CS:4350 Logic in Computer Science

Conjunctive Normal Form and DPLL

Cesare Tinelli

Spring 2021

Credits

These slides are largely based on slides originally developed by **Andrei Voronkov** at the University of Manchester. Adapted by permission.

Outline

DPLL

Conjunctive Normal Form
Clausal Form and Definitional Transformation
Unit Propagation
DPLL
Expressing Counting
Sudoku
Loop the Loop

Satisfiability of clauses

The efficiency of splitting algorithms for satisfiability

- can be massively improved in practice
- by first putting the input formula in normal form

A popular satisfiability procedure called DPLL requires formulas in conjunctive normal form

We will see this next

Satisfiability of clauses

The efficiency of splitting algorithms for satisfiability

- can be massively improved in practice
- by first putting the input formula in normal form

A popular satisfiability procedure called DPLL requires formulas in conjunctive normal form

We will see this next

Satisfiability of clauses

The efficiency of splitting algorithms for satisfiability

- can be massively improved in practice
- by first putting the input formula in normal form

A popular satisfiability procedure called DPLL requires formulas in conjunctive normal form

We will see this next

Literals

Literal: an atom p (positive literal) or a negated atom $\neg p$ (negative literal)

The *complement* \overline{L} of a literal L:

$$\overline{L} \stackrel{\text{def}}{=} \begin{cases} \neg L & \text{if } L \text{ is positive} \\ \rho & \text{if } L \text{ has the form } \neg p \end{cases}$$

Note: p and $\neg p$ are each other's complement

Literals

Literal: an atom p (positive literal) or a negated atom $\neg p$ (negative literal)

The *complement* \overline{L} of a literal L:

$$\frac{\mathbf{L}}{\mathbf{L}} \stackrel{\text{def}}{=} \begin{cases}
\neg L & \text{if } L \text{ is positive} \\
p & \text{if } L \text{ has the form } \neg p
\end{cases}$$

Note: p and $\neg p$ are each other's complement

Literals

Literal: an atom p (positive literal) or a negated atom $\neg p$ (negative literal)

The *complement* \overline{L} of a literal L:

$$\frac{\mathbf{L}}{\mathbf{L}} \stackrel{\text{def}}{=} \begin{cases}
\neg L & \text{if } L \text{ is positive} \\
p & \text{if } L \text{ has the form } \neg p
\end{cases}$$

Note: p and $\neg p$ are each other's complement

Clauses

Clause: a disjunction $L_1 \vee ... \vee L_n$ of literals with $n \geq 0$

- *Empty clause* (\square) : when n=0
- *Unit clause*: when n=1
- Horn clause: when it has at most one positive literal

Note:
is false in every interpretation

Clauses

Clause: a disjunction $L_1 \vee ... \vee L_n$ of literals with $n \geq 0$

- *Empty clause* (\square): when n=0
- *Unit clause*: when n = 1
- Horn clause: when it has at most one positive literal

Note:
is false in every interpretation

Clauses

Clause: a disjunction $L_1 \vee ... \vee L_n$ of literals with $n \geq 0$

- *Empty clause* (\square): when n=0
- *Unit clause*: when n = 1
- Horn clause: when it has at most one positive literal

Note: □ is false in every interpretation

Conjunctive Normal Form

A formula A is in *conjunctive normal form*, or simply CNF, if it is either \top or a conjunction of clauses:

$$A = \bigwedge_{i} \bigvee_{j} L_{i,j}$$

A formula B is a conjunctive normal form of a formula A if $B \equiv A$ and B is in CNF

Satisfiability on CNF

Note: An interpretation \mathcal{I}

1. satisfies a formula in CNF

$$A = \bigwedge_{i} \bigvee_{j} L_{i,j}$$

iff it satisfies every clause $C_i = \bigvee_j L_{i,j} \operatorname{in} A$

satisfies a clause

$$C = L_1 \vee \ldots \vee L_n$$

iff it satisfies some (i.e., at least one) literal L_k in C

Satisfiability on CNF

Note: An interpretation \mathcal{I}

1. satisfies a formula in CNF

$$A = \bigwedge_{i} \bigvee_{j} L_{i,j}$$

iff it satisfies every clause $C_i = \bigvee_j L_{i,j} \operatorname{in} A$

2. satisfies a clause

$$C = L_1 \vee \ldots \vee L_n$$

iff it satisfies some (i.e., at least one) literal L_k in C

Any propositional formula can be converted to CNF by the repeated applications of these rewrite rules:

1.
$$A \leftrightarrow B \Rightarrow (\neg A \lor B) \land (\neg B \lor A)$$
2.
$$A \rightarrow B \Rightarrow \neg A \lor B$$
3.
$$\neg (A \land B) \Rightarrow \neg A \lor \neg B$$
4.
$$\neg (A \lor B) \Rightarrow \neg A \land \neg B$$
5.
$$\neg \neg A \Rightarrow A$$
6.
$$(A_1 \land \ldots \land A_m) \lor B_1 \lor \ldots \lor B_n \Rightarrow (A_1 \lor B_1 \lor \ldots \lor B_n) \land (A_m \lor B_1 \lor \ldots \lor B_n)$$

- Contains no ←
- contains no →
- may contain but only applied to atoms
- does not contain \(\) in the scope of \(\)
- (hence) is in CNF

Any propositional formula can be converted to CNF by the repeated applications of these rewrite rules:

1.
$$A \leftrightarrow B \Rightarrow (\neg A \lor B) \land (\neg B \lor A)$$
2.
$$A \rightarrow B \Rightarrow \neg A \lor B$$
3.
$$\neg (A \land B) \Rightarrow \neg A \lor \neg B$$
4.
$$\neg (A \lor B) \Rightarrow \neg A \land \neg B$$
5.
$$\neg \neg A \Rightarrow A$$
6.
$$(A_1 \land \ldots \land A_m) \lor B_1 \lor \ldots \lor B_n \Rightarrow (A_1 \lor B_1 \lor \ldots \lor B_n) \land (A_m \lor B_1 \lor \ldots \lor B_n)$$

- contains no ↔
- contains no —
- may contain but only applied to atoms
- does not contain \(\) in the scope of \(\)
- (hence) is in CNF

Any propositional formula can be converted to CNF by the repeated applications of these rewrite rules:

1.
$$A \leftrightarrow B \Rightarrow (\neg A \lor B) \land (\neg B \lor A)$$
2.
$$A \rightarrow B \Rightarrow \neg A \lor B$$
3.
$$\neg (A \land B) \Rightarrow \neg A \lor \neg B$$
4.
$$\neg (A \lor B) \Rightarrow \neg A \land \neg B$$
5.
$$\neg \neg A \Rightarrow A$$
6.
$$(A_1 \land \ldots \land A_m) \lor B_1 \lor \ldots \lor B_n \Rightarrow (A_1 \lor B_1 \lor \ldots \lor B_n) \land (A_m \lor B_1 \lor \ldots \lor B_n)$$

- contains no \leftrightarrow
- contains no \rightarrow
- may contain ¬ but only applied to atoms
- does not contain \(\) in the scope of \(\)
- (hence) is in CNF

Any propositional formula can be converted to CNF by the repeated applications of these rewrite rules:

1.
$$A \leftrightarrow B \Rightarrow (\neg A \lor B) \land (\neg B \lor A)$$
2.
$$A \rightarrow B \Rightarrow \neg A \lor B$$
3.
$$\neg (A \land B) \Rightarrow \neg A \lor \neg B$$
4.
$$\neg (A \lor B) \Rightarrow \neg A \land \neg B$$
5.
$$\neg \neg A \Rightarrow A$$
6.
$$(A_1 \land \ldots \land A_m) \lor B_1 \lor \ldots \lor B_n \Rightarrow (A_1 \lor B_1 \lor \ldots \lor B_n) \land (A_m \lor B_1 \lor \ldots \lor B_n)$$

- contains no ↔
- ullet contains no o
- may contain ¬ but only applied to atoms
- does not contain ∧ in the scope of ∨
- (hence) is in CNF

Any propositional formula can be converted to CNF by the repeated applications of these rewrite rules:

1.
$$A \leftrightarrow B \Rightarrow (\neg A \lor B) \land (\neg B \lor A)$$
2.
$$A \rightarrow B \Rightarrow \neg A \lor B$$
3.
$$\neg (A \land B) \Rightarrow \neg A \lor \neg B$$
4.
$$\neg (A \lor B) \Rightarrow \neg A \land \neg B$$
5.
$$\neg \neg A \Rightarrow A$$
6.
$$(A_1 \land \dots \land A_m) \lor B_1 \lor \dots \lor B_n \Rightarrow (A_1 \lor B_1 \lor \dots \lor B_n) \land (A_m \lor B_1 \lor \dots \lor B_n)$$

- contains no ↔
- ullet contains no o
- may contain ¬ but only applied to atoms
- does not contain ∧ in the scope of ∨
- (hence) is in CNF

Any propositional formula can be converted to CNF by the repeated applications of these rewrite rules:

1.
$$A \leftrightarrow B \Rightarrow (\neg A \lor B) \land (\neg B \lor A)$$
2.
$$A \rightarrow B \Rightarrow \neg A \lor B$$
3.
$$\neg (A \land B) \Rightarrow \neg A \lor \neg B$$
4.
$$\neg (A \lor B) \Rightarrow \neg A \land \neg B$$
5.
$$\neg \neg A \Rightarrow A$$
6.
$$(A_1 \land \dots \land A_m) \lor B_1 \lor \dots \lor B_n \Rightarrow (A_1 \lor B_1 \lor \dots \lor B_n) \land (A_m \lor B_1 \lor \dots \lor B_n)$$

- contains no ↔
- ullet contains no o
- may contain ¬ but only applied to atoms
- does not contain \wedge in the scope of \vee
- (hence) is in CNF

$$\neg ((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (p \rightarrow r))$$

$$\neg (\neg ((p \rightarrow q) \land (p \land q \rightarrow r)) \lor (p \rightarrow r)) \Rightarrow$$

$$\neg ((p \rightarrow q) \land (p \land q \rightarrow r)) \land \neg (p \rightarrow r) \Rightarrow$$

$$(p \rightarrow q) \land (p \land q \rightarrow r) \land \neg (p \rightarrow r) \Rightarrow$$

$$(p \rightarrow q) \land (p \land q \rightarrow r) \land \neg (p \rightarrow r) \Rightarrow$$

$$(p \rightarrow q) \land (p \land q \rightarrow r) \land \neg p \land \neg r \Rightarrow$$

$$(p \rightarrow q) \land (p \land q \rightarrow r) \land p \land \neg r \Rightarrow$$

$$(p \rightarrow q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r$$

$$(\neg p \lor q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r$$

```
A \leftrightarrow B \Rightarrow (\neg A \lor B) \land (\neg B \lor A)
A \rightarrow B \Rightarrow \neg A \lor B
\neg (A \land B) \Rightarrow \neg A \lor \neg B
\neg (A \lor B) \Rightarrow \neg A \land \neg B
\neg \neg A \Rightarrow A
(A_1 \land \dots \land A_m) \qquad (A_1 \lor B_1 \lor \dots \lor B_n) \land (A_m \lor B_1 \lor \dots \lor B_n)
```

```
\neg((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (p \rightarrow r)) \Rightarrow
```

```
A \leftrightarrow B \Rightarrow (\neg A \lor B) \land (\neg B \lor A)
A \rightarrow B \Rightarrow \neg A \lor B
\neg (A \land B) \Rightarrow \neg A \lor \neg B
\neg (A \lor B) \Rightarrow \neg A \land \neg B
\neg \neg A \Rightarrow A
(A_1 \land \ldots \land A_m) \qquad (A_1 \lor B_1 \lor \ldots \lor B_n) \land \land \land A_m \land A_m
```

$$\neg((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (p \rightarrow r)) \Rightarrow \\ \neg(\neg((p \rightarrow q) \land (p \land q \rightarrow r)) \lor (p \rightarrow r)) \Rightarrow \\ \neg((p \rightarrow q) \land (p \land q \rightarrow r)) \land \neg(p \rightarrow r) \Rightarrow \\ (p \rightarrow q) \land (p \land q \rightarrow r) \land \neg(p \rightarrow r) \Rightarrow \\ (p \rightarrow q) \land (p \land q \rightarrow r) \land \neg(p \rightarrow r) \Rightarrow \\ (p \rightarrow q) \land (p \land q \rightarrow r) \land \neg(p \rightarrow r) \Rightarrow \\ (p \rightarrow q) \land (p \land q \rightarrow r) \land p \land \neg r \Rightarrow \\ (p \rightarrow q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \\ (\neg p \lor q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \end{cases}$$

$$A \leftrightarrow B \Rightarrow (\neg A \lor B) \land (\neg B \lor A)$$

$$A \to B \Rightarrow \neg A \lor B$$

$$\neg (A \land B) \Rightarrow \neg A \lor \neg B$$

$$\neg (A \lor B) \Rightarrow \neg A \land \neg B$$

$$\neg \neg A \Rightarrow A$$

$$(A_1 \land \ldots \land A_m) \qquad (A_1 \lor B_1 \lor \ldots \lor B_n) \land (A_m \lor B_1 \lor \ldots \lor B_n)$$

