# CS:4350 Logic in Computer Science 

## Semantic Tableaux

Cesare Tinelli

Spring 2021

The
University
OF lowA

## Credits

These slides are largely based on slides originally developed by Andrei Voronkov at the University of Manchester. Adapted by permission.

## Outline

Semantic Tableaux

## Signed Formula

- Signed formula: an expression $A^{b}$, where $A$ is a formula and $b$ a boolean value


## Signed Formula

- Signed formula: an expression $A^{b}$, where $A$ is a formula and $b$ a boolean value
- A signed formula $A^{b}$ is satisfied by an interpretation $\mathcal{I}$, written $\mathcal{I} \models A^{b}$, if $\mathcal{I}(A)=b$; it is falsified otherwise


## Signed Formula

- Signed formula: an expression $A^{b}$, where $A$ is a formula and $b$ a boolean value
- A signed formula $A^{b}$ is satisfied by an interpretation $\mathcal{I}$, written $\mathcal{I} \models A^{b}$, if $\mathcal{I}(A)=b$; it is falsified otherwise
- If $\mathcal{I}=A^{b}$, we also say that $\mathcal{I}$ is a model of $A^{b}$
- A signed formula is satisfiable if it has a model


## Signed Formula

- Signed formula: an expression $A^{b}$, where $A$ is a formula and $b$ a boolean value
- A signed formula $A^{b}$ is satisfied by an interpretation $\mathcal{I}$, written $\mathcal{I} \models A^{b}$, if $\mathcal{I}(A)=b$; it is falsified otherwise
- If $\mathcal{I} \vDash A^{b}$, we also say that $\mathcal{I}$ is a model of $A^{b}$
- A signed formula is satisfiable if it has a model


## Note:

1. For every formula $A$ and interpretation $I$ exactly one of the signed formulas $A^{1}$ and $A^{0}$ is satisfied by $I$

## Signed Formula

- Signed formula: an expression $A^{b}$, where $A$ is a formula and $b$ a boolean value
- A signed formula $A^{b}$ is satisfied by an interpretation $\mathcal{I}$, written $\mathcal{I} \models A^{b}$, if $\mathcal{I}(A)=b$; it is falsified otherwise
- If $\mathcal{I} \mid=A^{b}$, we also say that $\mathcal{I}$ is a model of $A^{b}$
- A signed formula is satisfiable if it has a model


## Note:

1. For every formula $A$ and interpretation $I$ exactly one of the signed formulas $A^{1}$ and $A^{0}$ is satisfied by $I$
2. A formula $A$ is satisfiable iff the signed formula $A^{1}$ is satisfiable

## Signed Formula

- Signed formula: an expression $A^{b}$, where $A$ is a formula and $b$ a boolean value
- A signed formula $A^{b}$ is satisfied by an interpretation $\mathcal{I}$, written $\mathcal{I} \models A^{b}$, if $\mathcal{I}(A)=b$; it is falsified otherwise
- If $\mathcal{I} \mid=A^{b}$, we also say that $\mathcal{I}$ is a model of $A^{b}$
- A signed formula is satisfiable if it has a model


## Note:

1. For every formula $A$ and interpretation $\mathcal{I}$ exactly one of the signed formulas $A^{1}$ and $A^{0}$ is satisfied by $I$
2. A formula $A$ is satisfiable iff the signed formula $A^{1}$ is satisfiable
3. A formula $A$ is falsifiable iff the signed formula $A^{0}$ is satisfiable

## How to find a model of a signed formula?

Example: $A \wedge B$

|  |  | $B$ | $B$ |
| :---: | :---: | :---: | :---: |
|  | $\wedge$ | 0 | 1 |
| $A$ | 0 | 0 | 0 |
| $A$ | 1 | 0 | 1 |

## How to find a model of a signed formula?

Example: $A \wedge B$

|  |  | $B$ | $B$ |
| :---: | :---: | :---: | :---: |
|  | $\wedge$ | 0 | 1 |
| $A$ | 0 | 0 | 0 |
| $A$ | 1 | 0 | 1 |

$(A \wedge B)^{1}$ : We can make $A \wedge B$ true iff we make $A$ true $\left(A^{1}\right)$ and $B$ true $\left(B^{1}\right)$

## How to find a model of a signed formula?

Example: $A \wedge B$

|  |  | $B$ | $B$ |
| :---: | :---: | :---: | :---: |
|  | $\wedge$ | 0 | 1 |
| $A$ | 0 | 0 | 0 |
| $A$ | 1 | 0 | 1 |

