CS:4350 Logic in Computer Science

Semantic Tableaux

Cesare Tinelli

Spring 2021

Credits

These slides are largely based on slides originally developed by **Andrei Voronkov** at the University of Manchester. Adapted by permission.

Outline

Semantic Tableaux

- Signed formula: an expression A^b , where A is a formula and b a boolean value
- A signed formula A^b is satisfied by an interpretation \mathcal{I} , written $\mathcal{I} \models A^b$, if $\mathcal{I}(A) = b$; it is *falsified* otherwise
- If $\mathcal{I} \models A^{\mathcal{D}}$, we also say that \mathcal{I} is a model of $A^{\mathcal{D}}$
- A signed formula is satisfiable if it has a model

- 1. For every formula A and interpretation \mathcal{I} exactly one of the signed formulas A^1 and A^0 is satisfied by \mathcal{I}
- 2. A formula A is satisfiable iff the signed formula A^1 is satisfiable
- 3. A formula A is falsifiable iff the signed formula A^{o} is satisfiable

- Signed formula: an expression A^b , where A is a formula and b a boolean value
- A signed formula A^b is *satisfied* by an interpretation \mathcal{I} , written $\mathcal{I} \models A^b$, if $\mathcal{I}(A) = b$; it is *falsified* otherwise
- If $\mathcal{I} \models A^{D}$, we also say that \mathcal{I} is a model of A^{D}
- A signed formula is satisfiable if it has a model

- 1. For every formula A and interpretation \mathcal{I} exactly one of the signed formulas A^1 and A^0 is satisfied by \mathcal{I}
- 2. A formula A is satisfiable iff the signed formula A^1 is satisfiable
- 3. A formula A is falsifiable iff the signed formula A^{o} is satisfiable

- Signed formula: an expression A^b , where A is a formula and b a boolean value
- A signed formula A^b is *satisfied* by an interpretation \mathcal{I} , written $\mathcal{I} \models A^b$, if $\mathcal{I}(A) = b$; it is *falsified* otherwise
- If $\mathcal{I} \models A^b$, we also say that \mathcal{I} is a model of A^b
- A signed formula is satisfiable if it has a model

- 1. For every formula A and interpretation \mathcal{I} exactly one of the signed formulas A^0 and A^0 is satisfied by \mathcal{I}
- 2. A formula A is satisfiable iff the signed formula A^1 is satisfiable
- 3. A formula A is falsifiable iff the signed formula A^{o} is satisfiable

- Signed formula: an expression A^b , where A is a formula and b a boolean value
- A signed formula A^b is *satisfied* by an interpretation \mathcal{I} , written $\mathcal{I} \models A^b$, if $\mathcal{I}(A) = b$; it is *falsified* otherwise
- If $\mathcal{I} \models A^b$, we also say that \mathcal{I} is a model of A^b
- A signed formula is satisfiable if it has a model

- 1. For every formula A and interpretation \mathcal{I} exactly one of the signed formulas A^1 and A^0 is satisfied by \mathcal{I}
- 2. A formula A is satisfiable iff the signed formula A¹ is satisfiable
- 3. A formula A is falsifiable iff the signed formula A° is satisfiable

- Signed formula: an expression A^b , where A is a formula and b a boolean value
- A signed formula A^b is *satisfied* by an interpretation \mathcal{I} , written $\mathcal{I} \models A^b$, if $\mathcal{I}(A) = b$; it is *falsified* otherwise
- If $\mathcal{I} \models A^b$, we also say that \mathcal{I} is a model of A^b
- A signed formula is satisfiable if it has a model

- 1. For every formula A and interpretation \mathcal{I} exactly one of the signed formulas A^1 and A^0 is satisfied by \mathcal{I}
- 2. A formula A is satisfiable iff the signed formula A^1 is satisfiable
- 3. A formula A is falsifiable iff the signed formula A^0 is satisfiable