$$\neg((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (p \rightarrow r)) \Rightarrow \\ \neg(\neg((p \rightarrow q) \land (p \land q \rightarrow r)) \lor (p \rightarrow r)) \Rightarrow \\ \neg((p \rightarrow q) \land (p \land q \rightarrow r)) \land \neg(p \rightarrow r) \Rightarrow \\ (p \rightarrow q) \land (p \land q \rightarrow r) \land \neg(p \rightarrow r) \Rightarrow \\ (p \rightarrow q) \land (p \land q \rightarrow r) \land \neg(p \rightarrow r) \Rightarrow \\ (p \rightarrow q) \land (p \land q \rightarrow r) \land \neg(p \rightarrow r) \Rightarrow \\ (p \rightarrow q) \land (p \land q \rightarrow r) \land p \land \neg r \Rightarrow \\ (p \rightarrow q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \\ (\neg p \lor q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \end{cases}$$

```
A \leftrightarrow B \Rightarrow (\neg A \lor B) \land (\neg B \lor A)
A \rightarrow B \Rightarrow \neg A \lor B
\neg (A \land B) \Rightarrow \neg A \lor \neg B
\neg (A \lor B) \Rightarrow \neg A \land \neg B
\neg \neg A \Rightarrow A
(A_1 \land \dots \land A_m) \qquad (A_1 \lor B_1 \lor \dots \lor B_n) \land (A_m \lor B_1 \lor \dots \lor B_n)
```

$$\neg((p \to q) \land (p \land q \to r) \to (p \to r)) \Rightarrow \\ \neg(\neg((p \to q) \land (p \land q \to r)) \lor (p \to r)) \Rightarrow \\ \neg\neg((p \to q) \land (p \land q \to r)) \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg(p \lor r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg(p \lor r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg(p \lor r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (\neg p \lor q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (\neg p \lor q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (\neg p \lor q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (\neg p \lor q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (\neg p \lor q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (\neg p \lor q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (\neg p \lor q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (\neg p \lor q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (\neg p \lor q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (\neg p \lor q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (\neg p \lor q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (\neg p \lor q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (\neg p \lor q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (\neg p \lor q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (\neg p \lor q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (\neg p \lor q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (\neg p \lor q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (\neg p \lor q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (\neg p \lor q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (\neg p \lor q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (\neg p \lor q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (\neg p \lor q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (\neg p \lor \neg q \lor r) \land \neg r \Rightarrow \\ (\neg p \lor \neg q \lor r) \land \neg r \Rightarrow \\ (\neg p \lor \neg q \lor r) \land \neg r \Rightarrow \\ (\neg p \lor \neg q \lor r) \land \neg r \Rightarrow \\ (\neg p \lor \neg q \lor r) \land \neg r \Rightarrow \\ (\neg p \lor \neg q \lor r) \land \neg r \Rightarrow \\ (\neg p \lor \neg q \lor r) \land \neg r \Rightarrow \\ (\neg p \lor \neg q \lor r) \land \neg r \Rightarrow \\ (\neg p \lor \neg q \lor r) \land \neg r \Rightarrow$$

```
A \leftrightarrow B \Rightarrow (\neg A \lor B) \land (\neg B \lor A)
A \to B \Rightarrow \neg A \lor B
\neg (A \land B) \Rightarrow \neg A \lor \neg B
\neg (A \lor B) \Rightarrow \neg A \land \neg B
\neg \neg A \Rightarrow A
(A_1 \land \ldots \land A_m) \qquad (A_1 \lor B_1 \lor \ldots \lor B_n) \land \land \land A_m \land A_m
```

$$\neg((p \to q) \land (p \land q \to r) \to (p \to r)) \Rightarrow \\ \neg(\neg((p \to q) \land (p \land q \to r)) \lor (p \to r)) \Rightarrow \\ \neg\neg((p \to q) \land (p \land q \to r)) \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg(p \lor r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg(p \lor r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg(p \lor r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \lor r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \lor r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \lor r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \lor r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \lor r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \lor r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \lor r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \lor r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \lor r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \lor r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \lor r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \lor r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \lor r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \lor r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \lor r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \lor r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \lor r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \lor r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \lor r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \lor r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \lor r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \lor r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \lor r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \lor r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \lor r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \lor r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \lor r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \lor r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \lor r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \lor r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \land r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \land r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \land r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \land r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \land r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg(p \land r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg(p \land r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg(p \land r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg(p \land r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg(p \land r) \land \neg(p \land r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg(p \land r) \land \neg(p \land$$

```
A \leftrightarrow B \Rightarrow (\neg A \lor B) \land (\neg B \lor A)
A \rightarrow B \Rightarrow \neg A \lor B
\neg (A \land B) \Rightarrow \neg A \lor \neg B
\neg (A \lor B) \Rightarrow \neg A \land \neg B
\neg \neg A \Rightarrow A
(A_1 \land \dots \land A_m) \qquad (A_1 \lor B_1 \lor \dots \lor B_n) \land (A_m \lor B_1 \lor \dots \lor B_n)
```

$$\neg((p \to q) \land (p \land q \to r) \to (p \to r)) \Rightarrow \\ \neg(\neg((p \to q) \land (p \land q \to r)) \lor (p \to r)) \Rightarrow \\ \neg\neg((p \to q) \land (p \land q \to r)) \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land \neg r \Rightarrow \\ (p \to q) \land (\neg q \lor \neg q \lor r) \land \neg r \Rightarrow \\ (p \to q) \land (\neg q \lor \neg q \lor r) \land \neg r \Rightarrow \\ (p \to q)$$

```
A \leftrightarrow B \Rightarrow (\neg A \lor B) \land (\neg B \lor A)
A \to B \Rightarrow \neg A \lor B
\neg (A \land B) \Rightarrow \neg A \lor \neg B
\neg (A \lor B) \Rightarrow \neg A \land \neg B
\neg \neg A \Rightarrow A
(A_1 \land \ldots \land A_m) \qquad (A_1 \lor B_1 \lor \ldots \lor B_n) \land \land \land A_m \land A_m
```

$$\neg((p \to q) \land (p \land q \to r) \to (p \to r)) \Rightarrow \\ \neg(\neg((p \to q) \land (p \land q \to r)) \lor (p \to r)) \Rightarrow \\ \neg\neg((p \to q) \land (p \land q \to r)) \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg(p \to r) \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg(p \to r) \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \to r) \land \neg(p \to r$$

```
A \leftrightarrow B \Rightarrow (\neg A \lor B) \land (\neg B \lor A)
A \to B \Rightarrow \neg A \lor B
\neg (A \land B) \Rightarrow \neg A \lor \neg B
\neg (A \lor B) \Rightarrow \neg A \land \neg B
\neg \neg A \Rightarrow A
(A_1 \land \dots \land A_m) \quad (A_1 \lor B_1 \lor \dots \lor B_n) \land (A_m \lor B_1 \lor \dots \lor B_n)
```

$$\neg((p \to q) \land (p \land q \to r) \to (p \to r)) \Rightarrow \\ \neg(\neg((p \to q) \land (p \land q \to r)) \lor (p \to r)) \Rightarrow \\ \neg\neg((p \to q) \land (p \land q \to r)) \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg(\neg p \lor r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg(\neg p \lor r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land \neg r \Rightarrow \\ (p \to q) \land (\neg p$$

```
A \leftrightarrow B \Rightarrow (\neg A \lor B) \land (\neg B \lor A)
A \to B \Rightarrow \neg A \lor B
\neg (A \land B) \Rightarrow \neg A \lor \neg B
\neg (A \lor B) \Rightarrow \neg A \land \neg B
\neg \neg A \Rightarrow A
(A_1 \land \dots \land A_m) \quad (A_1 \lor B_1 \lor \dots \lor B_n) \land
\lor B_1 \lor \dots \lor B_n \Rightarrow \dots \qquad \land
(A_m \lor B_1 \lor \dots \lor B_n)
```

$$\neg((p \to q) \land (p \land q \to r) \to (p \to r)) \Rightarrow \\ \neg(\neg((p \to q) \land (p \land q \to r)) \lor (p \to r)) \Rightarrow \\ \neg\neg((p \to q) \land (p \land q \to r)) \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg(\neg p \lor r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg(\neg p \lor r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land \neg r \Rightarrow \\ (p \to q) \land (\neg p$$

```
A \leftrightarrow B \Rightarrow (\neg A \lor B) \land (\neg B \lor A)
A \rightarrow B \Rightarrow \neg A \lor B
\neg (A \land B) \Rightarrow \neg A \lor \neg B
\neg (A \lor B) \Rightarrow \neg A \land \neg B
\neg \neg A \Rightarrow A
(A_1 \land \dots \land A_m) \qquad (A_1 \lor B_1 \lor \dots \lor B_n) \land (A_m \lor B_1 \lor \dots \lor B_n)
```

$$\neg((p \to q) \land (p \land q \to r) \to (p \to r)) \Rightarrow \\ \neg(\neg((p \to q) \land (p \land q \to r)) \lor (p \to r)) \Rightarrow \\ \neg\neg((p \to q) \land (p \land q \to r)) \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg(\neg p \lor r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg\neg p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r)$$

$$A \leftrightarrow B \Rightarrow (\neg A \lor B) \land (\neg B \lor A)$$

$$A \to B \Rightarrow \neg A \lor B$$

$$\neg (A \land B) \Rightarrow \neg A \lor \neg B$$

$$\neg (A \lor B) \Rightarrow \neg A \land \neg B$$

$$\neg \neg A \Rightarrow A$$

$$(A_1 \land \ldots \land A_m) \qquad (A_1 \lor B_1 \lor \ldots \lor B_n) \land \land \land A_m \land A_m$$

$$\neg((p \to q) \land (p \land q \to r) \to (p \to r)) \Rightarrow \\ \neg(\neg((p \to q) \land (p \land q \to r)) \lor (p \to r)) \Rightarrow \\ \neg\neg((p \to q) \land (p \land q \to r)) \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg(\neg p \lor r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg \neg p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg r \Rightarrow \\ (p \to q) \land (p \land q$$

```
A \leftrightarrow B \Rightarrow (\neg A \lor B) \land (\neg B \lor A)
A \rightarrow B \Rightarrow \neg A \lor B
\neg (A \land B) \Rightarrow \neg A \lor \neg B
\neg (A \lor B) \Rightarrow \neg A \land \neg B
\neg \neg A \Rightarrow A
(A_1 \land \dots \land A_m) \qquad (A_1 \lor B_1 \lor \dots \lor B_n) \land (A_m \lor B_1 \lor \dots \lor B_n)
```

$$\neg((p \to q) \land (p \land q \to r) \to (p \to r)) \Rightarrow \\ \neg(\neg((p \to q) \land (p \land q \to r)) \lor (p \to r)) \Rightarrow \\ \neg\neg((p \to q) \land (p \land q \to r)) \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg(\neg p \lor r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg\neg p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to$$

$$A \leftrightarrow B \Rightarrow (\neg A \lor B) \land (\neg B \lor A)$$

$$A \to B \Rightarrow \neg A \lor B$$

$$\neg (A \land B) \Rightarrow \neg A \lor \neg B$$

$$\neg (A \lor B) \Rightarrow \neg A \land \neg B$$

$$\neg \neg A \Rightarrow A$$

$$(A_1 \land \ldots \land A_m) \qquad (A_1 \lor B_1 \lor \ldots \lor B_n) \land \land \land A_m \land A_m$$

$$\neg((p \to q) \land (p \land q \to r) \to (p \to r)) \Rightarrow \\ \neg(\neg((p \to q) \land (p \land q \to r)) \lor (p \to r)) \Rightarrow \\ \neg\neg((p \to q) \land (p \land q \to r)) \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg(p \lor r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg\neg p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg$$

```
A \leftrightarrow B \Rightarrow (\neg A \lor B) \land (\neg B \lor A)
A \rightarrow B \Rightarrow \neg A \lor B
\neg (A \land B) \Rightarrow \neg A \lor \neg B
\neg (A \lor B) \Rightarrow \neg A \land \neg B
\neg \neg A \Rightarrow A
(A_1 \land \dots \land A_m) \qquad (A_1 \lor B_1 \lor \dots \lor B_n) \land (A_m \lor B_1 \lor \dots \lor B_n)
```

$$\neg((p \to q) \land (p \land q \to r) \to (p \to r)) \Rightarrow \\ \neg(\neg((p \to q) \land (p \land q \to r)) \lor (p \to r)) \Rightarrow \\ \neg\neg((p \to q) \land (p \land q \to r)) \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg(\neg p \lor r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg\neg p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \land r \Rightarrow \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \land r \Rightarrow \neg r$$

$$A \leftrightarrow B \Rightarrow (\neg A \lor B) \land (\neg B \lor A)$$

$$A \to B \Rightarrow \neg A \lor B$$

$$\neg (A \land B) \Rightarrow \neg A \lor \neg B$$

$$\neg (A \lor B) \Rightarrow \neg A \land \neg B$$

$$\neg \neg A \Rightarrow A$$

$$(A_1 \land \ldots \land A_m) \qquad (A_1 \lor B_1 \lor \ldots \lor B_n) \land \land \land A_m \land A_m$$

