable ordering for all OBDDs
- We assume isomorphic subdags are shared across different OBDDs
- We use one fundamental property of if _ then _ else

Let
$$f(x_1, \ldots, x_n) \stackrel{\text{def}}{=} x_1 \vee \ldots \vee x_n$$

Let D_1, \ldots, D_n be OBDDs representing formulas F_1, \ldots, F_n , respectively

- We fix the same variable ordering for all OBDDs
- We assume isomorphic subdags are shared across different OBDDs
- We use one fundamental property of if _ then _ else _

Consider the expression in Java

```
((x > 0) ? y1 : y2) + ((x > 0) ? z1 : z2)
```

- Can we simplify it?
- Suppose x > 0 evaluates to true. Then,
 - ((x > 0) ? v1 : v2) evaluates to v1 and
 - ((x > 0) ? z1 : z2) evaluates to z1, so the sum evaluates to y1 + z1
- Suppose x > 0 evaluates to false. Then
 - ((x > 0) ? y1 : y2) evaluates to y2 and
 - ((x > 0) ? z1 : z2) evaluates to z2, so the sum evaluates to y2 + z2
- To simplify the expression, we could use the following property:

$$(E ? E_1 : E_2) + (E ? F_1 : F_2) = E ? (E_1 + F_1) : (F_2 + F_2)$$

• Consider the expression in Java (C, C++, Perl, ...)

```
((x > 0) ? y1 : y2) + ((x > 0) ? z1 : z2)
```

- Can we simplify it?
- Suppose x > 0 evaluates to true. Then
 - ((x > 0) ? v1 : v2) evaluates to v1 and
 - ((x > 0) ? z1 : z2) evaluates to z1, so the sum evaluates to y1 + z1
- Suppose x > 0 evaluates to false. Then
 - ((x > 0) ? y1 : y2) evaluates to y2 and
 - ((x > 0) ? z1 : z2) evaluates to z2, so the sum evaluates to y2 + z
- To simplify the expression, we could use the following property:

$$(E ? E_1 : E_2) + (E ? F_1 : F_2) = E ? (E_1 + F_1) : (F_2 + F_2)$$

• Consider the expression in Java (C, C++, Perl, ...)

```
((x > 0) ? y1 : y2) + ((x > 0) ? z1 : z2)
```

- Can we simplify it?
- Suppose x > 0 evaluates to true. Then.
 - ((x > 0) ? v1 : v2) evaluates to v1 and
 - ((x > 0) ? z1 : z2) evaluates to z1, so the sum evaluates to y1 + z1
- Suppose x > 0 evaluates to false. Then
 - ((x > 0) ? y1 : y2) evaluates to y2 and
 - ((x > 0) ? z1 : z2) evaluates to z2, so the sum evaluates to y2 + z2
- To simplify the expression, we could use the following property:

$$(E ? E_1 : E_2) + (E ? F_1 : F_2) = E ? (E_1 + F_1) : (F_2 + F_2)$$

• Consider the expression in Java (C, C++, Perl, ...)

```
((x > 0) ? y1 : y2) + ((x > 0) ? z1 : z2)
```

- Can we simplify it?
- Suppose x > 0 evaluates to true. Then,

```
((x > 0) ? y1 : y2) evaluates to y1 and
```

((x > 0) ?
$$z1$$
 : $z2$) evaluates to $z1$, so the sum evaluates to $y1$ + $z1$

Suppose x > 0 evaluates to false. Then,

```
((x > 0) ? y1 : y2) evaluates to y2 and
```

$$((x > 0) ? z1 : z2)$$
 evaluates to z2, so the sum evaluates to $y2 + z2$

To simplify the expression, we could use the following property:

$$(E ? E_1 : E_2) + (E ? F_1 : F_2) = E ? (E_1 + F_1) : (F_2 + F_2)$$

• Consider the expression in Java (C, C++, Perl, ...)

```
((x > 0) ? y1 : y2) + ((x > 0) ? z1 : z2)
```

- Can we simplify it?
- Suppose x > 0 evaluates to true. Then,

```
((x > 0) ? y1 : y2) evaluates to y1 and
```

```
((x > 0) ? z1 : z2) evaluates to z1, so the sum evaluates to y1 + z1
```

