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Credits

These slides are largely based on slides originally developed by Andrei Voronkov
at the University of Manchester. Adapted by permission.
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Outline

DPLL
Conjunctive Normal Form
Clausal Form and Definitional Transformation
Unit Propagation
DPLL
Expressing Counting
Sudoku
Loop the Loop
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Satisfiability of clauses

The efficiency of splitting algorithms for satisfiability
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® by first putting the input formula in normal form
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Satisfiability of clauses

The efficiency of splitting algorithms for satisfiability
® can be massively improved in practice
® by first putting the input formula in normal form

A popular satisfiability procedure called DPLL requires formulas in conjunctive
normal form

We will see this next
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Literals

Literal: an atom p (positive literal) or a negated atom —p (negative
literal)
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Literals

Literal: an atom p (positive literal) or a negated atom —p (negative
literal)

The complement | of a literal L:

[ def —L ifLis positive
B p  ifL hastheform—p

Note: p and —p are each other’s complement
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Clauses

Clause: adisjunction L; V... \/ L, of literals with n > 0
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Clauses

Clause: adisjunction L; V... \/ L, of literals with n > 0

® Empty clause () : whenn = 0
® Unitclause: whenn =1
® Horn clause: when it has at most one positive literal

Note: [ is false in every interpretation

6/39



Conjunctive Normal Form

A formula Ais in conjunctive normal form, or simply CNF, if it is either
T oraconjunction of clauses:

A=AVt
i

Aformula B is a conjunctive normal form of a formula A
if B= AandBisin CNF
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Satisfiability on CNF

Note: An interpretation 7

1. satisfies a formulain CNF
A=AVt
i

iff it satisfies every clause C; = \/j LijinA
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Satisfiability on CNF

Note: An interpretation 7

1. satisfies a formula in CNF
A=AV
i
iff it satisfies every clause C; = \/j LijinA
2. satisfies a clause

C:L1\/\/l_n

iff it satisfies some (i.e., at least one) literal L, in C
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CNF transformation

Any propositional formula can be converted to CNF by the repeated applications
of these rewrite rules:

1. A<B = (FAVB)A(-BVA)

2 A—B = -AVB

3. -(AAB) = -AV-B

4. -(AVB) = -AA-B

5 -—A = A

6. (AA...NAR)VBV...VB, = (AVBV...VB,) A

(An VBV ...VBp)
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CNF transformation

Any propositional formula can be converted to CNF by the repeated applications
of these rewrite rules:

1. A<B = (FAVB)A(-BVA)

2 A—B = -AVB

3. -(AAB) = -AV-B

4. -(AVB) = -AA-B

5 -—A = A
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A formula to which no rewrite rule is applicable
® containsno <
® containsno —
® may contain — but only applied to atoms
® does not contain A in the scope of v
® (hence)isin CNF
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CNF, example

“((P—=q)AN(pAg—r1)—=(p—T)) A B = (FAVB)A(-BVA)
A+ B= —AVB
ﬁ(A/\B)é‘\A\/ﬁB
—(AVB) = -AAN-B

——A = A
(WA LA AR) (AVBV...VB,)A
VB V...VB, = A

(An VBV ...V B,)
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CNF, example

((p—=a)AN(pAG—r)=(p—=T))= Ao B= (AVB)A(-BVA)
(P> @A PAG=N)V(p—1) = AN = Ay
~~((p ) A AG =) A~(p )= V)= an e

(AN AAR) (A VB V...VBy) A

VB V...VB, = A

(Am V By V ...V By)
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CNF, example

“((p=a)A(PpAg—=r)=(p—=T1))= A< B = (ZAVB)A(-BVA)
(e @) ApAgn)V(p—1) = 78 = Ay s
(P> a)A(PAG)A=(p—1)= I
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CNF, example

((P=qANpPAG—=T1)=(p—=T1))=
“(~((p—=a)A(PAG—=1)V(p—T1))=
—(p—=@A(pPAgG=))A=(p—T)=
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(A A ... ANAR) (AIVBIV...VBy) A

VB V...VB, = A
(Am VB V...V By)

(=B V A)

Theorem

IfA" is obtained from A by one of
more applications of the CNF
conversion rules, then A’ = A.
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CNF and satisfiability

A==((p—=qANPAGg—T1)=(p—r))=

(pV @) A(=pV—qgVr)ApA-r
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CNF and satisfiability

A= (p—=qAN(pAg—=r1)—=(p—T1))=
(pV @) A(=pV—qgVr)ApA-r

Note: Formula A above has the same models as the set consisting of
these four clauses