$$\neg((p \to q) \land (p \land q \to r) \to (p \to r)) \Rightarrow \\ \neg(\neg((p \to q) \land (p \land q \to r)) \lor (p \to r)) \Rightarrow \\ \neg\neg((p \to q) \land (p \land q \to r)) \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg(\neg p \lor r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg\neg p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \land r \Rightarrow \neg r \Rightarrow \\ (p \to q) \land (\neg p \land q) \land r \Rightarrow \neg r$$

```
A \leftrightarrow B \Rightarrow (\neg A \lor B) \land (\neg B \lor A)
A \rightarrow B \Rightarrow \neg A \lor B
\neg (A \land B) \Rightarrow \neg A \lor \neg B
\neg (A \lor B) \Rightarrow \neg A \land \neg B
\neg \neg A \Rightarrow A
(A_1 \land \dots \land A_m) \qquad (A_1 \lor B_1 \lor \dots \lor B_n) \land (A_m \lor B_1 \lor \dots \lor B_n)
```

$$\neg((p \to q) \land (p \land q \to r) \to (p \to r)) \Rightarrow \\ \neg(\neg((p \to q) \land (p \land q \to r)) \lor (p \to r)) \Rightarrow \\ \neg\neg((p \to q) \land (p \land q \to r)) \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg(p \lor r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg\neg p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \\ (p \to q) \land (p \to q \lor r) \land \neg r \\ (p \to q) \land (p \to q \lor r) \land \neg r \\ (p \to q) \land (p \to q \lor r) \land \neg r \\ (p \to q) \land (p \to q \lor r) \land \neg r \\ (p \to q) \land (p \to q \lor r) \land \neg r \\ (p \to q) \land (p \to q \lor r) \land \neg r \\ (p \to q) \land (p \to q \lor r) \land \neg r \\ (p \to q) \land (p \to q \lor r) \land \neg r \\ (p \to q) \land (p \to q \lor r) \land \neg r \\ (p \to q) \land (p \to q \lor r) \land \neg r \\ (p \to q) \land (p \to q \lor r)$$

$$\begin{array}{c} A \leftrightarrow B \Rightarrow (\neg A \lor B) \land (\neg B \lor A) \\ A \rightarrow B \Rightarrow \neg A \lor B \\ \neg (A \land B) \Rightarrow \neg A \lor \neg B \\ \neg (A \lor B) \Rightarrow \neg A \land \neg B \\ \neg \neg A \Rightarrow A \\ (A_1 \land \ldots \land A_m) \qquad (A_1 \lor B_1 \lor \ldots \lor B_n) \land \\ \lor B_1 \lor \ldots \lor B_n \Rightarrow \qquad \qquad \land \\ (A_m \lor B_1 \lor \ldots \lor B_n) \end{array}$$

$$\neg((p \to q) \land (p \land q \to r) \to (p \to r)) \Rightarrow \\ \neg(\neg((p \to q) \land (p \land q \to r)) \lor (p \to r)) \Rightarrow \\ \neg\neg((p \to q) \land (p \land q \to r)) \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg(p \to r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg(\neg p \lor r) \Rightarrow \\ (p \to q) \land (p \land q \to r) \land \neg\neg p \land \neg r \Rightarrow \\ (p \to q) \land (p \land q \to r) \land p \land \neg r \Rightarrow \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \\ (p \to q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \\ (p \to q) \land (p \to q \lor r) \land$$

```
A \leftrightarrow B \Rightarrow (\neg A \lor B) \land (\neg B \lor A)
A \rightarrow B \Rightarrow \neg A \lor B
\neg (A \land B) \Rightarrow \neg A \lor \neg B
\neg (A \lor B) \Rightarrow \neg A \land \neg B
\neg \neg A \Rightarrow A
(A_1 \land \ldots \land A_m) \qquad (A_1 \lor B_1 \lor \ldots \lor B_n) \land \lor B_1 \lor \ldots \lor B_n)
(A_m \lor B_1 \lor \ldots \lor B_n)
```

$$\neg((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (p \rightarrow r)) \Rightarrow \\ \neg(\neg((p \rightarrow q) \land (p \land q \rightarrow r)) \lor (p \rightarrow r)) \Rightarrow \\ \neg\neg((p \rightarrow q) \land (p \land q \rightarrow r)) \land \neg(p \rightarrow r) \Rightarrow \\ (p \rightarrow q) \land (p \land q \rightarrow r) \land \neg(p \rightarrow r) \Rightarrow \\ (p \rightarrow q) \land (p \land q \rightarrow r) \land \neg(\neg p \lor r) \Rightarrow \\ (p \rightarrow q) \land (p \land q \rightarrow r) \land \neg\neg p \land \neg r \Rightarrow \\ (p \rightarrow q) \land (p \land q \rightarrow r) \land p \land \neg r \Rightarrow \\ (p \rightarrow q) \land (\neg (p \land q) \lor r) \land p \land \neg r \Rightarrow \\ (p \rightarrow q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \\ (\neg p \lor q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \\ \end{cases}$$

$$\begin{array}{c} A \leftrightarrow B \Rightarrow (\neg A \lor B) \land (\neg B \lor A) \\ A \rightarrow B \Rightarrow \neg A \lor B \\ \neg (A \land B) \Rightarrow \neg A \lor \neg B \\ \neg (A \lor B) \Rightarrow \neg A \land \neg B \\ \neg \neg A \Rightarrow A \\ (A_1 \land \ldots \land A_m) \qquad (A_1 \lor B_1 \lor \ldots \lor B_n) \land \\ \lor B_1 \lor \ldots \lor B_n \Rightarrow \qquad \cdots \qquad \land \\ (A_m \lor B_1 \lor \ldots \lor B_n) \end{array}$$

$$\neg((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (p \rightarrow r)) \Rightarrow \\ \neg(\neg((p \rightarrow q) \land (p \land q \rightarrow r)) \lor (p \rightarrow r)) \Rightarrow \\ \neg\neg((p \rightarrow q) \land (p \land q \rightarrow r)) \land \neg(p \rightarrow r) \Rightarrow \\ (p \rightarrow q) \land (p \land q \rightarrow r) \land \neg(p \rightarrow r) \Rightarrow \\ (p \rightarrow q) \land (p \land q \rightarrow r) \land \neg(\neg p \lor r) \Rightarrow \\ (p \rightarrow q) \land (p \land q \rightarrow r) \land \neg\neg p \land \neg r \Rightarrow \\ (p \rightarrow q) \land (p \land q \rightarrow r) \land p \land \neg r \Rightarrow \\ (p \rightarrow q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r \\ (\neg p \lor q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r$$

$$\begin{array}{c} A \leftrightarrow B \Rightarrow (\neg A \lor B) \land (\neg B \lor A) \\ A \rightarrow B \Rightarrow \neg A \lor B \\ \neg (A \land B) \Rightarrow \neg A \lor \neg B \\ \neg (A \lor B) \Rightarrow \neg A \land \neg B \\ \neg \neg A \Rightarrow A \\ (A_1 \land \ldots \land A_m) \qquad (A_1 \lor B_1 \lor \ldots \lor B_n) \land \\ \lor B_1 \lor \ldots \lor B_n \Rightarrow \qquad \cdots \qquad \land \\ (A_m \lor B_1 \lor \ldots \lor B_n) \end{array}$$

Theorem

If A' is obtained from A by one of more applications of the CNF conversion rules, then $A' \equiv A$.

$$A = \neg((p \to q) \land (p \land q \to r) \to (p \to r)) \Rightarrow \\ (\neg p \lor q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r$$

Note: Formula *A* above has the same models as the set consisting of these four clauses

$$\neg p \lor q$$

 $\neg p \lor \neg q \lor \iota$
 p
 $\neg r$

(An interpretation satisfies, or is a model of, a set S of formulas if it satisfies every formula in S)

$$A = \neg((p \to q) \land (p \land q \to r) \to (p \to r)) \Rightarrow \\ (\neg p \lor q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r$$

Note: Formula *A* above has the same models as the set consisting of these four clauses

$$\neg p \lor q$$

$$\neg p \lor \neg q \lor r$$

$$p$$

$$\neg r$$

(An interpretation satisfies, or is a model of, a set S of formulas if it satisfies every formula in S)

$$A = \neg((p \to q) \land (p \land q \to r) \to (p \to r)) \Rightarrow \\ (\neg p \lor q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r$$

Note: Formula *A* above has the same models as the set consisting of these four clauses

$$\neg p \lor q
\neg p \lor \neg q \lor r
p
\neg r$$

(An interpretation *satisfies*, *or is a model of*, *a set S* of formulas if it satisfies every formula in *S*)

$$A = \neg((p \to q) \land (p \land q \to r) \to (p \to r)) \Rightarrow \cdots$$
$$(\neg p \lor q) \land (\neg p \lor \neg q \lor r) \land p \land \neg r$$

Note: these

The CNF transformation reduces the sat problem for formulas to the sat problem for sets of clauses

p ¬*I*

(An interpretation *satisfies*, *or is a model of*, *a set S* of formulas if it satisfies every formula in *S*)

11/39

ng of

Let's compute the CNF of

$$F = p_1 \leftrightarrow (p_2 \leftrightarrow (p_3 \leftrightarrow (p_4 \leftrightarrow (p_5 \leftrightarrow p_6))))$$

$$p_1 \leftrightarrow (p_2 \leftrightarrow (p_3 \leftrightarrow (p_4 \leftrightarrow (p_5 \leftrightarrow p_6))))$$

Let's compute the CNF of

$$F = p_{1} \leftrightarrow (p_{2} \leftrightarrow (p_{3} \leftrightarrow (p_{4} \leftrightarrow (p_{5} \leftrightarrow p_{6}))))$$

$$p_{1} \leftrightarrow (p_{2} \leftrightarrow (p_{3} \leftrightarrow (p_{4} \leftrightarrow (p_{5} \leftrightarrow p_{6})))) \Rightarrow$$

$$(p_{1} \lor (p_{2} \leftrightarrow (p_{3} \leftrightarrow (p_{4} \leftrightarrow (p_{5} \leftrightarrow p_{6})))) \Rightarrow$$

$$(p_{1} \lor (p_{2} \leftrightarrow (p_{3} \leftrightarrow (p_{4} \leftrightarrow (p_{5} \leftrightarrow p_{6})))) \Rightarrow$$

$$(p_{2} \lor \neg (p_{3} \leftrightarrow (p_{4} \leftrightarrow (p_{5} \leftrightarrow p_{6})))) \Rightarrow$$

$$(p_{2} \lor \neg (p_{3} \leftrightarrow (p_{4} \leftrightarrow (p_{5} \leftrightarrow p_{6})))) \Rightarrow$$

$$(p_{3} \lor \neg (p_{3} \leftrightarrow (p_{4} \leftrightarrow (p_{5} \leftrightarrow p_{6})))) \Rightarrow$$

Let's compute the CNF of

$$F = p_{1} \leftrightarrow (p_{2} \leftrightarrow (p_{3} \leftrightarrow (p_{4} \leftrightarrow (p_{5} \leftrightarrow p_{6}))))$$

$$p_{1} \leftrightarrow (p_{2} \leftrightarrow (p_{3} \leftrightarrow (p_{4} \leftrightarrow (p_{5} \leftrightarrow p_{6})))) \Rightarrow$$

$$(\neg p_{1} \lor (p_{2} \leftrightarrow (p_{3} \leftrightarrow (p_{4} \leftrightarrow (p_{5} \leftrightarrow p_{6}))))) \land$$

$$(p_{1} \lor \neg (p_{2} \leftrightarrow (p_{3} \leftrightarrow (p_{4} \leftrightarrow (p_{5} \leftrightarrow p_{6}))))) \Rightarrow$$

$$(p_{2} \lor \neg (p_{3} \leftrightarrow (p_{4} \leftrightarrow (p_{5} \leftrightarrow p_{6})))) \land$$

$$(p_{3} \lor \neg (p_{3} \leftrightarrow (p_{4} \leftrightarrow (p_{5} \leftrightarrow p_{6})))) \land$$

$$(p_{4} \lor \neg (p_{3} \leftrightarrow (p_{4} \leftrightarrow (p_{5} \leftrightarrow p_{6})))) \land$$

Let's compute the CNF of

$$F = p_{1} \leftrightarrow (p_{2} \leftrightarrow (p_{3} \leftrightarrow (p_{4} \leftrightarrow (p_{5} \leftrightarrow p_{6}))))$$

$$p_{1} \leftrightarrow (p_{2} \leftrightarrow (p_{3} \leftrightarrow (p_{4} \leftrightarrow (p_{5} \leftrightarrow p_{6})))) \Rightarrow$$

$$(\neg p_{1} \lor (p_{2} \leftrightarrow (p_{3} \leftrightarrow (p_{4} \leftrightarrow (p_{5} \leftrightarrow p_{6}))))) \land$$

$$(p_{1} \lor \neg (p_{2} \leftrightarrow (p_{3} \leftrightarrow (p_{4} \leftrightarrow (p_{5} \leftrightarrow p_{6}))))) \Rightarrow$$

$$(\neg p_{1} \lor ((\neg p_{2} \lor (p_{3} \leftrightarrow (p_{4} \leftrightarrow (p_{5} \leftrightarrow p_{6}))))) \land$$

$$(p_{2} \lor \neg (p_{3} \leftrightarrow (p_{4} \leftrightarrow (p_{5} \leftrightarrow p_{6}))))) \land$$

$$(p_{1} \lor \neg (p_{2} \leftrightarrow (p_{3} \leftrightarrow (p_{4} \leftrightarrow (p_{5} \leftrightarrow p_{6}))))))$$

Let's compute the CNF of

$$F = p_{1} \leftrightarrow (p_{2} \leftrightarrow (p_{3} \leftrightarrow (p_{4} \leftrightarrow (p_{5} \leftrightarrow p_{6}))))$$

$$p_{1} \leftrightarrow (p_{2} \leftrightarrow (p_{3} \leftrightarrow (p_{4} \leftrightarrow (p_{5} \leftrightarrow p_{6})))) \Rightarrow$$

$$(\neg p_{1} \lor (p_{2} \leftrightarrow (p_{3} \leftrightarrow (p_{4} \leftrightarrow (p_{5} \leftrightarrow p_{6}))))) \land$$

$$(p_{1} \lor \neg (p_{2} \leftrightarrow (p_{3} \leftrightarrow (p_{4} \leftrightarrow (p_{5} \leftrightarrow p_{6}))))) \Rightarrow$$

$$(\neg p_{1} \lor ((\neg p_{2} \lor (p_{3} \leftrightarrow (p_{4} \leftrightarrow (p_{5} \leftrightarrow p_{6}))))) \land$$

$$(p_{2} \lor \neg (p_{3} \leftrightarrow (p_{4} \leftrightarrow (p_{5} \leftrightarrow p_{6}))))) \land$$

$$(p_{1} \lor \neg (p_{2} \leftrightarrow (p_{3} \leftrightarrow (p_{4} \leftrightarrow (p_{5} \leftrightarrow p_{6})))))$$

CNF is exponential

There are formulas whose shortest CNF has an exponential size

Is there any way to avoid exponential blowup? Yes

CNF is exponential

There are formulas whose shortest CNF has an exponential size

Is there any way to avoid exponential blowup? Yes!