• Suppose x > 0 evaluates to false. Then,

```
((x > 0) ? y1 : y2) evaluates to y2 and
```

$$((x > 0) ? z1 : z2)$$
 evaluates to $z2$, so the sum evaluates to $y2 + z2$

To simplify the expression, we could use the following property:

$$(E ? E_1 : E_2) + (E ? F_1 : F_2) = E ? (E_1 + F_1) : (F_2 + F_2)$$

• Consider the expression in Java (C, C++, Perl, ...)

```
((x > 0) ? y1 : y2) + ((x > 0) ? z1 : z2)
```

- Can we simplify it?
- Suppose x > 0 evaluates to true. Then,

```
((x > 0) ? y1 : y2) evaluates to y1 and
```

```
((x > 0) ? z1 : z2) evaluates to z1, so the sum evaluates to y1 + z1
```

• Suppose x > 0 evaluates to false. Then,

```
((x > 0) ? y1 : y2) evaluates to y2 and
```

• To simplify the expression, we could use the following property:

```
(E ? E_1 : E_2) + (E ? F_1 : F_2) = E ? (E_1 + F_1) : (F_2 + F_2)
```

• Consider the expression in Java (C, C++, Perl, ...)

```
((x > 0) ? y1 : y2) + ((x > 0) ? z1 : z2)
```

- Can we simplify it?
- Suppose x > 0 evaluates to true. Then,

```
((x > 0) ? y1 : y2) evaluates to y1 and
```

• Suppose x > 0 evaluates to false. Then,

```
((x > 0) ? y1 : y2) evaluates to y2 and
```

• To simplify the expression, we could use the following property:

```
(E ? E_1 : E_2) + (E ? F_1 : F_2) = E ? (E_1 + F_1) : (F_2 + F_2)
```

```
That is, (E ? \_ : \_) commutes with +
```

```
In fact, for any predicate P, if P then _ else _ commutes with any function f:
```

 $f(if \ P \ then \ l_1 \ else \ r_1, \ldots, if \ P \ then \ l_n \ else \ r_n) = if \ P \ then \ f(l_1, \ldots, l_n) \ else \ f(r_1, \ldots, r_n)$

In fact, for any predicate *P*,

if P then _ *else* _ **commutes** with any function *f*:

$$f(if \ P \ then \ l_1 \ else \ r_1, \ldots, if \ P \ then \ l_n \ else \ r_n) = if \ P \ then \ f(l_1, \ldots, l_n) \ else \ f(r_1, \ldots, r_n)$$

- 1. Apply f to the subdags corresponding to p=0, obtaining a dag D_0
- 2. Apply f to the subdags corresponding to p=1, obtaining a dag D_1

3. Build and return the dag

In fact, for any predicate *P*,

if P then _ else _ commutes with any function f:

 $f(if \ P \ then \ l_1 \ else \ r_1, \ldots, if \ P \ then \ l_n \ else \ r_n) = if \ P \ then \ f(l_1, \ldots, l_n) \ else \ f(r_1, \ldots, r_n)$

(Proof? By case analysis on P)

- 1. Apply f to the subdags corresponding to p=0, obtaining a dag D_0
- 2. Apply f to the subdags corresponding to p=1, obtaining a dag D_1

3. Build and return the dag

In fact, for any predicate P,

if P then _ else _ commutes with any function f:

 $f(if \ P \ then \ l_1 \ else \ r_1, \ldots, if \ P \ then \ l_n \ else \ r_n) = if \ P \ then \ f(l_1, \ldots, l_n) \ else \ f(r_1, \ldots, r_n)$

Hence, to apply f to n OBDDs rooted at variable p,

In fact, for any predicate P,

if P then _ else _ commutes with any function f:

$$f(if \ P \ then \ l_1 \ else \ r_1, \ldots, if \ P \ then \ l_n \ else \ r_n) = if \ P \ then \ f(l_1, \ldots, l_n) \ else \ f(r_1, \ldots, r_n)$$