-pVq

-pV -qVr

p

—-r
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CNF and satisfiability

A= (p—=qAN(pAg—=r1)—=(p—T1))=

(pV @) A(=pV—qgVr)ApA-r

Note: ng of
these| The CNF transformation reduces the sat problem for

formulas to the sat problem for sets of clauses

p
—r

(An interpretation satisfies, or is a model of, a set S of formulas if it
satisfies every formulain S)
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Problem

Let’s compute the CNF of

F = p1 <> (p2 <> (p3 <> (pa <> (ps <> ps))))
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Problem
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(P1V =(p2 < (p3 <> (Pa <> (Ps <> Ps)))))
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Problem

Let’s compute the CNF of

F = p1 <> (p2 <> (p3 <> (pa <> (ps <> ps))))

pr <> (P2 < (p3 <> (Pa < (Ps <> Ps)))) =
(=p1 V(P2 <> (P3 4> (pa <> (Ps <> Ps))))) A
(p1V =(p2 ¢ (p3 <> (pa <> (Ps <> pe))))) =
(=p1 V' ((=p2 V (p3 <> (pa < (Ps < ps)))) N
(P2 V =(ps > (pa < (Ps <> ps)))))) A
(P1V =(p2 < (p3 <> (P4 <> (Ps <> Ps)))))

If we continue, the formula will grow exponentially large!
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CNF is exponential

There are formulas whose shortest CNF has an exponential size
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There are formulas whose shortest CNF has an exponential size

Is there any way to avoid exponential blowup? Yes!
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A space-efficient CNF transformation

Using so-called naming or definition introduction
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A space-efficient CNF transformation

Using so-called naming or definition introduction

1. Take a non-trivial subformula A of formula F
2. Introduce a new name n for it, i.e., a fresh propositional variable
3. Add a definition for n, i.e., a formula stating that n is equivalent to A

F = p1<(p2< (ps < (pa < (ps < ps))))
n < (ps < ps)

4. Replace the subformula by its name:

o p1 <> (P2 < (p3 <> (pa <> n)))
s= (B }
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A space-efficient CNF transformation

e 7

The new set S of formulas and the original formula F are not equivalent

F = p1<(p2< (ps < (pa < (ps < ps))))
n < (ps < ps)

o p1 <> (P2 < (p3 <> (pa <> n)))
s= (B ms }
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A space-efficient CNF transformation

e R

The new set S of formulas and the original formula F are not equivalent
but they are equisatisfiable:

1. every model of S is a model of F and

2. every model of F can be extended to a model of S
(by assigning to n the value of p5 <+ pg)

F = p1<(p2< (ps < (pa < (ps < ps))))
n < (ps < ps)

_ p1 <> (P2 < (p3 <> (pa <> n)))
S_{”H(PEJHPG) }
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After several steps

p1 <> (P2 <> (p3 < (Pa <> (Ps < Ps)))

p1 < (p2 <> n3)
N3 <> (p3 <> Na)
N4 <> (Pa <> Ns)
ns <> (ps <> Pe)
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After several steps

p1 <> (P2 <> (p3 < (Pa <> (Ps < Ps)))

p1 < (p2 <> n3)
n3 < (p3 <> na)
Ng <> (Pa <> ns)
ns < ( )

The conversion of the original formula to CNF introduces 32 copies of pg
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After several steps

p1 <> (P2 <> (p3 < (Pa <> (Ps < Ps)))

pi < (p2 <> n3)
N3 <+ (p3 <> na)
Ny <+ (Pa <> Ns)
ns < ( )
The conversion of the original formula to CNF introduces 32 copies of pg

The conversion of the new set of formulas to CNF introduces 4 copies of pg

15/39



Clausal Form

Clausal form of a formula A: a set S, of clauses which is satisfiable iff A is satisfiable
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Clausal Form

Clausal form of a formula A: a set S, of clauses which is satisfiable iff A is satisfiable

Clausal form of a set S of formulas: a set S’ of clauses which is satisfiable iff so is S

In fact, we can require something stronger:
1. Aand S, have the same models in the language of A
2. Sand S have the same models in the language of S

Big advantage of clausal normal form over CNF:
we can convert any formula to a set of clauses in almost linear time

16/39



Definitional Clause Form Transformation

How to convert a formula A into a set S of clauses that is clausal normal form of A:

1. If Ahastheform C; A ... A C,,wheren > 1and each C; is a clause, then

def
sia,. .., o )

2. Otherwise, introduce a name for each subformula B of A such that Bis not a
literal and use this name instead of the formula.