CNF is exponential

There are formulas whose shortest CNF has an exponential size

Is there any way to avoid exponential blowup? Yes!

- 1. Take a non-trivial subformula A of formula P
- Introduce a new name n for it, i.e., a fresh propositional variable
- Add a definition for n, i.e., a formula stating that n is equivalent to A

$$F = p_1 \leftrightarrow (p_2 \leftrightarrow (p_3 \leftrightarrow (p_4 \leftrightarrow (p_5 \leftrightarrow p_6))))$$

$$n \leftrightarrow (p_5 \leftrightarrow p_6)$$

$$S = \begin{cases} p_1 \leftrightarrow (p_2 \leftrightarrow (p_3 \leftrightarrow (p_4 \leftrightarrow n))) \\ n \leftrightarrow (p_5 \leftrightarrow p_6) \end{cases}$$

- 1. Take a non-trivial subformula A of formula F
- 2. Introduce a new *name n* for it, i.e., a fresh propositional variable
- 3.Add a *definition for n*, i.e., a formula stating that *n* is equivalent to *A*

$$F = p_1 \leftrightarrow (p_2 \leftrightarrow (p_3 \leftrightarrow (p_4 \leftrightarrow (p_5 \leftrightarrow p_6))))$$

$$S = \left\{ \begin{array}{l} \rho_1 \leftrightarrow (\rho_2 \leftrightarrow (\rho_3 \leftrightarrow (\rho_4 \leftrightarrow n))) \\ n \leftrightarrow (\rho_5 \leftrightarrow \rho_6) \end{array} \right\}$$

- 1. Take a non-trivial subformula A of formula F
- 2. Introduce a new *name n* for it, i.e., a fresh propositional variable
- 3. Add a *definition for n*, i.e., a formula stating that n is equivalent to A

$$F = p_1 \leftrightarrow (p_2 \leftrightarrow (p_3 \leftrightarrow (p_4 \leftrightarrow (p_5 \leftrightarrow p_6))))$$

$$S = \begin{cases} p_1 \leftrightarrow (p_2 \leftrightarrow (p_3 \leftrightarrow (p_4 \leftrightarrow n))) \\ n \leftrightarrow (p_5 \leftrightarrow p_6) \end{cases}$$

- 1. Take a non-trivial subformula A of formula F
- 2. Introduce a new *name n* for it, i.e., a fresh propositional variable
- 3. Add a *definition for* n, i.e., a formula stating that n is equivalent to A

$$F = p_1 \leftrightarrow (p_2 \leftrightarrow (p_3 \leftrightarrow (p_4 \leftrightarrow (p_5 \leftrightarrow p_6))))$$
$$n \leftrightarrow (p_5 \leftrightarrow p_6)$$

$$S = \begin{cases} p_1 \leftrightarrow (p_2 \leftrightarrow (p_3 \leftrightarrow (p_4 \leftrightarrow n))) \\ n \leftrightarrow (p_5 \leftrightarrow p_6) \end{cases}$$

Using so-called *naming* or *definition introduction*

- 1. Take a non-trivial subformula A of formula F
- 2. Introduce a new *name n* for it, i.e., a fresh propositional variable
- 3. Add a *definition for* n, i.e., a formula stating that n is equivalent to A

$$F = p_1 \leftrightarrow (p_2 \leftrightarrow (p_3 \leftrightarrow (p_4 \leftrightarrow (p_5 \leftrightarrow p_6))))$$
$$n \leftrightarrow (p_5 \leftrightarrow p_6)$$

4. Replace the subformula by its name:

$$S = \left\{ \begin{array}{l} p_1 \leftrightarrow (p_2 \leftrightarrow (p_3 \leftrightarrow (p_4 \leftrightarrow n))) \\ n \leftrightarrow (p_5 \leftrightarrow p_6) \end{array} \right\}$$

The new set S of formulas and the original formula F are not equivalent

but they are equisatisfiable:

- 1. every model of S is a model of F and
- every model of F can be extended to a model of S (by assigning to n the value of p₅ ↔ p₆)

$$F = p_1 \leftrightarrow (p_2 \leftrightarrow (p_3 \leftrightarrow (p_4 \leftrightarrow (p_5 \leftrightarrow p_6))))$$
$$n \leftrightarrow (p_5 \leftrightarrow p_6)$$

$$S = \left\{ \begin{array}{l} p_1 \leftrightarrow (p_2 \leftrightarrow (p_3 \leftrightarrow (p_4 \leftrightarrow n))) \\ n \leftrightarrow (p_5 \leftrightarrow p_6) \end{array} \right\}$$

The new set *S* of formulas and the original formula *F* are not equivalent but they are equisatisfiable:

- 1. every model of S is a model of F and
- 2. every model of *F* can be extended to a model of *S* (by assigning to *n* the value of $p_5 \leftrightarrow p_6$)

$$F = p_1 \leftrightarrow (p_2 \leftrightarrow (p_3 \leftrightarrow (p_4 \leftrightarrow (p_5 \leftrightarrow p_6))))$$
$$n \leftrightarrow (p_5 \leftrightarrow p_6)$$

$$S = \left\{ \begin{array}{l} p_1 \leftrightarrow (p_2 \leftrightarrow (p_3 \leftrightarrow (p_4 \leftrightarrow n))) \\ n \leftrightarrow (p_5 \leftrightarrow p_6) \end{array} \right\}$$

After several steps

$$p_{1} \leftrightarrow (p_{2} \leftrightarrow (p_{3} \leftrightarrow (p_{4} \leftrightarrow (p_{5} \leftrightarrow p_{6})))$$

$$p_{1} \leftrightarrow (p_{2} \leftrightarrow n_{3})$$

$$n_{3} \leftrightarrow (p_{3} \leftrightarrow n_{4})$$

$$n_{4} \leftrightarrow (p_{4} \leftrightarrow n_{5})$$

$$n_{5} \leftrightarrow (p_{5} \leftrightarrow p_{6})$$

The conversion of the original formula to CNF introduces 32 copies of p_6 The conversion of the new set of formulas to CNF introduces 4 copies of p_6

After several steps

$$p_{1} \leftrightarrow (p_{2} \leftrightarrow (p_{3} \leftrightarrow (p_{4} \leftrightarrow (p_{5} \leftrightarrow p_{6})))$$

$$p_{1} \leftrightarrow (p_{2} \leftrightarrow n_{3})$$

$$n_{3} \leftrightarrow (p_{3} \leftrightarrow n_{4})$$

$$n_{4} \leftrightarrow (p_{4} \leftrightarrow n_{5})$$

$$n_{5} \leftrightarrow (p_{5} \leftrightarrow p_{6})$$

The conversion of the original formula to CNF introduces 32 copies of p_6

The conversion of the new set of formulas to CNF introduces 4 copies of p

After several steps

$$p_{1} \leftrightarrow (p_{2} \leftrightarrow (p_{3} \leftrightarrow (p_{4} \leftrightarrow (p_{5} \leftrightarrow p_{6})))$$

$$p_{1} \leftrightarrow (p_{2} \leftrightarrow n_{3})$$

$$n_{3} \leftrightarrow (p_{3} \leftrightarrow n_{4})$$

$$n_{4} \leftrightarrow (p_{4} \leftrightarrow n_{5})$$

$$n_{5} \leftrightarrow (p_{5} \leftrightarrow p_{6})$$

The conversion of the original formula to CNF introduces 32 copies of p_6

The conversion of the new set of formulas to CNF introduces 4 copies of p_6

Clausal form of a formula A: a set S_A of clauses which is satisfiable iff A is satisfiable

Clausal form of a set S of formulas: a set S' of clauses which is satisfiable iff so is S

In fact, we can require something stronger:

- 1. A and S_A have the same models in the language of A
- 2. S and S' have the same models in the language of S

Big advantage of clausal normal form over CNF: we can convert any formula to a set of clauses in almost linear time

Clausal form of a formula A: a set S_A of clauses which is satisfiable iff A is satisfiable Clausal form of a set S of formulas: a set S' of clauses which is satisfiable iff so is S

In fact, we can require something stronger:

- 1. A and S_A have the same models in the language of A
- 2. S and S' have the same models in the language of S

Big advantage of clausal normal form over CNF: we can convert any formula to a set of clauses in almost linear time

Clausal form of a formula A: a set S_A of clauses which is satisfiable iff A is satisfiable Clausal form of a set S of formulas: a set S' of clauses which is satisfiable iff so is S

In fact, we can require something stronger:

- 1. A and S_A have the same models in the language of A
- 2. S and S' have the same models in the language of S

Big advantage of clausal normal form over CNF: we can convert any formula to a set of clauses in almost linear times.

Clausal form of a formula A: a set S_A of clauses which is satisfiable iff A is satisfiable Clausal form of a set S of formulas: a set S' of clauses which is satisfiable iff so is S

In fact, we can require something stronger:

- 1. A and S_A have the same models in the language of A
- 2. S and S' have the same models in the language of S

Big advantage of clausal normal form over CNF: we can convert any formula to a set of clauses in almost linear time

Definitional Clause Form Transformation

How to convert a formula A into a set S of clauses that is clausal normal form of A:

- 1. If *A* has the form $C_1 \wedge ... \wedge C_n$, where $n \geq 1$ and each C_i is a clause, then $S \stackrel{\text{def}}{=} \{C_1, ..., C_n\}$.
- 2. Otherwise, introduce a name for each subformula *B* of *A* such that *B* is not a literal and use this name instead of the formula.

•	•	
subformula	definition	clauses
$\neg((p \to q) \land (p \land q \to r) \to (p \to r))$		n ₁
$\neg((p \to q) \land (p \land q \to r) \to (p \to r))$	$n_1 \leftrightarrow \neg n_2$	$\neg n_1 \lor \neg n_2$
		$n_1 \vee n_2$
$(p \to q) \land (p \land q \to r) \to (p \to r)$	$n_2 \leftrightarrow (n_3 \rightarrow n_7)$	$\neg n_2 \lor \neg n_3 \lor n_7$
		$n_3 \vee n_2$
		$\neg n_7 \lor n_2$
$(p \rightarrow q) \land (p \land q \rightarrow r)$	$n_3 \leftrightarrow (n_4 \wedge n_5)$	$\neg n_3 \lor n_4$
		$\neg n_3 \lor n_5$
		$\neg n_4 \lor \neg n_5 \lor n_3$
$p \rightarrow q$	$n_4 \leftrightarrow (p \rightarrow q)$	$\neg n_4 \lor \neg p \lor q$
		$p \vee n_4$
		$\neg q \lor n_4$
$p \wedge q \rightarrow r$	$n_5 \leftrightarrow (n_6 \rightarrow r)$	$\neg n_5 \vee \neg n_6 \vee r$
		$n_6 \vee n_5$
		$\neg r \lor n_5$
$p \wedge q$	$n_6 \leftrightarrow (p \land q)$	$\neg n_6 \lor p$
		$\neg n_6 \lor q$
		$\neg p \lor \neg q \lor n_6$
$p \rightarrow r$	$n_7 \leftrightarrow (p \rightarrow r)$	$\neg n_7 \lor \neg p \lor r$
		$p \vee n_7$
		$\neg r \lor n_7$
	$\neg((p \to q) \land (p \land q \to r) \to (p \to r))$ $(p \to q) \land (p \land q \to r) \to (p \to r)$ $(p \to q) \land (p \land q \to r)$ $p \to q$ $p \land q \to r$ $p \land q$	$\neg ((p \to q) \land (p \land q \to r) \to (p \to r))$ $\neg ((p \to q) \land (p \land q \to r) \to (p \to r)) \qquad m_1 \leftrightarrow m_2$ $(p \to q) \land (p \land q \to r) \to (p \to r) \qquad m_2 \leftrightarrow (m_3 \to m_1)$ $p \to q \qquad m_4 \leftrightarrow (p \to q)$ $p \land q \to r \qquad m_5 \leftrightarrow (p \to r)$