$(A \wedge B)^{1}$ : We can make $A \wedge B$ true iff we make $A$ true $\left(A^{1}\right)$ and $B$ true ( $B^{1}$ )
$(A \wedge B)^{0}$ : We can make $A \wedge B$ false iff we make $A$ false $\left(A^{0}\right)$ or $B$ false $\left(B^{0}\right)$

## How to find a model of a signed formula?

Example: $A \wedge B$

|  |  | $B$ | $B$ |
| :---: | :---: | :---: | :---: |
|  | $\wedge$ | 0 | 1 |
| $A$ | 0 | 0 | 0 |
| $A$ | 1 | 0 | 1 |

$(A \wedge B)^{1}$ : We can make $A \wedge B$ true iff we make $A$ true $\left(A^{1}\right)$ and $B$ true ( $B^{1}$ )
$(A \wedge B)^{0}$ : We can make $A \wedge B$ false iff we make $A$ false $\left(A^{0}\right)$ or $B$ false $\left(B^{0}\right)$
Example: $A \rightarrow B$

|  |  | $B$ | $B$ |
| :---: | :---: | :---: | :---: |
|  | $\rightarrow$ | 0 | 1 |
| $A$ | 0 | 1 | 1 |
| $A$ | 1 | 0 | 1 |

## How to find a model of a signed formula?

Example: $A \wedge B$

|  |  | $B$ | $B$ |
| :---: | :---: | :---: | :---: |
|  | $\wedge$ | 0 | 1 |
| $A$ | 0 | 0 | 0 |
| $A$ | 1 | 0 | 1 |

$(A \wedge B)^{1}$ : We can make $A \wedge B$ true iff we make $A$ true $\left(A^{1}\right)$ and $B$ true ( $B^{1}$ )
$(A \wedge B)^{0}$ : We can make $A \wedge B$ false iff we make $A$ false $\left(A^{0}\right)$ or $B$ false $\left(B^{0}\right)$
Example: $A \rightarrow B$

|  |  | $B$ | $B$ |
| :---: | :---: | :---: | :---: |
|  | $\rightarrow$ | 0 | 1 |
| $A$ | 0 | 1 | 1 |
| $A$ | 1 | 0 | 1 |

$(A \rightarrow B)^{1}$ : We can make $(A \rightarrow B)$ true iff we make $A$ false $\left(A^{0}\right)$ or $B$ true $\left(B^{1}\right)$

## How to find a model of a signed formula?

Example: $A \wedge B$

|  |  | $B$ | $B$ |
| :---: | :---: | :---: | :---: |
|  | $\wedge$ | 0 | 1 |
| $A$ | 0 | 0 | 0 |
| $A$ | 1 | 0 | 1 |

$(A \wedge B)^{1}$ : We can make $A \wedge B$ true iff we make $A$ true $\left(A^{1}\right)$ and $B$ true ( $B^{1}$ )
$(A \wedge B)^{0}$ : We can make $A \wedge B$ false iff we make $A$ false $\left(A^{0}\right)$ or $B$ false $\left(B^{0}\right)$
Example: $A \rightarrow B$

|  |  | $B$ | $B$ |
| :---: | :---: | :---: | :---: |
|  | $\rightarrow$ | 0 | 1 |
| $A$ | 0 | 1 | 1 |
| $A$ | 1 | 0 | 1 |

$(A \rightarrow B)^{1}$ : We can make $(A \rightarrow B)$ true iff we make $A$ false $\left(A^{0}\right)$ or $B$ true $\left(B^{1}\right)$
$(A \rightarrow B)^{0}$ : We can make $(A \rightarrow B)$ false iff we make $A$ true $\left(A^{1}\right)$ and $B$ false $\left(B^{0}\right)$

## Tableau

The search for a model of a formula can be expressed by an AND-OR tree

## Tableau

The search for a model of a formula can be expressed by an AND-OR tree
Tableau: a tree having signed formulas at nodes (plural: tableaux)

## Tableau

The search for a model of a formula can be expressed by an AND-OR tree
Tableau: a tree having signed formulas at nodes (plural: tableaux)
A tableau for a signed formula $A^{b}$ has $A^{b}$ as a root

## Tableau

The search for a model of a formula can be expressed by an AND-OR tree
Tableau: a tree having signed formulas at nodes (plural: tableaux)
A tableau for a signed formula $A^{b}$ has $A^{b}$ as a root
Alternatively, we can regard a tableau as a collection of branches; each branch is a set of signed formulas