17/39



Converting a formula to clausal form, Example

subformula

definition

clauses

—((p

> q) /

(pPAg—r)

(P

» 1)
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Converting a formula to clausal form, Example

subformula

definition

clauses

~((p=a)A(pAg—=1)—= (p—T))

((p—=a)ANpAg—r)—(p—rT))

(p—=a)ANpAg—r1)—(p—T)

(p—=a)AN(pAg—r)

p—q

PANG—T

pPAg

Considerall
subformulas
that are not
literals

18/39



Converting a formula to clausal form, Example

subformula definition clauses
(= rprg—=r) = (p—1))

m | ~((p=a)A(pAGg—=r1)—=(p—T1))

ny p—=a)A(pAg—1)—(p—T)

ns (p—=a)N(pAg—rT)
Introduce

Na p—q names for
these
formulas

Ns pANg—T

Ne pPAQg

ny p — I
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Converting a formula to clausal form, Example

subformula definition clauses
(= rprg—=r) = (p—1))

m | =((p=a)ApAg—=r)=(p—1)) | m+ n

ny (P—=gAN(pAg—r)—(p—T) ny <+ (n3 — ny)

ns (p—=a)N(pAg—rT) n3 <> (N4 A ns)

N4 p—q ng <+ (p — q) Introduce
definitions

ns PAG—T ns <+ (ne — 1)

Ne pPAQ ne <> (PAQq)

n7 p—r ny <> (p—r)
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Converting a formula to clausal form, Example

subformula

definition

clauses

((p—=g)ApAg—r) = (p—1))

m

m

((p—=a)A(pAg—r1)—=(p—T))

m < —ny

= Vo
mVv np

n

p—=a)ANpAg—r)—(p—r)

ny <> (n3 — ny)

—ny V —n3 V ony
n3Vv. . ny
—n7 V. Ny

n3

(p—=a)AN(pAg—r)

n3 <> (na A ns)

—n3V na
-n3V ns
—N4 V —ns \V N3

Ny

p—q

ng < (p —q)

—ng vV -p Vg
p vV N
—q NV ng

ns

PANG—T

ns <> (ng —r)

—Nns V —neg V. r
ne V. nNs
-r V ns

ne

pPAg

ne <> (PN Q)

-neV p
—neV (@
-p V=g Vne

ny

nr < (p—r)

N7V -p Vr
p Vo on7
-r V. ny

Convert the
definition
formulas to
CNFin the
standard
way
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Optimized Definitional Clause Form Transformation

If

® weintroduce a name for a subformula and

® the occurence of the subformula is positive or negative
then an implication can be used instead of equivalence
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Example

subformula

definition

clauses

“((pP=aApAg—=r)—=(p—T1))

m

m

“((p—=a)A(pAg—r)—(p—T))

m — —ny

—m V —ny
myv n

mn

pP—=a)AN(pAg—r)—(p—T)

(n3 —n7) = ny

—ny V —n3 Vng
n3 V. n
—nrV. m

n3

(P—a)AN(pAG—T)

n3 — (na A ns)

—n3V ng
—n3V ns
N4 V —ns \V n3

Ng

p—q

na — (p = q)

—ng VvV —p Vg
p VvV ng
g vV n4

ns

pPAG—T

ns — (ng — r)

—ns \V —ng \/ r
ne V. ns
-r V. ns

Ne

pAgq

ne — (P A Q)

—negV p
—NeV @
P Vg Vns

n7

(p—r)—ng

—n7\V -p Vr
p VvV n
-r Voony
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Example

subformula

definition

clauses

“((pP=aApAg—=r)—=(p—T1))

m

m | ~((p—=g)ApAg—1)—(p—r))

n — —ny

-m V —ny
mvV m

ny pP—=a)AN(pAg—r)—(p—T)

(n3 —n7) = ny

—ny V —on3 Vong
n3 V. n
—n7 V.o nm

n3 (pP—=a)AN(pAg—r)

n3 — (na A ns)

—Nn3 V.o Ng
—n3V ns
—Nn4 V —ns V n3

Ny p—q

na — (p = q)

—ng VvV —p Vg
p VvV ng
—q V. ng

ns

PAG—T

ns — (ng — r)

—ns \V —ng \/ r
ne V. ns
-r V ns

Ne

pAgq

ne — (pAQq)

-negV p
—NeV @
P Vg Vns

n7

(p—r)—ng

—nyV-op Vr
p VvV n
-r Voony

The clauses in red are omitted by optimized transformation
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Example

subformula definition clauses
“((p—=qg)AN(PpAg—T1)—=(p—T)) m
m | ~((p=g)AN(pAg—r)=(p—r)) | m——n =m V —ny
ny Pp—=ag)N(PpAg—T)—=>(p—T) (n3 —n7) = ny
n3 V. n
-ny V. Ny
n3 (p—=qg) AN(pAg—T) n3 — (na A ns) —n3 V. na
—n3V ns
na p—q ns — (b —q) —ngV-p Vg
ns PAG—T ns — (ng — r) =ns \V —ng \V r
ne pAG ne — (pAQq)
P Vg Vns
ny p—r (p—r)—ng