	subformula	definition	clauses
	$\neg((p \to q) \land (p \land q \to r) \to (p \to r))$		n ₁
n ₁	$\neg((p \to q) \land (p \land q \to r) \to (p \to r))$	$n_1 \leftrightarrow \neg n_2$	$\neg n_1 \lor \neg n_2$ $n_1 \lor n_2$
n ₂	$(p \to q) \land (p \land q \to r) \to (p \to r)$	$n_2 \leftrightarrow (n_3 \rightarrow n_7)$	$ \begin{array}{ccc} \neg n_2 \lor \neg n_3 \lor n_7 \\ n_3 \lor n_2 \\ \neg n_7 \lor n_2 \end{array} $
n ₃	$(p \to q) \land (p \land q \to r)$	$n_3 \leftrightarrow (n_4 \wedge n_5)$	$ \begin{array}{ccc} \neg n_3 \lor & n_4 \\ \neg n_3 \lor & n_5 \\ \neg n_4 \lor \neg n_5 \lor n_3 \end{array} $
П4	p o q	$n_4 \leftrightarrow (p \rightarrow q)$	$ \begin{array}{ccc} \neg n_4 \lor \neg p \lor q \\ p \lor n_4 \\ \neg q \lor n_4 \end{array} $
n ₅	$p \land q \rightarrow r$	$n_5 \leftrightarrow (n_6 \rightarrow r)$	$ \begin{array}{ccc} \neg n_5 \lor \neg n_6 \lor r \\ n_6 \lor n_5 \\ \neg r \lor n_5 \end{array} $
n ₆	<i>p</i> ∧ <i>q</i>	$n_6 \leftrightarrow (p \land q)$	$ \begin{array}{ccc} \neg n_6 \lor & p \\ \neg n_6 \lor & q \\ \neg p \lor \neg q \lor n_6 \end{array} $
n ₇	p o r	$n_7 \leftrightarrow (p \rightarrow r)$	$ \begin{array}{ccc} \neg n_7 \lor \neg p & \lor r \\ p & \lor & n_7 \\ \neg r & \lor & n_7 \end{array} $

Consider all subformulas that are not literals

	subformula	definition	clauses
	$\neg((p \to q) \land (p \land q \to r) \to (p \to r))$		n_1
<i>n</i> ₁	$\neg((p \to q) \land (p \land q \to r) \to (p \to r))$	$n_1 \leftrightarrow \neg n_2$	$\neg n_1 \lor \neg n_2$ $n_1 \lor n_2$
n ₂	$(p \to q) \land (p \land q \to r) \to (p \to r)$	$n_2 \leftrightarrow (n_3 \rightarrow n_7)$	$ \begin{array}{cccc} \neg n_2 \lor \neg n_3 \lor n_7 \\ n_3 \lor & n_2 \\ \neg n_7 \lor & n_2 \end{array} $
n ₃	$(p \to q) \land (p \land q \to r)$	$n_3 \leftrightarrow (n_4 \wedge n_5)$	$ \begin{array}{ccc} \neg n_3 \lor & n_4 \\ \neg n_3 \lor & n_5 \\ \neg n_4 \lor \neg n_5 \lor n_3 \end{array} $
n ₄	p o q	$n_4 \leftrightarrow (\rho \rightarrow q)$	$ \begin{array}{cccc} \neg n_4 \lor \neg p \lor q \\ p \lor n_4 \\ \neg q \lor n_4 \end{array} $
<i>n</i> ₅	$p \wedge q \rightarrow r$	$n_5 \leftrightarrow (n_6 \rightarrow r)$	¬n ₅ ∨ ¬n ₆ ∨ r n ₆ ∨ n ₅ ¬r ∨ n ₅
<i>n</i> ₆	<i>p</i> ∧ <i>q</i>	$n_6 \leftrightarrow (p \land q)$	$ \begin{array}{ccc} \neg n_6 \lor & p \\ \neg n_6 \lor & q \\ \neg p \lor \neg q \lor n_6 \end{array} $
n ₇	p o r	$n_7 \leftrightarrow (\rho \rightarrow r)$	$ \begin{array}{cccc} \neg n_7 \lor \neg p \lor r \\ p \lor n_7 \\ \neg r \lor n_7 \end{array} $

Introduce names for these formulas

	subformula	definition	clauses
	$\neg((p \to q) \land (p \land q \to r) \to (p \to r))$		n_1
$\overline{n_1}$	$\neg((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (p \rightarrow r))$	$n_1 \leftrightarrow \neg n_2$	$\neg n_1 \lor \neg n_2$
			$n_1 \vee n_2$
n_2	$(p \to q) \land (p \land q \to r) \to (p \to r)$	$n_2 \leftrightarrow (n_3 \rightarrow n_7)$	$\neg n_2 \lor \neg n_3 \lor n_7$
			$n_3 \vee n_2$
			$\neg n_7 \lor n_2$
n_3	$(p o q) \wedge (p \wedge q o r)$	$n_3 \leftrightarrow (n_4 \wedge n_5)$	$\neg n_3 \lor n_4$
			$\neg n_3 \lor n_5$
			$\neg n_4 \lor \neg n_5 \lor n_3$
n_4	ho ightarrow q	$n_4 \leftrightarrow (p \rightarrow q)$	$\neg n_4 \lor \neg p \lor q$
			$p \vee n_4$
			$\neg g \lor n_4$
n_5	$p \wedge q \rightarrow r$	$n_5 \leftrightarrow (n_6 \rightarrow r)$	$\neg n_5 \vee \neg n_6 \vee r$
			$n_6 \vee n_5$
			$\neg r \lor n_5$
n_6	$p \wedge q$	$n_6 \leftrightarrow (p \land q)$	$\neg n_6 \lor p$
			$\neg n_6 \lor q$
			$\neg p \lor \neg q \lor n_6$
n_7	p o r	$n_7 \leftrightarrow (p \rightarrow r)$	$\neg n_7 \lor \neg p \lor r$
			$p \vee n_7$
			$\neg r \lor n_7$

Introduce definitions

Converting a formula to clausal form, Example

	subformula	definition	clauses
	$\neg((p \to q) \land (p \land q \to r) \to (p \to r))$		<i>n</i> ₁
<i>n</i> ₁	$\neg((p \to q) \land (p \land q \to r) \to (p \to r))$	$n_1 \leftrightarrow \neg n_2$	$\neg n_1 \lor \neg n_2$
			$n_1 \vee n_2$
n_2	$(p \to q) \land (p \land q \to r) \to (p \to r)$	$n_2 \leftrightarrow (n_3 \rightarrow n_7)$	$\neg n_2 \lor \neg n_3 \lor n_7$
			$n_3 \vee n_2$
			$\neg n_7 \lor n_2$
n_3	$(p \rightarrow q) \land (p \land q \rightarrow r)$	$n_3 \leftrightarrow (n_4 \wedge n_5)$	$\neg n_3 \lor n_4$
			$\neg n_3 \lor n_5$
			$\neg n_4 \lor \neg n_5 \lor n_3$
n_4	p o q	$n_4 \leftrightarrow (p \rightarrow q)$	$\neg n_4 \lor \neg p \lor q$
			$p \vee n_4$
			$\neg q \lor n_4$
<i>n</i> ₅	$p \wedge q \rightarrow r$	$n_5 \leftrightarrow (n_6 \rightarrow r)$	$\neg n_5 \lor \neg n_6 \lor r$
			$n_6 \vee n_5$
			$\neg r \lor n_5$
<i>n</i> ₆	$p \wedge q$	$n_6 \leftrightarrow (p \land q)$	$\neg n_6 \lor p$
			$\neg n_6 \lor q$
			$\neg p \lor \neg q \lor n_6$
n_7	$p \rightarrow r$	$n_7 \leftrightarrow (p \rightarrow r)$	$\neg n_7 \lor \neg p \lor r$
			$p \vee n_7$
			$\neg r \lor n_7$

Convert the definition formulas to CNF in the standard way

Optimized Definitional Clause Form Transformation

If

- we introduce a name for a subformula and
- the occurence of the subformula is positive or negative

then an implication can be used instead of equivalence

Example

Liample			
	subformula	definition	clauses
	$\neg((p \to q) \land (p \land q \to r) \to (p \to r))$		<i>n</i> ₁
n_1	$\neg((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (p \rightarrow r))$	$n_1 \rightarrow \neg n_2$	$\neg n_1 \lor \neg n_2$
			$n_1 \vee n_2$
$\overline{n_2}$	$(p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (p \rightarrow r)$	$(n_3 \rightarrow n_7) \rightarrow n_2$	$\neg n_2 \lor \neg n_3 \lor n_7$
			$n_3 \vee n_2$
			$\neg n_7 \lor n_2$
$\overline{n_3}$	$(p \rightarrow q) \land (p \land q \rightarrow r)$	$n_3 \rightarrow (n_4 \wedge n_5)$	$\neg n_3 \lor n_4$
			$\neg n_3 \lor n_5$
			$\neg n_4 \lor \neg n_5 \lor n_3$
n_4	p o q	$n_4 \rightarrow (p \rightarrow q)$	$\neg n_4 \lor \neg p \lor q$
			$p \vee n_4$
			$\neg q \lor n_4$
<i>n</i> ₅	$p \wedge q \rightarrow r$	$n_5 \rightarrow (n_6 \rightarrow r)$	$\neg n_5 \lor \neg n_6 \lor r$
			$n_6 \vee n_5$
			$\neg r \lor n_5$
n_6	$p \wedge q$	$n_6 \rightarrow (p \land q)$	$\neg n_6 \lor p$
			$\neg n_6 \lor q$
			$\neg p \lor \neg q \lor n_6$
n ₇	$p \rightarrow r$	$(p \rightarrow r) \rightarrow n_7$	$\neg n_7 \lor \neg p \lor r$
			$p \vee n_7$
			$\neg r \lor n_7$

Example

LAG	subformula	definition	clauses
	$\neg((p \to q) \land (p \land q \to r) \to (p \to r))$		<i>n</i> ₁
n_1	$\neg((p \to q) \land (p \land q \to r) \to (p \to r))$	$n_1 \rightarrow \neg n_2$	$\neg n_1 \lor \neg n_2$
			$n_1 \vee n_2$
n ₂	$(p \to q) \land (p \land q \to r) \to (p \to r)$	$(n_3 \rightarrow n_7) \rightarrow n_2$	$\neg n_2 \lor \neg n_3 \lor n_7$
			$n_3 \vee n_2$
			$\neg n_7 \lor n_2$
n ₃	$(p \rightarrow q) \land (p \land q \rightarrow r)$	$n_3 \rightarrow (n_4 \wedge n_5)$	$\neg n_3 \lor n_4$
			$\neg n_3 \lor n_5$
			$\neg n_4 \lor \neg n_5 \lor n_3$
	p o q	$n_4 \rightarrow (p \rightarrow q)$	$\neg n_4 \lor \neg p \lor q$
			$p \lor n_4$
			$\neg q \lor n_4$
n ₅	$p \wedge q \rightarrow r$	$n_5 \rightarrow (n_6 \rightarrow r)$	$\neg n_5 \lor \neg n_6 \lor r$
			$n_6 \vee n_5$
			$\neg r \lor n_5$
$\overline{n_6}$	$p \wedge q$	$n_6 \rightarrow (p \land q)$	$\neg n_6 \lor p$
			$\neg n_6 \lor q$
			$\neg p \lor \neg q \lor n_6$
n ₇	$p \rightarrow r$	$(p \rightarrow r) \rightarrow n_7$	$\neg n_7 \lor \neg p \lor r$
			$p \vee n_7$
			$\neg r \lor n_7$

The clauses in red are omitted by optimized transformation

Example

LAG	subformula	definition	clauses
	$\neg((p \to q) \land (p \land q \to r) \to (p \to r))$		n_1
<i>n</i> ₁	$\neg((p \to q) \land (p \land q \to r) \to (p \to r))$	$n_1 \rightarrow \neg n_2$	$\neg n_1 \lor \neg n_2$
n ₂	$(p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (p \rightarrow r)$	$(n_3 \rightarrow n_7) \rightarrow n_2$	$n_1 \lor n_2$ $\neg n_2 \lor \neg n_3 \lor n_7$
			$n_3 \lor n_2$ $\neg n_7 \lor n_2$
n ₃	$(p \to q) \land (p \land q \to r)$	$n_3 \rightarrow (n_4 \wedge n_5)$	$ \begin{array}{ccc} \neg n_3 \lor & n_4 \\ \neg n_3 \lor & n_5 \end{array} $
n ₄	p o q	$n_4 o (p o q)$	$\neg n_4 \lor \neg p \lor q$
n ₅	$p \wedge q \rightarrow r$	$n_5 \rightarrow (n_6 \rightarrow r)$	$\neg n_5 \lor \neg n_6 \lor r$
n ₆	$p \wedge q$	$n_6 \rightarrow (p \land q)$	$\neg p \lor \neg q \lor n_6$
n ₇	p ightarrow r	$(p \rightarrow r) \rightarrow \mathbf{n}_7$	$\begin{array}{ccc} p & \vee & n_7 \\ p & \vee & n_7 \\ \neg r & \vee & n_7 \end{array}$