- Signed formula: an expression A^b , where A is a formula and b a boolean value
- A signed formula A^b is *satisfied* by an interpretation \mathcal{I} , written $\mathcal{I} \models A^b$, if $\mathcal{I}(A) = b$; it is *falsified* otherwise
- If $\mathcal{I} \models A^b$, we also say that \mathcal{I} is a model of A^b
- A signed formula is satisfiable if it has a model

- 1. For every formula A and interpretation \mathcal{I} exactly one of the signed formulas A^1 and A^0 is satisfied by \mathcal{I}
- 2. A formula A is satisfiable iff the signed formula A^1 is satisfiable
- 3. A formula A is falsifiable iff the signed formula A^0 is satisfiable

Example: $A \wedge B$

$$\begin{array}{c|ccccc} & & B & B \\ & \land & 0 & 1 \\ \hline A & 0 & 0 & 0 \\ A & 1 & 0 & 1 \\ \end{array}$$

 $(A \wedge B)^1$: We can make $A \wedge B$ true iff we make A true (A^1) and B true (B^1) $(A \wedge B)^0$: We can make $A \wedge B$ false iff we make A false (A^0) or B false (B^0)

Example: $A \rightarrow B$

 $(A \to B)^1$: We can make $(A \to B)$ true iff we make A false (A^0) or B true (B^1) $(A \to B)^0$: We can make $(A \to B)$ false iff we make A true (A^1) and B false (B^0)

Example: $A \wedge B$

$$\begin{array}{c|ccccc} & & B & B \\ & \land & 0 & 1 \\ \hline A & 0 & 0 & 0 \\ A & 1 & 0 & 1 \\ \end{array}$$

 $(A \wedge B)^1$: We can make $A \wedge B$ true iff we make A true (A^1) and B true (B^1)

 $(A \wedge B)^0$: We can make $A \wedge B$ false iff we make A false (A^0) or B false (B^0

Example: $A \rightarrow B$

 $(A o B)^1$: We can make (A o B) true iff we make A false (A^0) or B true (B^1) $(A o B)^0$: We can make (A o B) false iff we make A true (A^1) and B false (B^0)

Example: $A \wedge B$

$$\begin{array}{c|ccccc}
 & B & B \\
 & \land & 0 & 1 \\
\hline
 & A & 0 & 0 & 0 \\
 & A & 1 & 0 & 1
\end{array}$$

 $(A \wedge B)^1$: We can make $A \wedge B$ true iff we make A true (A^1) and B true (B^1) $(A \wedge B)^0$: We can make $A \wedge B$ false iff we make A false (A^0) or B false (B^0)

Example: $A \rightarrow B$

 $(A \to B)^1$: We can make $(A \to B)$ true iff we make A false (A^0) or B true (B^1) $(A \to B)^0$: We can make $(A \to B)$ false iff we make A true (A^1) and B false (B^0)

Example: $A \wedge B$

$$\begin{array}{c|cccc}
 & B & B \\
 & \Lambda & 0 & 1 \\
\hline
 & A & 0 & 0 & 0 \\
 & A & 1 & 0 & 1
\end{array}$$

 $(A \wedge B)^1$: We can make $A \wedge B$ true iff we make A true (A^1) and B true (B^1) $(A \wedge B)^0$: We can make $A \wedge B$ false iff we make A false (A^0) or B false (B^0)

Example: $A \rightarrow B$

 $(A \to B)^1$: We can make $(A \to B)$ true iff we make A false (A^0) or B true (B^1) $(A \to B)^0$: We can make $(A \to B)$ false iff we make A true (A^1) and B false (B^0)

Example: $A \wedge B$

$$\begin{array}{c|cccc} & & B & B \\ & \land & 0 & 1 \\ \hline A & 0 & 0 & 0 \\ A & 1 & 0 & 1 \\ \end{array}$$

 $(A \wedge B)^1$: We can make $A \wedge B$ true iff we make A true (A^1) and B true (B^1) $(A \wedge B)^0$: We can make $A \wedge B$ false iff we make A false (A^0) or B false (B^0)

Example: $A \rightarrow B$

 $(A \to B)^1$: We can make $(A \to B)$ true iff we make A false (A^0) or B true (B^1)