The result is fewer clauses

<
<
S
3

-r Voony
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Satisfiability-checking for sets of clauses

The CNF transformation of

((p—=a)AN(pAGg—r1)—(p—r))
gives the set of four clauses:
pVgq

-pV-qVr

p
r

21/39



Satisfiability-checking for sets of clauses

The CNF transformation of

“((p=a)A(pAGg—r1) = (p—r))
gives the set of four clauses:
pVgq

—pV qVr

p
—r

To satisfy all these clauses we must assign 1top and O tor,
so we do not have to guess values for them
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Satisfiability-checking for sets of clauses

The CNF transformation of

“((p=a)A(pAGg—r1) = (p—r))
gives the set of four clauses:
pVgq
PV -qVr

p
—r

To satisfy all these clauses we must assign 1top and O tor,
so we do not have to guess values for them

In this case, we can do even better and establish unsatisfiability with no guessing
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Searching for satisfiability

pVa
—pV-qgVr

-r
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Searching for satisfiability

{p—1

—

pVa
—pV-qgVr

-r
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Searching for satisfiability

—

{p—1

—pVq
“pvﬁCI\/r

-r
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Searching for satisfiability

{p—=1r—0

—qVr

—-r

—
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Searching for satisfiability

{p—=1r—0

—qVr

—-r

—
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Searching for satisfiability
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Searching for satisfiability

{p—=1,r—0,g—1}

—q
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Searching for satisfiability

{p—=1,r—0,qg—1}

-q
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Searching for satisfiability

{p—=1,r—0,qg—1}

This set of clauses is unsatisfiable

22/39



Unit propagation

Let S be a set of clauses.

Unit propagation. Repeatedly apply the following transformation:

if S contains a unit clause, i.e. a clause consisting of one literal L, then
1. remove from S every clause of the form L \V C’
2. replacein S every clause of the form L \V C’ by the clause C’

23/39



Unit Propagation, Example

m

=Ny VvV o—np
nvn

=Ny V —nsVny
n3vVvn,

=Ny Vn;
N3V Ny

—n3 V ns

—Ng V —Ns V N3
—Ng vV —-pVg
PV N

g VN
—Nns V —ng vV r
Ne V Ns
=rV ns
—ng V p
—ng V g
—p VgV ne
Ny NV -p\Vr
pVny
=rV onyg
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m

=Ny Vo iy
nvVvn,

=Ny V —nsVny
n3vVvn,

=Ny Vn;
N3V Ny

—n3 V ns

—Ng V —Ns V N3
—Ng vV —-pVg
PV N

g VN
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Unit Propagation, Example

-y

=Ny V —nsVny
n3vVvn,

=Ny Vn;
N3V Ny

—n3 V ns

—Ng V —Ns V N3
—Ng vV —-pVg
PV N

g VN
—Nns V —ng vV r
Ne V Ns
=rV ns
—ng V p
—ng V g
—p VgV ne
Ny NV -p\Vr
pVny
=rV onyg
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Unit Propagation, Example

ﬁnz

=Ny, V-nsVny
n3 VvV .ny

—n7 V Ny
N3V Ny

—n3 V ns

—Ng V —Ns V N3
—Ng vV —-pVg
PV N

g VN
—Nns V —ng vV r
Ne V Ns
=rV ns
—ng V p
—ng V g
—p VgV ne
Ny NV -p\Vr
pVny
=rV onyg
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Unit Propagation, Example

n3

—ny

N3V Ny

—n3 V ns

—Ng V —Ns V N3
—Nga vV —-pVg
PV N

gV ng
—Ns V —ng Vr
Ne V Ns
=rV ns
—ng V p
—ng V q
—p VgV ne
Ny V-op\Vr
pVny
=rV nyg
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Unit Propagation, Example

ns

—ny

—Nn3 V Ny

N3 \V nNs

=Ng V N5 V N3
—Nga vV —-pVg
PV N

gV ng
—Ns V —ng Vr
Ng V N5
=rV ns
—ng V p
—ng V g
—p VgV ne
—nyV-p\Vr
pVng
—r\V onyg
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Unit Propagation, Example

Ny
ns

—nsV -pVq
PV N

gV ng
—Ns V —ng V' r
Ng V N5
=rV ns
“rlg\/p
—ng V g
—p VgV ne
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Unit Propagation, Example