The result is fewer clauses

Satisfiability-checking for sets of clauses

The CNF transformation of

$$\neg((p \to q) \land (p \land q \to r) \to (p \to r))$$

gives the set of four clauses:

$$\neg p \lor q$$

$$\neg p \lor \neg q \lor r$$

$$p$$

$$\neg r$$

To satisfy all these clauses we must assign 1 to p and 0 to r, so we do not have to guess values for them

In this case, we can do even better and establish unsatisfiability with no guessing

Satisfiability-checking for sets of clauses

The CNF transformation of

$$\neg((p \to q) \land (p \land q \to r) \to (p \to r))$$

gives the set of four clauses:

$$\neg p \lor q$$

$$\neg p \lor \neg q \lor r$$

$$p$$

$$\neg r$$

To satisfy all these clauses we must assign 1 to p and 0 to r, so we do not have to guess values for them

In this case, we can do even better and establish unsatisfiability with no guessing

Satisfiability-checking for sets of clauses

The CNF transformation of

$$\neg((p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (p \rightarrow r))$$

gives the set of four clauses:

$$\neg p \lor q$$

$$\neg p \lor \neg q \lor r$$

$$p$$

$$\neg r$$

To satisfy all these clauses we must assign 1 to p and 0 to r, so we do not have to guess values for them

In this case, we can do even better and establish unsatisfiability with no guessing

$$\{0 \rightarrow 1, r \rightarrow 0, q \rightarrow 1\}$$

$$\neg p \lor q$$

$$\neg p \lor \neg q \lor r$$

$$p$$

$$\neg r$$

$$\{p \mapsto 1 \ r \mapsto 0, q \mapsto 1\}$$

$$\begin{array}{c} -p \lor q \\ -p \lor \neg q \lor r \\ \hline p \\ \neg r \end{array}$$

$$\{p \mapsto 1, r \mapsto 0, q \mapsto 1\}$$

$$-p \lor q$$

$$-p \lor \neg q \lor r$$

$$p$$

$$\{p \mapsto 1, r \mapsto 0 \ q \mapsto 1\}$$

$$\neg p \lor q$$

$$\neg p \lor \neg q \lor r$$

$$p$$

$$\neg r$$

$$\{p \mapsto 1, r \mapsto 0 \ q \mapsto 1\}$$

$$-p \lor q$$

$$-p \lor \neg q \lor r$$

$$p$$

$$\{p \mapsto 1, r \mapsto 0 \mid q \mapsto 1\}$$

$$-p \vee q$$

$$-p \vee \neg q \vee r$$

$$p$$

$$\{p \mapsto 1, r \mapsto 0, q \mapsto 1\}$$

$$p \lor q$$

$$p \lor \neg q \lor r$$

$$\{p \mapsto 1, r \mapsto 0, q \mapsto 1\}$$

$$\begin{array}{c} \neg p \lor q \\ \neg p \lor \neg q \lor r \end{array}$$

$$\{p \mapsto 1, r \mapsto 0, q \mapsto 1\}$$

$$\begin{array}{c} \neg p \lor \mathbf{q} \\ \neg p \lor \neg \mathbf{q} \lor r \end{array}$$

$$\{p \mapsto 1, r \mapsto 0, q \mapsto 1\}$$

$$\begin{array}{c} \neg p \lor q \\ \neg p \lor \neg q \lor \square \end{array}$$

Unit propagation

Let S be a set of clauses.

Unit propagation. Repeatedly apply the following transformation:

if S contains a unit clause, i.e. a clause consisting of one literal L, then

- 1. remove from S every clause of the form $L \vee C'$
- 2. replace in S every clause of the form $\overline{L} \vee C'$ by the clause C'

n_1	$\neg q \lor n_4$
$\neg n_1 \lor \neg n_2$	$\neg n_5 \vee \neg n_6 \vee r$
$n_1 \vee n_2$	$n_6 \vee n_5$
$\neg n_2 \lor \neg n_3 \lor n_7$	$\neg r \lor n_5$
$n_3 \vee n_2$	$\neg n_6 \lor p$
$\neg n_7 \lor n_2$	$\neg n_6 \lor q$
$\neg n_3 \lor n_4$	$\neg p \lor \neg q \lor n_6$
$\neg n_3 \lor n_5$	$\neg n_7 \vee \neg p \vee r$
$\neg n_4 \lor \neg n_5 \lor n_3$	$0 \vee n_7$
$\neg n_4 \lor \neg p \lor q$	$\neg r \lor n_7$
$p \vee n_4$	

n_1	$\neg q \lor n_4$
$\neg n_1 \lor \neg n_2$	$\neg n_5 \lor \neg n_6 \lor r$
$n_1 \vee n_2$	$n_6 \vee n_5$
$\neg n_2 \lor \neg n_3 \lor n_7$	$\neg r \lor n_5$
$n_3 \vee n_2$	$\neg n_6 \lor p$
$\neg n_7 \lor n_2$	$\neg n_6 \lor q$
$\neg n_3 \lor n_4$	$\neg p \lor \neg q \lor n_6$
$\neg n_3 \lor n_5$	$\neg n_7 \vee \neg p \vee r$
$\neg n_4 \lor \neg n_5 \lor n_3$	$p \vee n_7$
$\neg n_4 \lor \neg p \lor q$	$\neg r \lor n_7$
$p \vee n_4$	

	$\neg q \lor n_4$
$\neg n_2$	$\neg n_5 \vee \neg n_6 \vee r$
	$n_6 \vee n_5$
$\neg n_2 \lor \neg n_3 \lor n_7$	$\neg r \lor n_5$
$n_3 \vee n_2$	$\neg n_6 \lor p$
$\neg n_7 \lor n_2$	$\neg n_6 \lor q$
$\neg n_3 \lor n_4$	$\neg p \lor \neg q \lor n_6$
$\neg n_3 \lor n_5$	$\neg n_7 \vee \neg p \vee r$
$\neg n_4 \lor \neg n_5 \lor n_3$	$p \vee n_7$
$\neg n_4 \lor \neg p \lor q$	$\neg r \lor n_7$
$p \vee n_4$	

```
\neg q \lor n_4
                                     \neg n_5 \lor \neg n_6 \lor r
                                     n_6 \vee n_5
                                     \neg r \vee n_5
                                     \neg n_6 \lor p
                                     \neg n_6 \lor q
            n_4
                                    \neg p \lor \neg q \lor n_6
            n_5
\neg n_4 \lor \neg p \lor q
p \vee n_4
```

$$\neg n_6$$

$$\neg n_6 \lor q$$

 $\neg q \lor n_6$

C

$$\neg n_6 \lor q$$

$$\neg q \lor n_6$$

q

We established unsatisfiability of this set of clauses in a completely deterministic way, by unit propagation.

DPLL = splitting + unit propagation

```
procedure DPLL(S)
input: set of clauses S
output: satisfiable or unsatisfiable
parameters: function select literal
begin
S := propagate(S)
if S is empty then return satisfiable
if S contains □ then return unsatisfiable
L := select\ literal(S)
if DPLL(S \cup \{L\}) = satisfiable
 then return satisfiable
 else return DPLL(S \cup \{\overline{L}\})
end
```

DPLL, Example 1

Can be illustrated using **DPLL trees** (similar to splitting trees)

Since all branches end up in a set contaning the empty clause, the initial set of clauses is unsatisfiable.

DPLL, Example 1

Can be illustrated using DPLL trees (similar to splitting trees)

Since all branches end up in a set containing the empty clause, the initial set of clauses is unsatisfiable.

DPLL, Example 2

The set of clauses is satisfiable

DPLL, Example 2

A model is described by all selected literals and unit-propagated literals on the branch ending in the empty set

DPLL, Example 2

This DPLL tree gives us the model $\{p \mapsto 0, q \mapsto 0\}$

Two optimizations

- 1. Any clause $p \lor \neg p \lor C$ is a tautology

 Tautologies can be removed from a set without affecting its satisfiability
- A literal L in S is called pure if S contains no clauses of the form L ∨ C
 All clauses containing a pure literal can be satisfied by making that literal true
 Hence, clauses containing pure literals can be removed, too

Two optimizations

- 1. Any clause $p \lor \neg p \lor C$ is a tautology

 Tautologies can be removed from a set without affecting its satisfiability
- 2. A literal L in S is called pure if S contains no clauses of the form $\overline{L} \vee C$ All clauses containing a pure literal can be satisfied by making that literal true

Hence, clauses containing pure literals can be removed, too

Two optimizations

- 1. Any clause $p \lor \neg p \lor C$ is a tautology

 Tautologies can be removed from a set without affecting its satisfiability
- A literal L in S is called pure if S contains no clauses of the form \(\overline{L} \times C\)
 All clauses containing a pure literal can be satisfied by making that literal true
 Hence, clauses containing pure literals can be removed, too

$$\begin{array}{c}
 \neg p_2 \lor \neg p_3 \\
 p_1 \lor \neg p_2 \\
 \neg p_1 \lor p_2 \lor \neg p_3 \\
 \neg p_1 \lor \neg p_3 \\
 p_1 \lor p_2 \\
 \neg p_1 \lor \neg p_2 \lor \neg p_3
 \end{array}$$

Literal $\neg p_3$ is pure in this clause set: we can remove all clauses containing it (by assigning 0 to p_3)

$$p_1 \vee \neg p_2$$

$$p_1 \vee p_2$$

Literal $\neg p_3$ is pure in this clause set: we can remove all clauses containing it (by assigning 0 to p_3)

$$p_1 \vee \neg p_2$$

$$p_1$$
 ∨ p_2

Literal p_1 is pure in the resulting set: we can remove all clauses containing it (by assigning 1 to p_1)

Literal p_1 is pure in the resulting set: we can remove all clauses containing it (by assigning 1 to p_1)

We obtain the empty set of clauses

$$\begin{array}{c}
\neg p_2 \lor \neg p_3 \\
p_1 \lor \neg p_2 \\
\neg p_1 \lor p_2 \lor \neg p_3 \\
\neg p_1 \lor \neg p_3 \\
p_1 \lor p_2 \\
\neg p_1 \lor \neg p_2 \lor \neg p_3
\end{array}$$

Since *r* remained unconstrained, this gives us two models:

$$\{p_1 \mapsto 1, p_2 \mapsto 0, p_3 \mapsto 0\}$$

 $\{p_1 \mapsto 1, p_2 \mapsto 1, p_3 \mapsto 0\}$

Horn clauses

A clause is called Horn if it contains at most one positive literal. Examples:

$$\begin{array}{c}
p_1 \\
\neg p_1 \lor p_2 \\
\neg p_1 \lor \neg p_2 \lor p_3 \\
\neg p_3 \lor \neg p_4
\end{array}$$

The following clauses are non-Horn:

$$p_1 \lor p_2$$

 $p_1 \lor \neg p_2 \lor p_3$

Horn clauses

A clause is called Horn if it contains at most one positive literal. Examples:

$$\begin{array}{c}
p_1 \\
\neg p_1 \lor p_2 \\
\neg p_1 \lor \neg p_2 \lor p_3 \\
\neg p_3 \lor \neg p_4
\end{array}$$

The following clauses are non-Horn:

$$p_1 \lor p_2 \\ p_1 \lor \neg p_2 \lor p_3$$

$$\begin{array}{c}
p_1 \\
\neg p_1 \lor p_2 \\
\neg p_1 \lor \neg p_2 \lor p_3 \\
\neg p_3 \lor \neg p_4
\end{array}$$

$$\begin{array}{c}
\rho_1 \\
\neg p_1 \lor p_2 \\
\neg p_1 \lor \neg p_2 \lor p_3 \\
\neg p_3 \lor \neg p_4
\end{array}$$

$$\begin{array}{c}
p_2 \\
\neg p_2 \lor p_3 \\
\neg p_3 \lor \neg p_4
\end{array}$$

Can be decided by unit propagation

$$\begin{array}{c}
p_1 \\
\neg p_1 \lor p_2 \\
\neg p_1 \lor \neg p_2 \lor p_3 \\
\neg p_3 \lor \neg p_4
\end{array}$$

Model: { p_1 → 1, p_2 → 1, p_3 → 1, p_4 → 0 }

Can be decided by unit propagation

$$\begin{array}{c}
p_1 \\
\neg p_1 \lor p_2 \\
\neg p_1 \lor \neg p_2 \lor p_3 \\
\neg p_3 \lor \neg p_4
\end{array}$$

Model: { $p_1 \mapsto 1, p_2 \mapsto 1, p_3 \mapsto 1, p_4 \mapsto 0$ }

Note: deleting a literal from a Horn clause gives a Horn clause.

Can be decided by unit propagation

$$\begin{array}{c}
p_1 \\
\neg p_1 \lor p_2 \\
\neg p_1 \lor \neg p_2 \lor p_3 \\
\neg p_3 \lor \neg p_4
\end{array}$$

Model:
$$\{ p_1 \mapsto 1, p_2 \mapsto 1, p_3 \mapsto 1, p_4 \mapsto 0 \}$$

Note: deleting a literal from a Horn clause gives a Horn clause.