## Tableau

The search for a model of a formula can be expressed by an AND-OR tree
Tableau: a tree having signed formulas at nodes (plural: tableaux)
A tableau for a signed formula $A^{b}$ has $A^{b}$ as a root
Alternatively, we can regard a tableau as a collection of branches; each branch is a set of signed formulas

Notation for branches: $A_{1}^{b_{1}}|\cdots| A_{n}^{b_{n}}$

## Constructing a semantic tableau

$$
(\neg(q \vee p \rightarrow p \vee q))^{1}
$$

Rules to grow a tree branch:

$$
\begin{array}{rll}
\left(A_{1} \vee A_{2}\right)^{0} & \rightsquigarrow A_{1}^{0}, A_{2}^{0} \\
\left(A_{1} \vee A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{1} \mid A_{2}^{1} \\
\left(A_{1} \rightarrow A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{1}, A_{2}^{0} \\
\left(\neg A_{1}\right)^{1} & \rightsquigarrow & A_{1}^{0}
\end{array}
$$

## Constructing a semantic tableau

$$
(\neg(q \vee p \rightarrow p \vee q))^{1}
$$

Rules to grow a tree branch:

$$
\begin{array}{rll}
\left(A_{1} \vee A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{0}, A_{2}^{0} \\
\left(A_{1} \vee A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{1} \mid A_{2}^{1} \\
\left(A_{1} \rightarrow A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{1}, A_{2}^{0} \\
\left(\neg A_{1}\right)^{1} & \rightsquigarrow & A_{1}^{0}
\end{array}
$$

## Constructing a semantic tableau

$$
\begin{gathered}
(\neg(q \vee p \rightarrow p \vee q))^{1} \\
(q \vee p \rightarrow p \vee q)^{0}
\end{gathered}
$$

Rules to grow a tree branch:

$$
\begin{array}{rll}
\left(A_{1} \vee A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{0}, A_{2}^{0} \\
\left(A_{1} \vee A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{1} \mid A_{2}^{1} \\
\left(A_{1} \rightarrow A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{1}, A_{2}^{0} \\
\left(\neg A_{1}\right)^{1} & \rightsquigarrow & A_{1}^{0}
\end{array}
$$

## Constructing a semantic tableau

$$
\begin{gathered}
(\neg(q \vee p \rightarrow p \vee q))^{1} \\
(q \vee p \rightarrow p \vee q)^{0}
\end{gathered}
$$

Rules to grow a tree branch:

$$
\begin{array}{rll}
\left(A_{1} \vee A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{0}, A_{2}^{0} \\
\left(A_{1} \vee A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{1} \mid A_{2}^{1} \\
\left(A_{1} \rightarrow A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{1}, A_{2}^{0} \\
\left(\neg A_{1}\right)^{1} & \rightsquigarrow & A_{1}^{0}
\end{array}
$$

## Constructing a semantic tableau

$$
\begin{gathered}
(\neg(q \vee p \rightarrow p \vee q))^{1} \\
(q \vee p \rightarrow p \vee q)^{0} \\
\mid \\
(q \vee p)^{1} \\
(p \vee q)^{0}
\end{gathered}
$$

Rules to grow a tree branch:

$$
\begin{array}{rll}
\left(A_{1} \vee A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{0}, A_{2}^{0} \\
\left(A_{1} \vee A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{1} \mid A_{2}^{1} \\
\left(A_{1} \rightarrow A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{1}, A_{2}^{0} \\
\left(\neg A_{1}\right)^{1} & \rightsquigarrow & A_{1}^{0}
\end{array}
$$

## Constructing a semantic tableau

$$
\begin{gathered}
(\neg(q \vee p \rightarrow p \vee q))^{1} \\
(q \vee p \rightarrow p \vee q)^{0} \\
\mid \\
(q \vee p)^{1} \\
(p \vee q)^{0}
\end{gathered}
$$

Rules to grow a tree branch:

$$
\begin{array}{rll}
\left(A_{1} \vee A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{0}, A_{2}^{0} \\
\left(A_{1} \vee A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{1} \mid A_{2}^{1} \\
\left(A_{1} \rightarrow A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{1}, A_{2}^{0} \\
\left(\neg A_{1}\right)^{1} & \rightsquigarrow & A_{1}^{0}
\end{array}
$$