Ny
ns

—ng NV —-pVqg
PV N

gV ng
—Nns \V —ng V r
Ne V Ns
=rV ns
—ng V p
—ng V g
—p Vg Vine

24/39



Unit Propagation, Example

‘\[76

—ng V g
—q V Ng
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Unit Propagation, Example

‘\n6

—ng V q
ﬁq \V Ng
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Unit Propagation, Example

We established unsatisfiability of this set of clauses in a completely deterministic
way, by unit propagation.
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DPLL = splitting + unit propagation

procedure DPLL(S)
input: set of clauses S
output: satisfiable or unsatisfiable
parameters: function select_literal
begin
S := propagate(S)
if Sis empty then return satisfiable
if S contains [ then return unsatisfiable
L := select_literal(S)
if DPLL(SU { L }) = satisfiable
then return satisfiable
elsereturn DPLL(S U {L})
end
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DPLL, Example1

—p
—pV—q
“pVgq
pV-q
pVaq

—pV-q
-pVgq
pV-q

pVq

Can be illustrated using DPLL trees (similar to splitting trees)

B

—-q

N

—p Vg
A
pV—q
pVq

—-q
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DPLL, Example1

Can be illustrated using DPLL trees (similar to splitting trees)

—pV g

“pVq

pV—q

-p pVqg P
—p / \ p

—pVqg —pVgqg
pV—q pV-q
pVq pVq
—q —q

O]

O]

Since all branches end up in a set contaning the empty clause, the initial set of
clauses is unsatisfiable.
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DPLL, Example 2

—pV-q
—pVg
pV—q

—pV—q
—pVq
pV—q

-q

O]

2

—p

—pV—q
-pVgq
pV—q

—-q

(empty set)

The set of clauses is satisfiable
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DPLL, Example 2

—pV-q
—pVg
pV—q

—pV—q
—pVq
pV—q

-q

O]

2

-p
—p Vg
—pVag
pV—q

—-q

(empty set)

A model is described by all selected literals and

unit-propagated literals on the branch ending in the empty set
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DPLL, Example 2

—pVgq
7 — Y
P -p
—pVq —pVag
pV-q pV—q

-q -q

@ (empty set)

This DPLL tree gives us the model { p ++ 0.~ 0 }
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Two optimizations

1. Any clause p Vv —p V Cis a tautology

Tautologies can be removed from a set without affecting its satisfiability
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Two optimizations

1. Any clause p Vv —p V Cis a tautology

Tautologies can be removed from a set without affecting its satisfiability

2. Aliteral L in Sis called pure if S contains no clauses of the form L \/ C
All clauses containing a pure literal can be satisfied by making that literal true

Hence, clauses containing pure literals can be removed, too

28/39



Pure literals: example

—p2 V 7p3
p1V —p;
PV P2V ps
=PV p3
p1V pa
—p1V p2 V ps3
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Pure literals: example

—p2 V p3
p1V —p;
—p1V P2V ps
—p1V p3
p1V pa
—p1V P2 V ps3

Literal —ps is pure in this clause set: we can remove all clauses containing it
(by assigning 0 to ps)
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Pure literals: example

p1V —p;

p1V p2

Literal —ps is pure in this clause set: we can remove all clauses containing it
(by assigning 0 to ps)
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Pure literals: example

p1V —p;

p1V P2

Literal p; is pure in the resulting set: we can remove all clauses containing it
(by assigning 1to p)
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Pure literals: example

Literal p; is pure in the resulting set: we can remove all clauses containing it
(by assigning 1to p)

We obtain the empty set of clauses
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Pure literals: example

—p2 V p3
p1V P,
—p1V P2V ps
—p1V p3
p1V P2
—p1V P2 V ps3

Since r remained unconstrained, this gives us two models:

{pr—1,p2—0,p3—0}
{p1—1,p2—1,p3—0}
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Horn clauses

A clause is called Horn if it contains at most one positive literal. Examples:

Pr
PV p2
—p1V P2V p3
Pz V Pa
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Horn clauses

A clause is called Horn if it contains at most one positive literal. Examples:

Pr
PV p2
—p1V P2V p3
Pz V Pa

The following clauses are non-Horn:

p1V p2
p1V P2V ps3
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Satisfiability of Horn clauses
Can be decided by unit propagation

Pa
PV P2
P1V P2 V p3
—P3 V P
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Satisfiability of Horn clauses
Can be decided by unit propagation

P4
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Satisfiability of Horn clauses
Can be decided by unit propagation

P
PV P2
—p1V P2V p3
—p3 V Pa

Model: { py v 1,p5 > 1, p3 =+ 1,ps v+ 0}
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P
PV P2
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Model: { p; +> 1,p2 = 1,p3 +> 1,ps + 0 }

Note: deleting a literal from a Horn clause gives a Horn clause.
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Note: deleting a literal from a Horn clause gives a Horn clause.