Therefore, unit propagation applied to a set C of Horn clauses gives a set C' of Horn clauses.

Can be decided by unit propagation

$$\begin{array}{c}
p_1 \\
\neg p_1 \lor p_2 \\
\neg p_1 \lor \neg p_2 \lor p_3 \\
\neg p_3 \lor \neg p_4
\end{array}$$

Model:
$$\{ p_1 \mapsto 1, p_2 \mapsto 1, p_3 \mapsto 1, p_4 \mapsto 0 \}$$

Note: deleting a literal from a Horn clause gives a Horn clause.

Therefore, unit propagation applied to a set C of Horn clauses gives a set C' of Horn clauses.

- 1. C' contains \square . Then, C' (and hence C) is unsatisfiable.
- 2. C' does not contain \square .

Can be decided by unit propagation

$$\begin{array}{c}
p_1 \\
\neg p_1 \lor p_2 \\
\neg p_1 \lor \neg p_2 \lor p_3 \\
\neg p_3 \lor \neg p_4
\end{array}$$

Model: {
$$p_1 \mapsto 1, p_2 \mapsto 1, p_3 \mapsto 1, p_4 \mapsto 0$$
 }

Note: deleting a literal from a Horn clause gives a Horn clause.

Therefore, unit propagation applied to a set C of Horn clauses gives a set C' of Horn clauses.

- 1. C' contains \square . Then, C' (and hence C) is unsatisfiable.
- 2. C' does not contain \square .
 - Each clause in C' has at least two literals
 - Hence each clause in C' contains at least one negative literal;
 - Hence setting all variables in C' to 0 satisfies C'.

Can be decided by unit propagation

$$\begin{array}{c}
p_1 \\
\neg p_1 \lor p_2 \\
\neg p_1 \lor \neg p_2 \lor p_3 \\
\neg p_3 \lor \neg p_4
\end{array}$$

Model: {
$$p_1 \mapsto 1, p_2 \mapsto 1, p_3 \mapsto 1, p_4 \mapsto 0$$
 }

Note: deleting a literal from a Horn clause gives a Horn clause.

Therefore, unit propagation applied to a set C of Horn clauses gives a set C' of Horn clauses.

- 1. C' contains \square . Then, C' (and hence C) is unsatisfiable.
- 2. C' does not contain \square . Then:
 - Each clause in C' has at least two literals.
 - Hence each clause in C' contains at least one negative literal;
 - ullet Hence setting all variables in C' to 0 satisfies C' .

Can be decided by unit propagation

$$\begin{array}{c}
p_1 \\
\neg p_1 \lor p_2 \\
\neg p_1 \lor \neg p_2 \lor p_3 \\
\neg p_3 \lor \neg p_4
\end{array}$$

Model: {
$$p_1 \mapsto 1, p_2 \mapsto 1, p_3 \mapsto 1, p_4 \mapsto 0$$
 }

Note: deleting a literal from a Horn clause gives a Horn clause.

Therefore, unit propagation applied to a set C of Horn clauses gives a set C' of Horn clauses.

- 1. C' contains \square . Then, C' (and hence C) is unsatisfiable.
- 2. C' does not contain \square . Then:
 - Each clause in C' has at least two literals.
 - Hence each clause in C' contains at least one negative literal;
 - Hence setting all variables in C' to 0 satisfies C'

Can be decided by unit propagation

$$\begin{array}{c}
p_1 \\
\neg p_1 \lor p_2 \\
\neg p_1 \lor \neg p_2 \lor p_3 \\
\neg p_3 \lor \neg p_4
\end{array}$$

Model: {
$$p_1 \mapsto 1, p_2 \mapsto 1, p_3 \mapsto 1, p_4 \mapsto 0$$
 }

Note: deleting a literal from a Horn clause gives a Horn clause.

Therefore, unit propagation applied to a set C of Horn clauses gives a set C' of Horn clauses.

- 1. C' contains \square . Then, C' (and hence C) is unsatisfiable.
- 2. C' does not contain \square . Then:
 - Each clause in C' has at least two literals.
 - Hence each clause in C' contains at least one negative literal;
 - Hence setting all variables in C' to 0 satisfies C'.

Very simple but efficient SAT solver: MiniSat, http://minisat.se/

Very simple but efficient SAT solver: MiniSat, http://minisat.se/

$$\begin{array}{c}
p_1 \\
\neg p_1 \lor p_2 \\
\neg p_1 \lor \neg p_2 \lor p_3 \\
\neg p_2 \lor \neg p_3
\end{array}$$

Very simple but efficient SAT solver: MiniSat, http://minisat.se/

$$\begin{array}{c}
p_1 \\
\neg p_1 \lor p_2 \\
\neg p_1 \lor \neg p_2 \lor p_3 \\
\neg p_2 \lor \neg p_3
\end{array}$$

DIMACS input format:

```
p cnf 3 4
1 0
-1 2 0
-1 -2 3 0
-2 -3 0
```

Very simple but efficient SAT solver: MiniSat, http://minisat.se/

$$\begin{array}{c}
p_1 \\
\neg p_1 \lor p_2 \\
\neg p_1 \lor \neg p_2 \lor p_3 \\
\neg p_2 \lor \neg p_3
\end{array}$$

DIMACS input format:

```
p cnf 3 4
1 0
-1 2 0
-1 -2 3 0
-2 -3 0
```

3 variables, 4 clauses.

Very simple but efficient SAT solver: MiniSat, http://minisat.se/

$$\begin{array}{c}
p_1 \\
\neg p_1 \lor p_2 \\
\neg p_1 \lor \neg p_2 \lor p_3 \\
\neg p_2 \lor \neg p_3
\end{array}$$

DIMACS input format:

p cnf 3 4 1 0 -1 2 0 -1 -2 3 0 -2 -3 0

3 variables, 4 clauses.

$$\neg p_1 \lor \neg p_2 \lor p_3$$

Suppose we have variables v_1, \ldots, v_n and we want to express that exactly k of them are true

We will write this property as a formula $T_k(v_1, \ldots, v_n)$

Such formulas are very useful for encoding various problems in SAT

Suppose we have variables v_1, \ldots, v_n and we want to express that exactly k of them are true

We will write this property as a formula $T_k(v_1, \ldots, v_n)$

Such formulas are very useful for encoding various problems in SAT

First, let us express some simple special cases:

$$\begin{array}{lll}
T_0(v_1, \dots, v_n) & \stackrel{\text{def}}{=} & \neg v_1 \wedge \dots \wedge \neg v_n \\
T_1(v_1, \dots, v_n) & \stackrel{\text{def}}{=} & (v_1 \vee \dots \vee v_n) \wedge \bigwedge_{i < j} (\neg v_i \vee \neg v_j)
\end{array}$$

Suppose we have variables v_1, \ldots, v_n and we want to express that exactly k of them are true

We will write this property as a formula $T_k(v_1, \ldots, v_n)$

Such formulas are very useful for encoding various problems in SAT

First, let us express some simple special cases:

$$\begin{array}{ccc} T_0(v_1,\ldots,v_n) & \stackrel{\mathrm{def}}{=} & \neg v_1 \wedge \ldots \wedge \neg v_n \\ T_1(v_1,\ldots,v_n) & \stackrel{\mathrm{def}}{=} & (v_1 \vee \ldots \vee v_n) \wedge \bigwedge_{i < j} (\neg v_i \vee \neg v_j) \end{array}$$

$$T_{n-1}(v_1,\ldots,v_n) \stackrel{\text{def}}{=} (\neg v_1 \vee \ldots \vee \neg v_n) \wedge \bigwedge_{i < j} (v_i \vee v_j)$$

$$T_n(v_1,\ldots,v_n) \stackrel{\text{def}}{=} v_1 \wedge \ldots \wedge v_n$$

To define T_k for 0 < k < n, introduce two formulas:

```
T_{\leq k}(v_1,\ldots,v_n): at most k variables among v_1,\ldots,v_n are true, where k=0\ldots n-1
```

 $T_{\geq k}(v_1,\ldots,v_n)$: at least k variables among v_1,\ldots,v_n are true, where $k=1\ldots n$

Expressing Properties "k out of n variables are true"

To define T_k for 0 < k < n, introduce two formulas:

```
T_{\leq k}(v_1,\ldots,v_n): at most k variables among v_1,\ldots,v_n are true, where k=0\ldots n-1
```

 $T_{\geq k}(v_1,\ldots,v_n)$: at least k variables among v_1,\ldots,v_n are true, where $k=1\ldots n$

Expressing Properties "k out of n variables are true"

To define T_k for 0 < k < n, introduce two formulas:

$$T_{\leq k}(v_1,\ldots,v_n)$$
: at most k variables among v_1,\ldots,v_n are true, where $k=0\ldots n-1$

 $T_{\geq k}(v_1,\ldots,v_n)$: at least k variables among v_1,\ldots,v_n are true, where $k=1\ldots n$

$$T_{\leq k}(v_1, \dots, v_n) \stackrel{\text{def}}{=} \bigwedge_{\substack{X_1, \dots, X_{k+1} \in \{v_1, \dots, v_n\} \\ X_1, \dots, X_{k+1} \text{ are distinct}}} \neg x_1 \lor \dots \lor \neg x_{k+1}$$

Expressing Properties "k out of n variables are true"

To define T_k for 0 < k < n, introduce two formulas:

 $T_{\leq k}(v_1,\ldots,v_n)$: at most k variables among v_1,\ldots,v_n are true, where $k=0\ldots n-1$

 $T_{\geq k}(v_1,\ldots,v_n)$: at least k variables among v_1,\ldots,v_n are true, where $k=1\ldots n$

$$T_{\leq k}(v_1,\ldots,v_n) \stackrel{\text{def}}{=} \bigwedge_{\substack{x_1,\ldots,x_{k+1} \in \{v_1,\ldots,v_n\}\\x_1,\ldots,x_{k+1} \text{ are distinct}}} \neg x_1 \lor \cdots \lor \neg x_{k+1}$$

$$T_{\geq k}(v_1, \dots, v_n) \stackrel{\text{def}}{=} \bigwedge \qquad x_1 \vee \dots \vee x_{n-k+1}$$
$$x_1, \dots, x_{n-k+1} \in \{v_1, \dots, v_n\}$$
$$x_1, \dots, x_{n-k+1} \text{ are distinct}$$

4		8	7	9			3	
		9	8	2		5		
	2							
9		2			6		1	7
		6	5	8	7	9		
7	8		2			4		6
							4	
		5		4	8	2		
	9			7	2	3		5

Enter digits from 1 to 9 into the blank spaces

Every row must contain one of each digit

So must every column as must every 3x3 square

4		8	7	9			3	
		9	8	2		5		
	2							
9		2			6		1	7
		6	5	8	7	9		
7	8		2			4		6
							4	
		5		4	8	2		
	9			7	2	3		5

Enter digits from 1 to 9 into the blank spaces

Every row must contain one of each digit

So must every column as must every 3x3 square

4		8	7	9			3	
		9	8	2		5		
	2							
9		2			6		1	7
		6	5	8	7	9		
7	8		2			4		6
							4	
		5		4	8	2		
	9			7	2	3		5

Enter digits from 1 to 9 into the blank spaces

Every row must contain one of each digit

So must every column

as must every 3x3 square

4		8	7	9			3	
		9	8	2		5		
	2							
9		2			6		1	7
		6	5	8	7	9		
7	8		2			4		6
							4	
		5		4	8	2		
	9			7	2	3		5

Enter digits from 1 to 9 into the blank spaces

Every row must contain one of each digit

So must every column

as must every 3x3 square

4	1	8	7	9	5	6	3	2
6	3	9	8	2	1	5	7	4
5	2	7	3	6	4	1	8	9
9	5	2	4	3	6	8	1	7
1	4	6	5	8	7	9	2	3
7	8	3	2	1	9	4	5	6
2	6	1	9	5	3	7	4	8
3	7	5	6	4	8	2	9	1
8	9	4	1	7	2	3	6	5

Enter digits from 1 to 9 into the blank spaces

Every row must contain one of each digit

So must every column

as must every 3x3 square

4	1	8	7	9	5	6	3	2
6	3	9	8	2	1	5	7	4
5	2	7	3	6	4	1	8	9
9	5	2	4	3	6	8	1	7
1	4	6	5	8	7	9	2	3
7	8	3	2	1	9	4	5	6
2	6	1	9	5	3	7	4	8
3	7	5	6	4	8	2	9	1
8	9	4	1	7	2	3	6	5

Enter digits from 1 to 9 into the blank spaces

Every row must contain one of each digit

So must every column as must every 3x3 square

4	1	8	7	9	5	6	3	2
6	3	9	8	2	1	5	7	4
5	2	7	3	6	4	1	8	9
9	5	2	4	3	6	8	1	7
1	4	6	5	8	7	9	2	3
7	8	3	2	1	9	4	5	6
2	6	1	9	5	3	7	4	8
3	7	5	6	4	8	2	9	1
8	9	4	1	7	2	3	6	5

Enter digits from 1 to 9 into the blank spaces

Every row must contain one of each digit

So must every column

as must every 3x3 square

4	1	8	7	9	5	6	3	2
6	3	9	8	2	1	5	7	4
5	2	7	3	6	4	1	8	9
9	5	2	4	3	6	8	1	7
1	4	6	5	8	7	9	2	3
7	8	3	2	1	9	4	5	6
2	6	1	9	5	3	7	4	8
3	7	5	6	4	8	2	9	1
8	9	4	1	7	2	3	6	5