Hence, to apply f to n OBDDs rooted at variable p,

- 1. Apply f to the subdags corresponding to p=0, obtaining a dag D_0

In fact, for any predicate *P*,

if P then _ else _ commutes with any function f:

$$f(if \ P \ then \ l_1 \ else \ r_1, \ldots, if \ P \ then \ l_n \ else \ r_n) = if \ P \ then \ f(l_1, \ldots, l_n) \ else \ f(r_1, \ldots, r_n)$$

Hence, to apply f to n OBDDs rooted at variable p,

- 1. Apply f to the subdags corresponding to p=0, obtaining a dag D_0
- 2. Apply f to the subdags corresponding to p=1, obtaining a dag D_1

In fact, for any predicate *P*,

if P then _ else _ commutes with any function f:

$$f(if \ P \ then \ l_1 \ else \ r_1, \ldots, if \ P \ then \ l_n \ else \ r_n) = if \ P \ then \ f(l_1, \ldots, l_n) \ else \ f(r_1, \ldots, r_n)$$

Hence, to apply f to n OBDDs rooted at variable p,

- 1. Apply f to the subdags corresponding to p=0, obtaining a dag D_0
- 2. Apply f to the subdags corresponding to p = 1, obtaining a dag D_1

3. Build and return the dag

Negation

 \neg (if p then L else R) \equiv if p then \neg L else \neg R

Negation

```
\neg(if p then L else R) \equiv if p then \negL else \negR
```

```
procedure negation(n)
parameters: global dag D
input: node n representing formula F in D
output: a node n' representing \neg F in (modified) D
begin
if n is 1 then return 0
if n is 0 then return 1
p := max\_variable(n)
(l,r) := (neg(n), pos(n))
l' := negation(l)
r' := negation(r)
return integrate(l', p, r')
end
```

Negation

```
\neg(if p then L else R) \equiv if p then \negL else \negR
procedure negation(n)
parameters: global dag D
input: node n representing formula F in D
output: a node n' representing \neg F in (modified) D
begin
if n is 1 then return 0
if n is 0 then return 1
p := max\_variable(n)
(l,r) := (neq(n), pos(n)) // negative and positive subdiagram of n
l' := negation(l)
r' := negation(r)
return integrate(l', p, r')
end
```

Disjunction

(if p then L_1 else R_1) \vee (if p then L_1 else R_1) \equiv if p then $L_1 \vee L_2$ else $R_1 \vee R_2$

Disjunction

```
(if p then L_1 else R_1) \vee (if p then L_1 else R_1) \equiv if p then L_1 \vee L_2 else R_1 \vee R_2
procedure disjunction(n_1, \ldots, n_m)
parameters: global dag D
input: 1 or more nodes n_1, \ldots, n_m representing F_1, \ldots, F_m in D
output: a node n representing F_1 \vee \cdots \vee F_m in (modified) D
begin
 if m=1 then return n_1
 if some n_i is 1 then return 1
 if some n_i is 0 then return disjunction(n_1, \ldots, n_{i-1}, n_{i+1}, \ldots, n_m)
 p := max \ variable(n_1, \ldots, n_m)
 forall i = 1 \dots m
  if n_i is labelled by p
   then (l_i, r_i) := (neg(n_i), pos(n_i))
   else (l_i, r_i) := (n_i, n_i) // (*)
 l := disjunction(l_1, \ldots, l_m)
 r := disjunction(r_1, \ldots, r_m)
 return integrate(l, p, r)
end
```

Disjunction

end

```
(if p then L_1 else R_1) \vee (if p then L_1 else R_1) \equiv if p then L_1 \vee L_2 else R_1 \vee R_2
procedure disjunction(n_1, \ldots, n_m)
parameters: global dag D
input: 1 or more nodes n_1, \ldots, n_m representing F_1, \ldots, F_m in D
output: a node n representing F_1 \vee \cdots \vee F_m in (modified) D
begin
 if m=1 then return n_1
 if some n_i is 1 then return 1
 if some n_i is \bigcirc then return disjunction(n_1, \ldots, n_{i-1}, n_{i+1}, \ldots, n_m)
 p := max \ variable(n_1, \ldots, n_m)
 forall i = 1 \dots m
  if n_i is labelled by p
   then (l_i, r_i) := (neg(n_i), pos(n_i))
                                                           (*) Consider fictitious
   else (l_i, r_i) := (n_i, n_i) // (*)
                                                           redundant node ki with
 l := disjunction(l_1, \ldots, l_m)
                                                           n_i = neg(k_i) = pos(k_i)
 r := disjunction(r_1, \ldots, r_m)
 return integrate(l, p, r)
```