Therefore, unit propagation applied to a set C of Horn clauses gives a set C’ of Horn
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Two cases:
1. ' contains [ 1. Then, C’ (and hence () is unsatisfiable.
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Model: { p; +> 1,p2 = 1,p3 +> 1,ps + 0 }

Note: deleting a literal from a Horn clause gives a Horn clause.
Therefore, unit propagation applied to a set C of Horn clauses gives a set C’ of Horn
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Two cases:
1. C’ contains [l. Then, C’ (and hence C) is unsatisfiable.
2. C’' does not contain [. Then:
® Fachclausein C’ has at least two literals.
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Satisfiability of Horn clauses
Can be decided by unit propagation

P
PV P2
—p1V P2V p3
—p3 V Pa

Model: { p; +> 1,p2 = 1,p3 +> 1,ps + 0 }

Note: deleting a literal from a Horn clause gives a Horn clause.
Therefore, unit propagation applied to a set C of Horn clauses gives a set C’ of Horn
clauses.

Two cases:
1. C’ contains . Then, C’ (and hence C) is unsatisfiable.
2. (' does not contain [I. Then:

® Eachclausein C" has at least two literals.
® Hence each clause in C’ contains at least one negative literal;

31/39



Satisfiability of Horn clauses
Can be decided by unit propagation

P
PV P2
—p1V P2V p3
—p3 V Pa

Model: { p; +> 1,p2 = 1,p3 +> 1,ps + 0 }

Note: deleting a literal from a Horn clause gives a Horn clause.
Therefore, unit propagation applied to a set C of Horn clauses gives a set C’ of Horn
clauses.

Two cases:
1. C’ contains [l. Then, C’ (and hence C) is unsatisfiable.
2. (' does not contain []. Then:
® Eachclausein C" has at least two literals.
® Hence each clause in C’ contains at least one negative literal;
® Hence setting all variables in C’ to 0 satisfies C'.

31/39



Running a SAT solver

Very simple but efficient SAT solver: MiniSat, http://minisat.se/
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—p1V P2V p3
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Running a SAT solver
Very simple but efficient SAT solver: MiniSat, http://minisat.se/

P
PV P2
—p1V P2V ps
—p2 vV p3

DIMACS input format:

p cnf 3 4
10
-120
-1 -230
-2 -30

32/39


http://minisat.se/

Running a SAT solver
Very simple but efficient SAT solver: MiniSat, http://minisat.se/

P
PV P2
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Running a SAT solver
Very simple but efficient SAT solver: MiniSat, http://minisat.se/

P
PV P2
—p1V P2V ps
—p2 vV p3

DIMACS input format:

p cnf 3 4
10
-120
-1 -230
-2 -30

3variables, 4 clauses.

—p1V P2 Vp3
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Expressing Properties “k out of n variables are true”

Suppose we have variables v;. . . ., v, and
we want to express that exactly k of them are true

We will write this property as a formula 7, (v, . . ., Vn)

Such formulas are very useful for encoding various problems in SAT
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Expressing Properties “k out of n variables are true

we want to express that exactly k of them are true

Suppose we have variables v;. . . ., v, and

We will write this property as a formula 7, (v, . . ., Vn)
Such formulas are very useful for encoding various problems in SAT

First, let us express some simple special cases:

def

Vi A LAY,

def
= (M Vo V) AN (v V)

=
~
=
=
N
Il
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Expressing Properties “k out of n variables are true

we want to express that exactly k of them are true

Suppose we have variables v;. . . ., v, and

We will write this property as a formula 7, (v, . . ., Vn)
Such formulas are very useful for encoding various problems in SAT

First, let us express some simple special cases:

To(Viy ...y Vn) et VAL LAY,
def
(Vi oo Vn) = (M Ve V) AN (V)
Jef
Toa(va,y.. ., ve) = (Vv ve) ANV Y)

To(Viy..o,Vh) o Vi . AV,
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Expressing Properties “k out of n variables are true”

To define T), for 0 < k < n, introduce two formulas:

T<(v,...,vy): at most k variables among v, . . ., v, are true, where
k=0...n-1
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Expressing Properties “k out of n variables are true”

To define T), for 0 < k < n, introduce two formulas:

T<(v,...,vy): at most k variables among v, . . ., v, are true, where
k=0...n—-1
T-i(vi,...,vy): atleast k variables among vy, . .., v, are true, where
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Expressing Properties “k out of n variables are true”