## Constructing a semantic tableau

$$
\begin{gathered}
(\neg(q \vee p \rightarrow p \vee q))^{1} \\
(q \vee p \rightarrow p \vee q)^{0} \\
\mid \\
(q \vee p)^{1} \\
(p \vee q)^{0} \\
\mid \\
p^{0} \\
q^{0}
\end{gathered}
$$

Rules to grow a tree branch:

$$
\begin{array}{rll}
\left(A_{1} \vee A_{2}\right)^{0} & \rightsquigarrow A_{1}^{0}, A_{2}^{0} \\
\left(A_{1} \vee A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{1} \mid A_{2}^{1} \\
\left(A_{1} \rightarrow A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{1}, A_{2}^{0} \\
\left(\neg A_{1}\right)^{1} & \rightsquigarrow & A_{1}^{0}
\end{array}
$$

## Constructing a semantic tableau

$$
\begin{gathered}
(\neg(q \vee p \rightarrow p \vee q))^{1} \\
(q \vee p \rightarrow p \vee q)^{0} \\
\mid \\
(q \vee p)^{1} \\
(p \vee q)^{0} \\
\mid \\
p^{0} \\
q^{0}
\end{gathered}
$$

Rules to grow a tree branch:

$$
\begin{array}{rll}
\left(A_{1} \vee A_{2}\right)^{0} & \rightsquigarrow A_{1}^{0}, A_{2}^{0} \\
\left(A_{1} \vee A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{1} \mid A_{2}^{1} \\
\left(A_{1} \rightarrow A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{1}, A_{2}^{0} \\
\left(\neg A_{1}\right)^{1} & \rightsquigarrow & A_{1}^{0}
\end{array}
$$

## Constructing a semantic tableau



Rules to grow a tree branch:

$$
\begin{array}{rll}
\left(A_{1} \vee A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{0}, A_{2}^{0} \\
\left(A_{1} \vee A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{1} \mid A_{2}^{1} \\
\left(A_{1} \rightarrow A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{1}, A_{2}^{0} \\
\left(\neg A_{1}\right)^{1} & \rightsquigarrow & A_{1}^{0}
\end{array}
$$

## Constructing a semantic tableau



Rules to grow a tree branch:

$$
\begin{array}{rll}
\left(A_{1} \vee A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{0}, A_{2}^{0} \\
\left(A_{1} \vee A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{1} \mid A_{2}^{1} \\
\left(A_{1} \rightarrow A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{1}, A_{2}^{0} \\
\left(\neg A_{1}\right)^{1} & \rightsquigarrow & A_{1}^{0}
\end{array}
$$

## Constructing a semantic tableau



## Branch Expansion Rules

$$
\begin{aligned}
\left(A_{1} \wedge \ldots \wedge A_{n}\right)^{0} & \rightsquigarrow A_{1}^{0}|\ldots| A_{n}^{0} \\
\left(A_{1} \wedge \ldots \wedge A_{n}\right)^{1} & \rightsquigarrow A_{1}^{1}, \ldots, A_{n}^{1} \\
\left(A_{1} \vee \ldots \vee A_{n}\right)^{0} & \rightsquigarrow A_{1}^{0}, \ldots, A_{n}^{0} \\
\left(A_{1} \vee \ldots \vee A_{n}\right)^{1} & \rightsquigarrow A_{1}^{1}|\ldots| A_{n}^{1} \\
\left(A_{1} \rightarrow A_{2}\right)^{0} & \rightsquigarrow A_{1}^{1}, A_{2}^{0} \\
\left(A_{1} \rightarrow A_{2}\right)^{1} & \rightsquigarrow A_{1}^{0} \mid A_{2}^{1} \\
(\neg A)^{0} & \rightsquigarrow A^{1} \\
(\neg A)^{1} & \rightsquigarrow A^{0} \\
\left(A_{1} \leftrightarrow A_{2}\right)^{0} & \rightsquigarrow A_{1}^{0}, A_{2}^{1} \mid A_{1}^{1}, A_{2}^{0} \\
\left(A_{1} \leftrightarrow A_{2}\right)^{1} & \rightsquigarrow A_{1}^{0}, A_{2}^{0} \mid A_{1}^{1}, A_{2}^{1}
\end{aligned}
$$

## Open and closed branches

A branch is closed in any of the following cases:

- it contains both $p^{0}$ and $p^{1}$ for some atom $p$


## Open and closed branches

A branch is closed in any of the following cases:

- it contains both $p^{0}$ and $p^{1}$ for some atom $p$
- it contains $T^{0}$
- it contains $\perp^{1}$