 $(A \to B)^0$: We can make $(A \to B)$ false iff we make A true (A^1) and B false (B^0)

Example: $A \wedge B$

$$\begin{array}{c|ccccc}
 & B & B \\
 & \wedge & 0 & 1 \\
\hline
 & A & 0 & 0 & 0 \\
 & A & 1 & 0 & 1
\end{array}$$

 $(A \wedge B)^1$: We can make $A \wedge B$ true iff we make A true (A^1) and B true (B^1) $(A \wedge B)^0$: We can make $A \wedge B$ false iff we make A false (A^0) or B false (B^0)

Example: $A \rightarrow B$

 $(A \to B)^1$: We can make $(A \to B)$ true iff we make A false (A^0) or B true (B^1) $(A \to B)^0$: We can make $(A \to B)$ false iff we make A true (A^1) and B false (B^0)

The search for a model of a formula can be expressed by an AND-OR tree

Tableau: a tree having signed formulas at nodes (plural: tableaux)

A tableau for a signed formula A^b has A^b as a root

Alternatively, we can regard a tableau as a collection of branches; each branch is a set of signed formulas

Notation for branches: $A_1^{b_1} \mid \cdots \mid A_n^{b_n} \mid$

The search for a model of a formula can be expressed by an AND-OR tree

Tableau: a tree having signed formulas at nodes (plural: tableaux)

A tableau for a signed formula A^b has A^b as a root

Alternatively, we can regard a tableau as a collection of branches; each branch is a set of signed formulas

Notation for branches: $A_1^{b_1} \mid \cdots \mid A_n^{b_n}$

The search for a model of a formula can be expressed by an AND-OR tree

Tableau: a tree having signed formulas at nodes (plural: tableaux)

A tableau for a signed formula A^b has A^b as a root

Alternatively, we can regard a tableau as a collection of branches; each branch is a set of signed formulas

Notation for branches: $A_1^{b_1} \mid \cdots \mid A_n^{b_n}$

The search for a model of a formula can be expressed by an AND-OR tree

Tableau: a tree having signed formulas at nodes (plural: tableaux)

A tableau for a signed formula A^b has A^b as a root

Alternatively, we can regard a tableau as a collection of branches; each branch is a set of signed formulas

Notation for branches: $A_1^{D_1} \mid \cdots \mid A_n^{D_n}$

The search for a model of a formula can be expressed by an AND-OR tree

Tableau: a tree having signed formulas at nodes (plural: tableaux)

A tableau for a signed formula A^b has A^b as a root

Alternatively, we can regard a tableau as a collection of branches; each branch is a set of signed formulas

Notation for branches: $A_1^{b_1} \mid \cdots \mid A_n^{b_n}$

$$\begin{array}{cccc} (A_{1} \vee A_{2})^{0} & \leadsto & A_{1}^{0}, A_{2}^{0} \\ (A_{1} \vee A_{2})^{1} & \leadsto & A_{1}^{1} \mid A_{2}^{1} \\ (A_{1} \to A_{2})^{0} & \leadsto & A_{1}^{1}, A_{2}^{0} \\ & (\neg A_{1})^{1} & \leadsto & A_{1}^{0} \end{array}$$

$$\begin{array}{cccc} (A_{1} \vee A_{2})^{0} & \leadsto & A_{1}^{0}, A_{2}^{0} \\ (A_{1} \vee A_{2})^{1} & \leadsto & A_{1}^{1} \mid A_{2}^{1} \\ (A_{1} \to A_{2})^{0} & \leadsto & A_{1}^{1}, A_{2}^{0} \\ & (\neg A_{1})^{1} & \leadsto & A_{1}^{0} \end{array}$$

$$\begin{array}{cccc} (A_1 \vee A_2)^0 & \leadsto & A_1^0, A_2^0 \\ (A_1 \vee A_2)^1 & \leadsto & A_1^1 \mid A_2^1 \\ (A_1 \to A_2)^0 & \leadsto & A_1^1, A_2^0 \\ & (\neg A_1)^1 & \leadsto & A_1^0 \end{array}$$