To define T), for 0 < k < n, introduce two formulas:

T<r(v,...,vy): at most k variables among v, . .., v, are true, where
k=0...n—-1
lef
T<k(ni, ..o, Vo) = /\ X1 Ve VX
Xiyooy Xy1 €E{Va, ..,V }
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Expressing Properties “k out of n variables are true”

To define T), for 0 < k < n, introduce two formulas:

T<r(v,...,vy): at most k variables among v, . .., v, are true, where
k=0...n-1
T>y(vi, ..., vy): at least k variables among v;. . ... v, are true, where
k=1...n
lef
T<k(na, ..o, Vo) = /\ X1 Vo VX
Xlyoony Xk+1 € { Vig.oooy Vn }
X1yen, Xk+1 are distinct
Jof
Tsk(vi, ..., vy) S /\ X1 VoV Xn— g
Xiy ooy Xn—kt1 €E{Vi,. .,V }
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Sudoku

4 8
9

2
9 2
6

7|8
5

9

Enter digits from 1to 9 into the
blank spaces

Every row must contain one of
each digit

So must every column

as must every 3x3 square
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4 1|8
61319
5127
9 15| 2
11416
7183
216 |1
31 71]5
819 | 4

Enter digits from 1to 9 into the
blank spaces

Every row must contain one of
each digit

So must every column
as must every 3x3 square

This instance has exactly one
solution
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9 15| 2
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31 71]5
819 | 4

Enter digits from 1to 9 into the
blank spaces

Every row must contain one of
each digit

So must every column
as must every 3x3 square

This instance has exactly one
solution
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Sudoku as an instance of SAT

Introduce 729 propositional variables
Vieds Wherer,c.d € {1,..., d}

The variable v,.; denotes that the cell in
the row number r and column number
c contains the digit d
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Sudoku as an instance of SAT

4 8|79 3
8|2 5
2
9 6 117
58
78 4 6
4
5 418
9 2 5
1 3 4 6 7 8 9

Introduce 729 propositional variables
Vieds Wherer,c.d € {1,..., d}

The variable v,.; denotes that the cell in
the row number r and column number
c contains the digit d

For example, this configuration
satisfies the formula vy59 A Vogg A Vo
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Sudoku as an instance of SAT

4 8|79 3
8|2 5
2
9 6 117
58
78 4 6
4
5 418
9 2 5
1 3 4 6 7 8 9

Introduce 729 propositional variables
Vieds Wherer,c.d € {1,..., d}

The variable v,.; denotes that the cell in
the row number r and column number
c contains the digit d

For example, this configuration
satisfies the formula vy59 A Vogg A Vo

We should express all rules of Sudoku
using the variables v,y

36/39



Encoding Sudoku in SAT

We have to write down that each cell contains exactly one digit
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Encoding Sudoku in SAT

We have to write down that each cell contains exactly one digit

{Vie VVia V...V Vg Vg | r,ce{1,...,9}}
{ﬁvrd\/ﬁvrd‘r:CG{L---:g}}
{Via VWi | r,ce{1,..., 9}}

{“VFC8\/“Vrc9‘nce{]....,g}}
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Encoding Sudoku in SAT

We have to write down that each cell contains exactly one digit

{ViaVVio V...V VgV Vo |r,ce{1,...,9}}
{ﬁvm\/ﬁvmz‘I’7C€{1....79}}

{ﬁvm\/ﬁvrd‘r-CE{‘l ..... 9}»}
{“VI’C8\/“V1’c9‘LCG{]....?g}}

Every row must contain one of each digit:
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Encoding Sudoku in SAT

We have to write down that each cell contains exactly one digit

{Vie VVia V...V Vg Vg | r,ce{1,...,9}}
{ViaV Ve |r,ce{1,...,9}}
{ﬁ‘/m\/ﬁvrd‘r-cg{‘l ..... 9}}

{“VFC8\/“Vrc9‘r¢C€ {1.9}}
Every row must contain one of each digit:
{ﬁvr'c‘d\/ﬁvr-c/-d ‘ r‘C',C/',d € {19 }-C < C/}
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Encoding Sudoku in SAT

We have to write down that each cell contains exactly one digit

{Via VVia V...V Vg V Vo | roce{1,...,9}}
{ﬁvm\/ﬁvmz‘I’7C€{1....79}}

{ﬁ‘/m\/ﬁvrd‘r-CE{‘l ..... 9}}
{ VgV Vo |r,ce{1,...,9}}

Every row must contain one of each digit:
{~VieaV—Vregl|rccd,de{n,..., 9t,c<c}

Every column must contain one of each digit: similar

Every 3x3 square must contain one of each digit: similar
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Encoding Sudoku in SAT