## Open and closed branches

A branch is closed in any of the following cases:

- it contains both $p^{0}$ and $p^{1}$ for some atom $p$
- it contains $T^{0}$
- it contains $\perp^{1}$

Note: The formulas on a closed branch are jointly unsatisfiable

## Open and closed branches

A branch is closed in any of the following cases:

- it contains both $p^{0}$ and $p^{1}$ for some atom $p$
- it contains $T^{0}$
- it contains $\perp^{1}$

Note: The formulas on a closed branch are jointly unsatisfiable
A branch is complete (or saturated) if it cannot be expanded further without adding a formula already in it

## Open and closed branches

A branch is closed in any of the following cases:

- it contains both $p^{0}$ and $p^{1}$ for some atom $p$
- it contains $T^{0}$
- it contains $\perp^{1}$

Note: The formulas on a closed branch are jointly unsatisfiable
A branch is complete (or saturated) if it cannot be expanded further without adding a formula already in it

Note: From the signed atoms of a complete branch it is possible to construct a model of the root formula

Example 2

$$
(\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))^{1}
$$

$$
\begin{array}{rll}
\left(A_{1} \wedge A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{0} \mid A_{2}^{0} \\
\left(A_{1} \wedge A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{1}, A_{2}^{1} \\
\left(A_{1} \rightarrow A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{1}, A_{2}^{0} \\
\left(A_{1} \rightarrow A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{0} \mid A_{2}^{1} \\
\left(\neg A_{1}\right)^{1} & \rightsquigarrow & A_{1}^{0}
\end{array}
$$

Example 2

$$
(\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))^{1}
$$

$$
\begin{array}{rll}
\left(A_{1} \wedge A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{0} \mid A_{2}^{0} \\
\left(A_{1} \wedge A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{1}, A_{2}^{1} \\
\left(A_{1} \rightarrow A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{1}, A_{2}^{0} \\
\left(A_{1} \rightarrow A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{0} \mid A_{2}^{1} \\
\left(\neg A_{1}\right)^{1} & \rightsquigarrow & A_{1}^{0}
\end{array}
$$

Example 2

$$
\begin{gathered}
(\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))^{1} \\
\mid \\
((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))^{0}
\end{gathered}
$$

$$
\begin{array}{rll}
\left(A_{1} \wedge A_{2}\right)^{0} & \rightsquigarrow A_{1}^{0} \mid A_{2}^{0} \\
\left(A_{1} \wedge A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{1}, A_{2}^{1} \\
\left(A_{1} \rightarrow A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{1}, A_{2}^{0} \\
\left(A_{1} \rightarrow A_{2}\right)^{1} & \rightsquigarrow A_{1}^{0} \mid A_{2}^{1} \\
\left(\neg A_{1}\right)^{1} & \rightsquigarrow A_{1}^{0}
\end{array}
$$

Example 2

$$
\begin{gathered}
(\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))^{1} \\
((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))^{0}
\end{gathered}
$$

$$
\begin{array}{rlll}
\left(A_{1} \wedge A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{0} \mid A_{2}^{0} \\
\left(A_{1} \wedge A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{1}, A_{2}^{1} \\
\left(A_{1} \rightarrow A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{1}, A_{2}^{0} \\
\left(A_{1}\right. & \left.\rightarrow A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{0} \mid A_{2}^{1} \\
\left(\neg A_{1}\right)^{1} & \rightsquigarrow & A_{1}^{0}
\end{array}
$$

Example 2

$$
\begin{gathered}
(\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))^{1} \\
\quad \mid \\
((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))^{0} \\
\quad \mid \\
((p \rightarrow q) \wedge(p \wedge g \rightarrow r))^{1} \\
(\neg p \rightarrow r)^{g}
\end{gathered}
$$

$$
\begin{array}{rll}
\left(A_{1} \wedge A_{2}\right)^{0} & \rightsquigarrow A_{1}^{0} \mid A_{2}^{0} \\
\left(A_{1} \wedge A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{1}, A_{2}^{1} \\
\left(A_{1} \rightarrow A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{1}, A_{2}^{0} \\
\left(A_{1} \rightarrow A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{0} \mid A_{2}^{1} \\
\left(\neg A_{1}\right)^{1} & \rightsquigarrow & A_{1}^{0}
\end{array}
$$