Exercise

Compute $(\neg p \land r) \lor r$ where α represents $\neg p \land r$ and α represents α :

Disjunction (recall)

```
procedure disjunction(n_1, \ldots, n_m)
parameters: global dag D
input: 1 or more nodes n_1, \ldots, n_m representing F_1, \ldots, F_m in D
output: a node n representing F_1 \vee \cdots \vee F_m in (modified) D
begin
 if m = 1 then return n_1
 if some n_i is 1 then return 1
if some n_i is 0 then
  return disjunction(n_1, \ldots, n_{i-1}, n_{i+1}, \ldots, n_m)
 p := max\_variable(n_1, ..., n_m)
 forall i = 1 \dots m
  if n_i is labelled by p
   then (l_i, r_i) := (neg(n_i), pos(n_i))
   else (l_i, r_i) := (n_i, n_i)
l := disjunction(l_1, \ldots, l_m)
r := disjunction(r_1, \ldots, r_m)
 return integrate(l, p, r)
end
```

Disjunction (recall)

```
procedure disjunction(n_1, \ldots, n_m)
parameters: global dag D
input: 1 or more nodes n_1, \ldots, n_m representing F_1, \ldots, F_m in D
output: a node n representing F_1 \vee \cdots \vee F_m in (modified) D
begin
 if m = 1 then return n_1
 if some n_i is 1 then return 1
                                                                      F \vee T = T
if some n_i is 0 then
                                                                       F \lor / \bot = F
  return disjunction(n_1, \ldots, n_{i-1}, n_{i+1}, \ldots, n_m)
 p := max\_variable(n_1, ..., n_m)
 forall i = 1 \dots m
  if n_i is labelled by p
   then (l_i, r_i) := (neg(n_i), pos(n_i))
   else (l_i, r_i) := (n_i, n_i)
l := disjunction(l_1, \ldots, l_m)
r := disjunction(r_1, \ldots, r_m)
 return integrate(l, p, r)
end
```

Conjunction

```
procedure conjunction(n_1, \ldots, n_m)
parameters: global dag D
input: 1 or more nodes n_1, \ldots, n_m representing F_1, \ldots, F_m in D
output: a node n representing F_1 \wedge \cdots \wedge F_m in (modified) D
begin
if m=1 then return n_1
if some n_i is 0 then return 0
                                                                      F \wedge | = |
if some n_i is 1 then
                                                                      F \wedge T = F
  return conjunction(n_1, \ldots, n_{i-1}, n_{i+1}, \ldots, n_m)
 p := max\_variable(n_1, ..., n_m)
 forall i = 1 \dots m
  if n_i is labelled by p
   then (l_i, r_i) := (neg(n_i), pos(n_i))
   else (l_i, r_i) := (n_i, n_i)
l := conjunction(l_1, \ldots, l_m)
r := conjunction(r_1, \ldots, r_m)
 return integrate(l, p, r)
end
```

Other connectives

procedure $implication(n_1, n_2)$ **parameters**: global dag D

```
begin
return disjunction(negation(n_1), n_2)
end
```

input: nodes n_1 , n_2 representing formulas F_1 , F_2 in D **output**: a node n representing $F_1 \rightarrow F_2$ in (modified) D

Other connectives

```
procedure implication(n_1, n_2)
parameters: global dag D
input: nodes n_1, n_2 representing formulas F_1, F_2 in D
output: a node n representing F_1 \rightarrow F_2 in (modified) D
begin
 return disjunction(negation(n_1), n_2)
end
procedure bi_implication(n_1, n_2)
parameters: global dag D
input: nodes n_1, n_2 representing formulas F_1, F_2 in D
output: a node n representing F_1 \leftrightarrow F_2 in (modified) D
begin
 return conjunction(implication(n_1, n_2), implication(n_2, n_1))
end
```