$$\begin{array}{cccc} (A_{1} \vee A_{2})^{0} & \leadsto & A_{1}^{0}, A_{2}^{0} \\ (A_{1} \vee A_{2})^{1} & \leadsto & A_{1}^{1} \mid A_{2}^{1} \\ (A_{1} \to A_{2})^{0} & \leadsto & A_{1}^{1}, A_{2}^{0} \\ & (\neg A_{1})^{1} & \leadsto & A_{1}^{0} \end{array}$$

$$(A_1 \lor A_2)^0 \longrightarrow A_1^0, A_2^0$$

 $(A_1 \lor A_2)^1 \longrightarrow A_1^1 \mid A_2^1$
 $(A_1 \to A_2)^0 \longrightarrow A_1^1, A_2^0$
 $(\neg A_1)^1 \longrightarrow A_1^0$

$$\begin{array}{cccc} (A_1 \lor A_2)^0 & \leadsto & A_1^0, A_2^0 \\ (A_1 \lor A_2)^1 & \leadsto & A_1^1 \mid A_2^1 \\ (A_1 \to A_2)^0 & \leadsto & A_1^1, A_2^0 \\ (\neg A_1)^1 & \leadsto & A_1^0 \end{array}$$

$$\begin{array}{ccccc} (A_{1} \vee A_{2})^{0} & \leadsto & A_{1}^{0}, A_{2}^{0} \\ (A_{1} \vee A_{2})^{1} & \leadsto & A_{1}^{1} \mid A_{2}^{1} \\ (A_{1} \to A_{2})^{0} & \leadsto & A_{1}^{1}, A_{2}^{0} \\ & & & & & & & & & & & & & & & \\ (\neg A_{1})^{1} & \leadsto & & & & & & & & & & & & \\ \end{array}$$

$$\begin{array}{cccc} (A_1 \vee A_2)^0 & \rightsquigarrow & A_1^0, A_2^0 \\ (A_1 \vee A_2)^1 & \rightsquigarrow & A_1^1 \mid A_2^1 \\ (A_1 \rightarrow A_2)^0 & \rightsquigarrow & A_1^1, A_2^0 \\ (\neg A_1)^1 & \rightsquigarrow & A_1^0 \end{array}$$

$$\begin{array}{ccccc} (A_{1} \vee A_{2})^{0} & \leadsto & A_{1}^{0}, A_{2}^{0} \\ (A_{1} \vee A_{2})^{1} & \leadsto & A_{1}^{1} \mid A_{2}^{1} \\ (A_{1} \to A_{2})^{0} & \leadsto & A_{1}^{1}, A_{2}^{0} \\ & & & & & & & & & & & & & & & \\ (\neg A_{1})^{1} & \leadsto & & & & & & & & & & & & \\ \end{array}$$

$$\begin{array}{cccc} (A_1 \vee A_2)^0 & \leadsto & A_1^0, A_2^0 \\ (A_1 \vee A_2)^1 & \leadsto & A_1^1 \mid A_2^1 \\ (A_1 \to A_2)^0 & \leadsto & A_1^1, A_2^0 \\ & (\neg A_1)^1 & \leadsto & A_1^0 \end{array}$$

$$\begin{array}{ccccc} (A_{1} \vee A_{2})^{0} & \leadsto & A_{1}^{0}, A_{2}^{0} \\ (A_{1} \vee A_{2})^{1} & \leadsto & A_{1}^{1} \mid A_{2}^{1} \\ (A_{1} \to A_{2})^{0} & \leadsto & A_{1}^{1}, A_{2}^{0} \\ & & & & & & & & & & & & & & & \\ (\neg A_{1})^{1} & \leadsto & & & & & & & & & & & & \\ \end{array}$$

Branch Expansion Rules

A branch is *closed* in any of the following cases:

- it contains both p^0 and p^1 for some atom p
- it contains T⁰
- it contains ⊥¹

Note: The formulas on a closed branch are jointly unsatisfiable

A branch is *complete* (or *saturated*) if it cannot be expanded further without adding a formula already in it