Example 2

$$
\begin{gathered}
(\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))^{1} \\
\quad \mid \\
((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))^{0} \\
\mid \\
\quad((p \rightarrow q) \wedge(p \wedge g \rightarrow r))^{1}
\end{gathered}
$$

$$
\begin{array}{rll}
\left(A_{1} \wedge A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{0} \mid A_{2}^{0} \\
\left(A_{1} \wedge A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{1}, A_{2}^{1} \\
\left(A_{1} \rightarrow A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{1}, A_{2}^{0} \\
\left(A_{1} \rightarrow A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{0} \mid A_{2}^{1} \\
\left(\neg A_{1}\right)^{1} & \rightsquigarrow & A_{1}^{0}
\end{array}
$$

Example 2

$$
\begin{array}{ll}
(\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))^{1} \\
((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))^{0} & \\
\begin{array}{clll}
\mid & & \\
((p \rightarrow q) \wedge(p \wedge q \rightarrow r))^{1} & \left(A_{1} \wedge A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{0} \mid A_{2}^{0} \\
(\neg p \rightarrow r)^{1} & \left(A_{1} \wedge A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{1}, A_{2}^{1} \\
\mid & \left(A_{1} \rightarrow A_{2}\right)^{0} & \rightsquigarrow A_{1}^{1}, A_{2}^{0} \\
(p \rightarrow q)^{1} & \left(A_{1} \rightarrow A_{2}\right)^{1} & \rightsquigarrow A_{1}^{0} \mid A_{2}^{1} \\
(p \wedge q \rightarrow r)^{1} & & \left(\neg A_{1}\right)^{1} & \rightsquigarrow A_{1}^{0}
\end{array}
\end{array}
$$

Example 2

$$
\begin{aligned}
& (\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))^{1} \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))^{0} \\
& \begin{array}{c}
((p \rightarrow q) \wedge(p \wedge g \rightarrow r))^{1} \\
(\neg p \rightarrow r)^{d} \\
\mid \\
(p \rightarrow q)^{1} \\
(p \wedge q \rightarrow r)^{1}
\end{array} \\
& \left(A_{1} \wedge A_{2}\right)^{0} \quad \rightsquigarrow \quad A_{1}^{0} \mid A_{2}^{0} \\
& \left(A_{1} \wedge A_{2}\right)^{1} \quad \rightsquigarrow \quad A_{1}^{1}, A_{2}^{1} \\
& \left(A_{1} \rightarrow A_{2}\right)^{0} \quad \rightsquigarrow \quad A_{1}^{1}, A_{2}^{0} \\
& \left(A_{1} \rightarrow A_{2}\right)^{1} \rightsquigarrow A_{1}^{0} \mid A_{2}^{1} \\
& \left(\neg A_{1}\right)^{1} \quad \rightsquigarrow A_{1}^{0}
\end{aligned}
$$

Example 2

$$
\begin{aligned}
& (\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))^{1} \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))^{0} \\
& \left((p \rightarrow q) \wedge \underset{(\neg p \xrightarrow{(p)} \wedge g \rightarrow r))^{\prime}}{(\rightarrow q)}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left(A_{1} \wedge A_{2}\right)^{0} \quad \rightsquigarrow A_{1}^{0} \mid A_{2}^{0} \\
& \left(A_{1} \wedge A_{2}\right)^{1} \rightsquigarrow A_{1}^{1}, A_{2}^{1} \\
& \left(A_{1} \rightarrow A_{2}\right)^{0} \quad \rightsquigarrow A_{1}^{1}, A_{2}^{0} \\
& \left(A_{1} \rightarrow A_{2}\right)^{1} \rightsquigarrow A_{1}^{0} \mid A_{2}^{1} \\
& \left(\neg A_{1}\right)^{1} \rightsquigarrow A_{1}^{0}
\end{aligned}
$$

Example 2

$$
\begin{array}{ll}
(\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))^{1} \\
\mid \\
((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))^{0} \\
\mid & \\
((p \rightarrow q) \wedge(p \wedge q \rightarrow r))^{1} & \left(A_{1} \wedge A_{2}\right)^{0} \rightsquigarrow A_{1}^{0} \mid A_{2}^{0} \\
(\neg p \rightarrow r)^{g} \\
\mid & \left(A_{1} \wedge A_{2}\right)^{1} \rightsquigarrow A_{1}^{1}, A_{2}^{1} \\
(p \rightarrow q)^{1} \\
(p \wedge q \rightarrow r)^{1} & \left(A_{1} \rightarrow A_{2}\right)^{0} \rightsquigarrow A_{1}^{1}, A_{2}^{0} \\
\left\lvert\, \begin{array}{cc}
(\neg p)^{1} \\
r^{0}
\end{array}\right. & \left(A_{1} \rightarrow A_{2}\right)^{1} \rightsquigarrow A_{1}^{0} \mid A_{2}^{1} \\
\left(\neg A_{1}\right)^{1} & \rightsquigarrow A_{1}^{0}
\end{array}
$$