Enter digits from 1 to 9 into the blank spaces

Every row must contain one of each digit

So must every column

as must every 3x3 square

ď	1	2	3	4	5	6	7	8	9
1		9			7	2	3		5
2			5		4	8	2		
3								4	
4	7	8		2			4		6
5			6	5	8	7	9		
6	9		2			6		1	7
7		2							
8			9	8	2		5		
9	4		8	7	9			3	

9	4		8	7	9			3	
8			9	8	2		5		
7		2							
6	9		2			6		1	7
5			6	5	8	7	9		
4	7	8		2			4		6
3								4	
2			5		4	8	2		
1		9			7	2	3		5
	1	2	3	4	5	6	7	8	9

Introduce 729 propositional variables v_{rcd} , where $r, c, d \in \{1, \dots, d\}$

The variable v_{rcd} denotes that the cell in the row number r and column number c contains the digit d

Introduce 729 propositional variables v_{rcd} , where $r, c, d \in \{1, ..., d\}$

The variable v_{rcd} denotes that the cell in the row number r and column number c contains the digit d

For example, this configuration satisfies the formula $v_{129} \wedge v_{268} \wedge \neg v_{691}$

Introduce 729 propositional variables v_{rcd} , where $r, c, d \in \{1, ..., d\}$

The variable v_{rcd} denotes that the cell in the row number r and column number c contains the digit d

For example, this configuration satisfies the formula $V_{129} \wedge V_{268} \wedge \neg V_{691}$

We should express all rules of Sudoku using the variables V_{rcd}

We have to write down that each cell contains exactly one digit

We have to write down that each cell contains exactly one digit

```
 \left\{ \begin{array}{l} \left\{ v_{rc1} \lor v_{rc2} \lor \ldots \lor v_{rc8} \lor v_{rc9} \mid r,c \in \left\{ 1,\ldots,9 \right. \right\} \right\} \\ \left\{ \neg v_{rc1} \lor \neg v_{rc2} \mid r,c \in \left\{ 1,\ldots,9 \right. \right\} \right\} \\ \left\{ \neg v_{rc1} \lor \neg v_{rc3} \mid r,c \in \left\{ 1,\ldots,9 \right. \right\} \right\} \\ \vdots \\ \left\{ \neg v_{rc8} \lor \neg v_{rc9} \mid r,c \in \left\{ 1,\ldots,9 \right. \right\} \right\}
```

We have to write down that each cell contains exactly one digit

```
 \left\{ \begin{array}{l} \left\{ v_{rc1} \lor v_{rc2} \lor \ldots \lor v_{rc8} \lor v_{rc9} \mid r,c \in \left\{ 1,\ldots,9 \right. \right\} \right\} \\ \left\{ \neg v_{rc1} \lor \neg v_{rc2} \mid r,c \in \left\{ 1,\ldots,9 \right. \right\} \right\} \\ \left\{ \neg v_{rc1} \lor \neg v_{rc3} \mid r,c \in \left\{ 1,\ldots,9 \right. \right\} \right\} \\ \vdots \\ \left\{ \neg v_{rc8} \lor \neg v_{rc9} \mid r,c \in \left\{ 1,\ldots,9 \right. \right\} \right\}
```

Every row must contain one of each digit:

We have to write down that each cell contains exactly one digit

```
 \left\{ \begin{array}{l} \left\{ v_{rc1} \lor v_{rc2} \lor \ldots \lor v_{rc8} \lor v_{rc9} \mid r,c \in \left\{ 1,\ldots,9 \right\} \right\} \\ \left\{ \neg v_{rc1} \lor \neg v_{rc2} \mid r,c \in \left\{ 1,\ldots,9 \right\} \right\} \\ \left\{ \neg v_{rc1} \lor \neg v_{rc3} \mid r,c \in \left\{ 1,\ldots,9 \right\} \right\} \\ \vdots \\ \left\{ \neg v_{rc8} \lor \neg v_{rc9} \mid r,c \in \left\{ 1,\ldots,9 \right\} \right\} \end{array}
```

Every row must contain one of each digit:

$$\{ \neg v_{r,c,d} \lor \neg v_{r,c',d} \mid r,c,c',d \in \{ 1,\ldots,9 \}, c < c' \}$$

We have to write down that each cell contains exactly one digit

```
 \left\{ v_{rc1} \lor v_{rc2} \lor \ldots \lor v_{rc8} \lor v_{rc9} \mid r, c \in \{1, \ldots, 9\} \right\} 
 \left\{ \neg v_{rc1} \lor \neg v_{rc2} \mid r, c \in \{1, \ldots, 9\} \right\} 
 \left\{ \neg v_{rc1} \lor \neg v_{rc3} \mid r, c \in \{1, \ldots, 9\} \right\} 
 \vdots 
 \left\{ \neg v_{rc8} \lor \neg v_{rc9} \mid r, c \in \{1, \ldots, 9\} \right\}
```

Every row must contain one of each digit:

$$\{ \neg v_{r,c,d} \lor \neg v_{r,c',d} \mid r,c,c',d \in \{1,\ldots,9\}, c < c' \}$$

Every column must contain one of each digit: similar

Every 3x3 square must contain one of each digit: similar

We have to write down that each cell contains exactly one digit

$$\left\{ \begin{array}{l} \{ v_{rc1} \lor v_{rc2} \lor \ldots \lor v_{rc8} \lor v_{rc9} \mid r,c \in \{1,\ldots,9\} \} \\ \{ \lnot v_{rc1} \lor \lnot v_{rc2} \mid r,c \in \{1,\ldots,9\} \} \\ \{ \lnot v_{rc1} \lor \lnot v_{rc3} \mid r,c \in \{1,\ldots,9\} \} \\ \vdots \\ \{ \lnot v_{rc8} \lor \lnot v_{rc9} \mid r,c \in \{1,\ldots,9\} \} \end{array} \right.$$

2,997 clauses 6,561 literals

Every row must contain one of each digit:

$$\{ \neg v_{r,c,d} \lor \neg v_{r,c',d} \mid r,c,c',d \in \{1,\ldots,9\}, c < c' \}$$

Every column must contain one of each digit: similar

Every 3x3 square must contain one of each digit: similar

We have to write down that each cell contains exactly one digit

$$\left\{ \begin{array}{l} \{ v_{rc1} \lor v_{rc2} \lor \ldots \lor v_{rc8} \lor v_{rc9} \mid r,c \in \{1,\ldots,9\} \} \\ \{ \lnot v_{rc1} \lor \lnot v_{rc2} \mid r,c \in \{1,\ldots,9\} \} \\ \{ \lnot v_{rc1} \lor \lnot v_{rc3} \mid r,c \in \{1,\ldots,9\} \} \\ \vdots \\ \{ \lnot v_{rc8} \lor \lnot v_{rc9} \mid r,c \in \{1,\ldots,9\} \} \end{array} \right.$$

2,997 clauses 6,561 literals

Every row must contain one of each digit:

$$\{ \neg v_{r,c,d} \lor \neg v_{r,c',d} \mid r,c,c',d \in \{ 1,\ldots,9 \}, c < c' \}$$

2,916 clauses 5,832 literals

Every column must contain one of each digit: similar

2,916 clauses 5,832 literals

Every 3x3 square must contain one of each digit: similar

2,916 clauses, 5,832 literals

We have to write down that each cell contains exactly one digit

$$\left\{ \begin{array}{l} \{ \, v_{rc1} \vee v_{rc2} \vee \ldots \vee v_{rc8} \vee v_{rc9} \mid r,c \in \{ \, 1,\ldots,9 \, \} \, \} \\ \{ \, \neg v_{rc1} \vee \neg v_{rc2} \mid r,c \in \{ \, 1,\ldots,9 \, \} \, \} \\ \{ \, \neg v_{rc1} \vee \neg v_{rc3} \mid r,c \in \{ \, 1,\ldots,9 \, \} \, \} \\ \vdots \\ \{ \, \neg v_{rc8} \vee \neg v_{rc9} \mid r,c \in \{ \, 1,\ldots,9 \, \} \, \} \end{array} \right.$$

2,997 clauses 6,561 literals

Every row must contain one of each digit:

$$\{ \neg v_{r,c,d} \lor \neg v_{r,c',d} \mid r,c,c',d \in \{1,\ldots,9\}, c < c' \}$$

2,916 clauses 5.832 literals

Every column must contain one of each digit: similar

2,916 clauses 5,832 literals

Every 3x3 square must contain one of each digit: similar

2,916 clauses, 5.832 literals

729 variables, 11,745 clauses, 24,057 literals, nearly all clauses are binary

We have to write down that each cell contains exactly one digit

$$\left\{ \begin{array}{l} \{ \, v_{rc1} \lor v_{rc2} \lor \ldots \lor v_{rc8} \lor v_{rc9} \mid r,c \in \{\, 1,\ldots,9\, \} \, \} \\ \{ \, \neg v_{rc1} \lor \neg v_{rc2} \mid r,c \in \{\, 1,\ldots,9\, \} \, \} \\ \{ \, \neg v_{rc1} \lor \neg v_{rc3} \mid r,c \in \{\, 1,\ldots,9\, \} \, \} \\ \vdots \\ \{ \, \neg v_{rc8} \lor \neg v_{rc9} \mid r,c \in \{\, 1,\ldots,9\, \} \, \} \end{array} \right.$$

2,997 clauses 6,561 literals

Every row must contain one of each digit:

$$\{ \neg v_{r,c,d} \lor \neg v_{r,c',d} \mid r,c,c',d \in \{ 1,\ldots,9 \}, c < c' \}$$

2,916 clauses 5.832 literals

Every column must contain one of each digit: similar

2,916 clauses 5,832 literals

Every 3x3 square must contain one of each digit: similar

2,916 clauses, 5,832 literals

Finally, we add unit clauses (e.g., V_{129}) corresponding to the initial configuration

You have to draw lines between the dots to form a single loop without crossings or branches.

You have to draw lines between the dots to form a single loop without crossings or branches.

You have to draw lines between the dots to form a single loop without crossings or branches.

You have to draw lines between the dots to form a single loop without crossings or branches.

The numbers indicate how many lines surround it

A crossing is a node with four arcs attached to it

You have to draw lines between the dots to form a single loop without crossings or branches.

You have to draw lines between the dots to form a single loop without crossings or branches.

The numbers indicate how many lines surround it

A branch is a node with three arcs attached to it

You have to draw lines between the dots to form a single loop without crossings or branches.

You have to draw lines between the dots to form a single loop without crossings or branches.

The numbers indicate how many lines surround it

If a cell contains a number *m*, then there should be *m* arcs around this number

You have to draw lines between the dots to form a single loop without crossings or branches.

The numbers indicate how many lines surround it

A crossing is a node with four arcs attached to it

A branch is a node with three arcs attached to it

If a cell contains a number m, then there should be m arcs around this number

All these properties are formulated in terms of (a number of) arcs

Introduce variables denoting arcs:

- v_{ij}: there is a vertical arc between the nodes
 (i,j) and (i,j+1)
- h_{ij} : there is a horizontal arc between the nodes (i,j) and (i+1,j)

Introduce variables denoting arcs:

- v_{ij}: there is a vertical arc between the nodes
 (i, j) and (i, j + 1)
- h_{ij}: there is a horizontal arc between the nodes (i, j) and (i + 1, j)

Example: $v_{23} \wedge v_{33} \wedge h_{43}$

Introduce variables denoting arcs:

- v_{ij}: there is a vertical arc between the nodes
 (i, j) and (i, j + 1)
- h_{ij} : there is a horizontal arc between the nodes (i,j) and (i+1,j)

Then almost all properties are formulated using the formulas T_k and these variables

Introduce variables denoting arcs:

- v_{ij}: there is a vertical arc between the nodes
 (i, j) and (i, j + 1)
- h_{ij} : there is a horizontal arc between the nodes (i,j) and (i+1,j)

Then almost all properties are formulated using the formulas T_k and these variables For example,

$$T_3(v_{15}, v_{25}, h_{15}, h_{16})$$

Introduce variables denoting arcs:

- v_{ij}: there is a vertical arc between the nodes
 (i, j) and (i, j + 1)
- h_{ij} : there is a horizontal arc between the nodes (i,j) and (i+1,j)

Then almost all properties are formulated using the formulas T_k and these variables For example,

```
\begin{array}{l} T_3(v_{15},v_{25},h_{15},h_{16}) \\ T_0(v_{53},v_{54},h_{44},h_{45}) \vee T_2(v_{53},v_{54},h_{44},h_{45}) \end{array}
```


Introduce variables denoting arcs:

- v_{ij}: there is a vertical arc between the nodes
 (i,j) and (i,j+1)
- h_{ij} : there is a horizontal arc between the nodes (i,j) and (i+1,j)

Then almost all properties are formulated using the formulas T_k and these variables For example,

$$T_3(v_{15}, v_{25}, h_{15}, h_{16})$$

 $T_0(v_{53}, v_{54}, h_{44}, h_{45}) \vee T_2(v_{53}, v_{54}, h_{44}, h_{45})$

What we cannot express is the property to have a single loop

There is no simple way of expressing this in PL