A branch is *closed* in any of the following cases:

- it contains both p^0 and p^1 for some atom p
- it contains T⁰
- it contains ⊥¹

Note: The formulas on a closed branch are jointly unsatisfiable

A branch is *complete* (or *saturated*) if it cannot be expanded further without adding a formula already in it

A branch is *closed* in any of the following cases:

- it contains both p^0 and p^1 for some atom p
- it contains T⁰
- it contains ⊥¹

Note: The formulas on a closed branch are jointly unsatisfiable

A branch is *complete* (or *saturated*) if it cannot be expanded further without adding a formula already in it

A branch is *closed* in any of the following cases:

- it contains both p^0 and p^1 for some atom p
- it contains T⁰
- it contains ⊥¹

Note: The formulas on a closed branch are jointly unsatisfiable

A branch is *complete* (or *saturated*) if it cannot be expanded further without adding a formula already in it

Open and closed branches

A branch is *closed* in any of the following cases:

- it contains both p^0 and p^1 for some atom p
- it contains T⁰
- it contains ⊥¹

Note: The formulas on a closed branch are jointly unsatisfiable

A branch is *complete* (or *saturated*) if it cannot be expanded further without adding a formula already in it

Note: From the signed atoms of a complete branch it is possible to construct a model of the root formula

$$(\neg((p \to q) \land (p \land q \to r) \to (\neg p \to r)))^{1}$$

$$\begin{array}{cccc} (A_{1} \wedge A_{2})^{0} & \leadsto & A_{1}^{0} \mid A_{2}^{0} \\ (A_{1} \wedge A_{2})^{1} & \leadsto & A_{1}^{1}, A_{2}^{1} \\ (A_{1} \to A_{2})^{0} & \leadsto & A_{1}^{1}, A_{2}^{0} \\ (A_{1} \to A_{2})^{1} & \leadsto & A_{1}^{0} \mid A_{2}^{1} \\ (\neg A_{1})^{1} & \leadsto & A_{1}^{0} \end{array}$$

$$(\neg((p \to q) \land (p \land q \to r) \to (\neg p \to r)))^{1}$$

$$\begin{array}{cccc} (A_{1} \wedge A_{2})^{0} & \leadsto & A_{1}^{0} \mid A_{2}^{0} \\ (A_{1} \wedge A_{2})^{1} & \leadsto & A_{1}^{1}, A_{2}^{1} \\ (A_{1} \to A_{2})^{0} & \leadsto & A_{1}^{1}, A_{2}^{0} \\ (A_{1} \to A_{2})^{1} & \leadsto & A_{1}^{0} \mid A_{2}^{1} \\ & (\neg A_{1})^{1} & \leadsto & A_{1}^{0} \end{array}$$

$$(\neg((p \to q) \land (p \land q \to r) \to (\neg p \to r)))^{1}$$

$$((p \to q) \land (p \land q \to r) \to (\neg p \to r))^{0}$$

$$\begin{array}{ccccc} (A_{1} \wedge A_{2})^{0} & \leadsto & A_{1}^{0} \mid A_{2}^{0} \\ (A_{1} \wedge A_{2})^{1} & \leadsto & A_{1}^{1}, A_{2}^{1} \\ (A_{1} \to A_{2})^{0} & \leadsto & A_{1}^{1}, A_{2}^{0} \\ (A_{1} \to A_{2})^{1} & \leadsto & A_{1}^{0} \mid A_{2}^{1} \\ & (\neg A_{1})^{1} & \leadsto & A_{1}^{0} \end{array}$$