Example 2

$$
\begin{gathered}
(\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))^{1} \\
((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))^{0} \\
\mid \\
((p \rightarrow q) \wedge(p \wedge q \rightarrow r))^{1} \\
(\neg p \rightarrow r)^{1} \\
\mid \\
(p \rightarrow q)^{1} \\
(p \wedge q \rightarrow r)^{1}
\end{gathered}
$$

$$
\left(A_{1} \wedge A_{2}\right)^{0} \quad \rightsquigarrow \quad A_{1}^{0} \mid A_{2}^{0}
$$

$$
\left(A_{1} \wedge A_{2}\right)^{1} \leadsto A_{1}^{1}, A_{2}^{1}
$$

$$
\left(A_{1} \rightarrow A_{2}\right)^{0} \quad \rightsquigarrow \quad A_{1}^{1}, A_{2}^{0}
$$

$$
\left(A_{1} \rightarrow A_{2}\right)^{1} \rightsquigarrow A_{1}^{0} \mid A_{2}^{1}
$$

$$
\left(\neg A_{1}\right)^{1} \leadsto A_{1}^{0}
$$

Example 2

$$
\begin{gathered}
(\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))^{1} \\
((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))^{0} \\
\mid \\
((p \rightarrow q) \wedge(p \wedge q \rightarrow r))^{1} \\
(\neg p \rightarrow r)^{9} \\
\mid \\
(p \rightarrow q)^{1} \\
(p \wedge q \rightarrow r)^{1} \\
\mid \\
(\neg p)^{1} \\
r^{0} \\
p^{0}
\end{gathered}
$$

$$
\begin{array}{rll}
\left(A_{1} \wedge A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{0} \mid A_{2}^{0} \\
\left(A_{1} \wedge A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{1}, A_{2}^{1} \\
\left(A_{1} \rightarrow A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{1}, A_{2}^{0} \\
\left(A_{1} \rightarrow A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{0} \mid A_{2}^{1} \\
\left(\neg A_{1}\right)^{1} & \rightsquigarrow & A_{1}^{0}
\end{array}
$$

Example 2

$$
\begin{aligned}
& (\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))^{1} \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))^{0} \\
& \left((p \rightarrow q) \wedge \underset{\left.\left.(\neg p \xrightarrow{(p} \wedge)^{g} \rightarrow r\right)\right)^{1}}{ }\right. \\
& (p \wedge q \rightarrow r)^{\prime} \\
& 1 \\
& \left(A_{1} \wedge A_{2}\right)^{0} \quad \rightsquigarrow A_{1}^{0} \mid A_{2}^{0} \\
& \left(A_{1} \wedge A_{2}\right)^{1} \rightsquigarrow A_{1}^{1}, A_{2}^{1} \\
& \left(A_{1} \rightarrow A_{2}\right)^{0} \quad \rightsquigarrow A_{1}^{1}, A_{2}^{0} \\
& \left(A_{1} \rightarrow A_{2}\right)^{1} \rightsquigarrow A_{1}^{0} \mid A_{2}^{1} \\
& \left(\neg A_{1}\right)^{1} \rightsquigarrow A_{1}^{0}
\end{aligned}
$$

Example 2

$$
\begin{aligned}
& (\neg((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r)))^{1} \\
& ((p \rightarrow q) \wedge(p \wedge q \rightarrow r) \rightarrow(\neg p \rightarrow r))^{0} \\
& \underset{\left(\neg p \xrightarrow{\rightarrow r)^{\prime}}\right.}{((p \rightarrow r))^{\prime}} \underset{\mid}{ } \\
& \left({ }_{(p \wedge q}^{(p \rightarrow r)^{1}}\right. \\
& \left(A_{1} \wedge A_{2}\right)^{0} \quad \rightsquigarrow A_{1}^{0} \mid A_{2}^{0} \\
& \left(A_{1} \wedge A_{2}\right)^{1} \rightsquigarrow A_{1}^{1}, A_{2}^{1} \\
& \left(A_{1} \rightarrow A_{2}\right)^{0} \quad \rightsquigarrow \quad A_{1}^{1}, A_{2}^{0} \\
& \left(A_{1} \rightarrow A_{2}\right)^{1} \rightsquigarrow A_{1}^{0} \mid A_{2}^{1} \\
& \left(\neg A_{1}\right)^{1} \rightsquigarrow A_{1}^{0}
\end{aligned}
$$