$$(\neg((p \to q) \land (p \land q \to r) \to (\neg p \to r)))^{1}$$

$$((p \to q) \land (p \land q \to r) \to (\neg p \to r))^{0}$$

$$\begin{array}{ccccc} (A_{1} \wedge A_{2})^{0} & \leadsto & A_{1}^{0} \mid A_{2}^{0} \\ (A_{1} \wedge A_{2})^{1} & \leadsto & A_{1}^{1}, A_{2}^{1} \\ \hline (A_{1} \rightarrow A_{2})^{0} & \leadsto & A_{1}^{1}, A_{2}^{0} \\ (A_{1} \rightarrow A_{2})^{1} & \leadsto & A_{1}^{0} \mid A_{2}^{1} \\ \hline (\neg A_{1})^{1} & \leadsto & A_{1}^{0} \end{array}$$

$$(\neg((p \to q) \land (p \land q \to r) \to (\neg p \to r)))^{1}$$

$$((p \to q) \land (p \land q \to r) \to (\neg p \to r))^{0}$$

$$((p \to q) \land (p \land q \to r))^{1}$$

$$(\neg(p \to q) \land (p \land q \to r))^{1}$$

$$(\neg((p \to q) \land (p \land q \to r) \to (\neg p \to r)))^{1}$$

$$((p \to q) \land (p \land q \to r) \to (\neg p \to r))^{0}$$

$$((p \to q) \land (p \land q \to r))^{1}$$

$$(\neg(p \to q) \land (p \land q \to r))^{1}$$

$$(\neg((p \to q) \land (p \land q \to r) \to (\neg p \to r)))^{1}$$

$$((p \to q) \land (p \land q \to r) \to (\neg p \to r))^{0}$$

$$((p \to q) \land (p \land q \to r))^{1}$$

$$(\neg p \to q)^{1}$$

$$(p \land q \to r)^{1}$$

$$(\neg((p \to q) \land (p \land q \to r) \to (\neg p \to r)))^{1}$$

$$((p \to q) \land (p \land q \to r) \to (\neg p \to r))^{0}$$

$$((p \to q) \land (p \land q \to r))^{1}$$

$$(p \to q)^{1}$$

$$(p \land q \to r)^{1}$$

$$(\neg((p \to q) \land (p \land q \to r) \to (\neg p \to r)))^{1}$$

$$((p \to q) \land (p \land q \to r) \to (\neg p \to r))^{0}$$

$$((p \to q) \land (p \land q \to r))^{1}$$

$$(\neg p \to q)^{1}$$

$$(p \land q \to r)^{1}$$

$$(\neg p)^{1}$$

$$r^{0}$$

$$(\neg((p \to q) \land (p \land q \to r) \to (\neg p \to r)))^{1}$$

$$((p \to q) \land (p \land q \to r) \to (\neg p \to r))^{0}$$

$$((p \to q) \land (p \land q \to r))^{1}$$

$$(p \to q)^{1}$$

$$(p \land q \to r)^{1}$$

$$(\neg p)^{1}$$

$$r^{0}$$

$$q^{1}$$

$$(\neg((p \to q) \land (p \land q \to r) \to (\neg p \to r)))^{1}$$

$$((p \to q) \land (p \land q \to r) \to (\neg p \to r))^{0}$$

$$((p \to q) \land (p \land q \to r))^{1}$$

$$(p \to q)^{1}$$

$$(p \land q \to r)^{1}$$

$$(p \to q)^{1}$$

$$(\neg((p \to q) \land (p \land q \to r) \to (\neg p \to r)))^{1}$$

$$((p \to q) \land (p \land q \to r) \to (\neg p \to r))^{0}$$

$$((p \to q) \land (p \land q \to r))^{1}$$

$$(p \to q)^{1}$$

$$(p \land q \to r)^{1}$$

$$(p \land q \to r)^{1}$$

$$(p \land q \to r)^{1}$$

$$r^{0}$$

$$q^{1}$$

$$p^{0}$$

$$(\neg((p \to q) \land (p \land q \to r) \to (\neg p \to r)))^{1}$$

$$((p \to q) \land (p \land q \to r) \to (\neg p \to r))^{0}$$

$$((p \to q) \land (p \land q \to r))^{1}$$

$$(p \to q)^{1}$$

$$(p \land q \to r)^{1}$$

$$(p \land q \to r)^{1}$$

$$(\neg p)^{1}$$

$$r^{0}$$

$$q^{1}$$

$$p^{0}$$

$$(\neg((p \to q) \land (p \land q \to r) \to (\neg p \to r)))^{1}$$

$$((p \to q) \land (p \land q \to r) \to (\neg p \to r))^{0}$$