Example 2


$$
\begin{array}{rll}
\left(A_{1} \wedge A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{0} \mid A_{2}^{0} \\
\left(A_{1} \wedge A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{1}, A_{2}^{1} \\
\left(A_{1} \rightarrow A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{1}, A_{2}^{0} \\
\left(A_{1} \rightarrow A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{0} \mid A_{2}^{1} \\
\left(\neg A_{1}\right)^{1} & \rightsquigarrow & A_{1}^{0}
\end{array}
$$

Example 2


$$
\begin{array}{rll}
\left(A_{1} \wedge A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{0} \mid A_{2}^{0} \\
\left(A_{1} \wedge A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{1}, A_{2}^{1} \\
\left(A_{1} \rightarrow A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{1}, A_{2}^{0} \\
\left(A_{1} \rightarrow A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{0} \mid A_{2}^{1} \\
\left(\neg A_{1}\right)^{1} & \rightsquigarrow & A_{1}^{0}
\end{array}
$$

Example 2


$$
\begin{array}{rll}
\left(A_{1} \wedge A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{0} \mid A_{2}^{0} \\
\left(A_{1} \wedge A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{1}, A_{2}^{1} \\
\left(A_{1} \rightarrow A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{1}, A_{2}^{0} \\
\left(A_{1} \rightarrow A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{0} \mid A_{2}^{1} \\
\left(\neg A_{1}\right)^{1} & \rightsquigarrow & A_{1}^{0}
\end{array}
$$

## Example 2



$$
\begin{array}{rll}
\left(A_{1} \wedge A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{0} \mid A_{2}^{0} \\
\left(A_{1} \wedge A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{1}, A_{2}^{1} \\
\left(A_{1} \rightarrow A_{2}\right)^{0} & \rightsquigarrow & A_{1}^{1}, A_{2}^{0} \\
\left(A_{1} \rightarrow A_{2}\right)^{1} & \rightsquigarrow & A_{1}^{0} \mid A_{2}^{1} \\
\left(\neg A_{1}\right)^{1} & \rightsquigarrow & A_{1}^{0}
\end{array}
$$

The leftmost branch is complete (nothing new can be added)

Finding Models Using Tableaux


## Finding Models Using Tableaux



## Finding Models Using Tableaux



Build a complete branch
Select the signed atoms on it

## Finding Models Using Tableaux



Build a complete branch

Select the signed atoms on it

They give us a (possibly partial) model of the root formula:

$$
\{r \mapsto 0, p \mapsto 0, q \mapsto \cdots\}
$$

## Checking Other Properties with Tableaux

A formula $A$ is satisfiable iff a tableau for $A^{1}$ contains a complete open branch (and iff every tableau for $A^{1}$ contains a complete open branch)

## Checking Other Properties with Tableaux

A formula $A$ is satisfiable iff a tableau for $A^{1}$ contains a complete open branch (and iff every tableau for $A^{1}$ contains a complete open branch)

A formula $A$ is valid iff there is a closed a tableau for $A^{0}$ (and iff every tableau for $A^{0}$ is closed)

## Checking Other Properties with Tableaux

A formula $A$ is satisfiable iff a tableau for $A^{1}$ contains a complete open branch (and iff every tableau for $A^{1}$ contains a complete open branch)

A formula $A$ is valid iff there is a closed a tableau for $A^{0}$ (and iff every tableau for $A^{0}$ is closed)

Formulas $A$ and $B$ are equivalent iff there is a closed tableau for $(A \leftrightarrow B)^{0}$ (and iff every tableau for $(A \leftrightarrow B)^{0}$ is closed)

## Checking Other Properties with Tableaux

A formula $A$ is satisfiable iff a tableau for $A^{1}$ contains a complete open branch (and iff every tableau for $A^{1}$ contains a complete open branch)

A formula $A$ is valid iff there is a closed a tableau for $A^{0}$ (and iff every tableau for $A^{0}$ is closed)

Formulas $A$ and $B$ are equivalent iff there is a closed tableau for $(A \leftrightarrow B)^{0}$ (and iff every tableau for $(A \leftrightarrow B)^{0}$ is closed)

A fully expanded tableau for $A^{1}$ gives us all models of $A$