$$((p \to q) \land (p \land q \to r))^{1}$$

$$(p \to q)^{1}$$

$$(p \land q \to r)^{1}$$

$$(p \land q \to r)^{1}$$

$$(\neg p)^{1}$$

$$r^{0}$$

$$q^{1}$$

$$p^{0}$$

$$q^{1}$$

$$p^{0}$$

$$r^{1}$$

$$(\neg((p \to q) \land (p \land q \to r) \to (\neg p \to r)))^{1}$$

$$((p \to q) \land (p \land q \to r) \to (\neg p \to r))^{0}$$

$$((p \to q) \land (p \land q \to r))^{1}$$

$$(p \to q)^{1}$$

$$(p \land q \to r)^{1}$$

$$(p \land q \to r)^{1}$$

$$(\neg p)^{1}$$

$$r^{0}$$

$$q^{1}$$

$$p^{0}$$

$$r^{0}$$

$$r^{1}$$

$$(\neg((p \to q) \land (p \land q \to r) \to (\neg p \to r)))^{1}$$

$$((p \to q) \land (p \land q \to r) \to (\neg p \to r))^{0}$$

$$((p \to q) \land (p \land q \to r))^{1}$$

$$(p \to q)^{1}$$

$$(p \land q \to r)^{1}$$

$$(\neg p)^{1}$$

$$r^{0}$$

$$p^{0}$$

$$q^{1}$$

$$p^{0}$$

$$r^{1}$$

The leftmost branch is complete (nothing new can be added)

Build a complete branch

Select the signed atoms on it

$$\{r\mapsto 0, p\mapsto 0, q\mapsto \cdots\}$$

Build a complete branch

Select the signed atoms on it

$$\{r\mapsto 0, p\mapsto 0, q\mapsto \cdots\}$$

Build a complete branch

Select the signed atoms on it

$$\{r\mapsto 0, p\mapsto 0, q\mapsto \cdots\}$$

Build a complete branch

Select the signed atoms on it

$$\{r\mapsto 0, p\mapsto 0, q\mapsto \cdots\}$$

A formula A is satisfiable iff a tableau for A^1 contains a complete open branch (and iff every tableau for A^1 contains a complete open branch)

A formula A is valid iff there is a closed a tableau for A^0 (and iff every tableau for A^0 is closed)

Formulas A and B are equivalent iff there is a closed tableau for $(A \leftrightarrow B)^0$ (and iff every tableau for $(A \leftrightarrow B)^0$ is closed)

A formula A is satisfiable iff a tableau for A^1 contains a complete open branch (and iff every tableau for A^1 contains a complete open branch)

A formula A is valid iff there is a closed a tableau for A^0 (and iff every tableau for A^0 is closed)

Formulas A and B are equivalent iff there is a closed tableau for $(A \leftrightarrow B)^0$ (and iff every tableau for $(A \leftrightarrow B)^0$ is closed)

A formula A is satisfiable iff a tableau for A^1 contains a complete open branch (and iff every tableau for A^1 contains a complete open branch)

A formula A is valid iff there is a closed a tableau for A^0 (and iff every tableau for A^0 is closed)

Formulas A and B are equivalent iff there is a closed tableau for $(A \leftrightarrow B)^0$ (and iff every tableau for $(A \leftrightarrow B)^0$ is closed)

A formula A is satisfiable iff a tableau for A^1 contains a complete open branch (and iff every tableau for A^1 contains a complete open branch)

A formula A is valid iff there is a closed a tableau for A^0 (and iff every tableau for A^0 is closed)

Formulas A and B are equivalent iff there is a closed tableau for $(A \leftrightarrow B)^0$ (and iff every tableau for $(A \leftrightarrow B)^0$ is closed)