We have to write down that each cell contains exactly one digit

{Vrc]\/Vrcz\/~~~\/V/‘c8\/Vr69‘rvce{]""vg}}
{ﬁvrd\/ﬁvrcz|I’7C€{-|....79}}

{-ViaV—Ves|rce{1,...,9}} 2,997 clauses
o ' ' 6,561 literals

{ VgV Vo | F,c€{1,...,9}}

Every row must contain one of each digit:
{VredV—Vregl|r,ccd,de{1,...,9},c<c} 2,916 clauses

' 5,832 literals

2,916 clauses

Every column must contain one of each digit: similar 5832 literals

2,916 clauses,

Every 3x3 square must contain one of each digit: similar 5832 literals
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Encoding Sudoku in SAT

We have to write down that each cell contains exactly one digit

{Viae VVia V...V Vg Vg | r,ce{1,...,9}}

{ﬁVrdvﬁV,Cz | r,ce {]9}}
{-ViaV-Ve|r,ce{1,...,9}} 2,997 clauses
o ' 6,561 literals
{ Vg V Wieo | r,c€ {1,...,9}}
Every row must contain one of each digit:
{VicdVVrealrccd,de{l,....9},c<c} 2,916 clauses
5,832 literals

2,916 clauses
5,832 literals

2,916 clauses,
5,832 literals

729 variables, 11,745 clauses, 24,057 literals, nearly all clauses are binary

Every column must contain one of each digit: similar

Every 3x3 square must contain one of each digit: similar
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Encoding Sudoku in SAT

We have to write down that each cell contains exactly one digit

{viaVVia V... Vg Ve | r,ce{1,..., 9}}
{ﬁVm\/ﬁVrcz‘r-,CGﬂ ..... 9}}
{ﬁ‘/m\/ﬁvrd‘r-CE{] ..... 9}»}

{ﬁ‘/l’c8\/ﬁ‘/rc9 ‘I’.CG {1----79}}
Every row must contain one of each digit:
{VredV—Veeg|rcd,de{1,..., 9},c< '}
Every column must contain one of each digit: similar

Every 3x3 square must contain one of each digit: similar

Finally, we add unit clauses (e.g., v1,9) corresponding to the initial configuration
37/39



Loop the Loop

e
SEBERERE
SEBENENE
SEBEIENE
BEBERERE
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Loop the Loop

You have to draw lines between the dots to form a

e o o o o single loop without crossings or branches.
1 2 2 L . .
3 e o o o e The numbers indicate how many lines surround it
3
o o o ° o
2 2
o o o o o
0 2 1 2
o o ° o o
3 3
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Loop the Loop

You have to draw lines between the dots to form a

. single loop without crossings or branches.
1 2|2 L . .
3 The numbers indicate how many lines surround it

3
2|2
0 2 1 2

o

3|3
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Loop the Loop

You have to draw lines between the dots to form a

e o o o o single loop without crossings or branches.
. R The numbers indicate how many lines surround it
o o o
o
o ° o o
o o o
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Loop the Loop

You have to draw lines between the dots to form a
e o o o o single loop without crossings or branches.

o o The numbers indicate how many lines surround it

A crossing is a node with four arcs attached to it
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You have to draw lines between the dots to form a

o« o single loop without crossings or branches.

e o o The numbers indicate how many lines surround it
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e o o o
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Loop the Loop

You have to draw lines between the dots to form a

o« o single loop without crossings or branches.
e o o The numbers indicate how many lines surround it
o o ° o

A branchis a node with three arcs attached to it

38/39



Loop the Loop

You have to draw lines between the dots to form a

. single loop without crossings or branches.
1 2|2
3 The numbers indicate how many lines surround it

3
2|2
0 2 1 2

o

313
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Loop the Loop

You have to draw lines between the dots to form a

. single loop without crossings or branches.
3 1 212 The numbers indicate how many lines surround it
3
2|2
o 2 1 2 If a cell contains a number m, then there should be m

arcs around this number
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Loop the Loop

3 1 212
3
2|2
o 2 1 2
3|3 )

You have to draw lines between the dots to form a
single loop without crossings or branches.

The numbers indicate how many lines surround it
A crossing is a node with four arcs attached to it
Abranch is a node with three arcs attached to it

If a cell contains a number m, then there should be m
arcs around this number

All these properties are formulated in terms of (a
number of) arcs
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Formalization

Introduce variables denoting arcs:
® v;: thereis a vertical arc between the nodes
(i,j)and (i,j+1)
® hj:thereis a horizontal arc between the

nodes (/.j) and (i +1.j)

3 1 2 )
3
) 2|2
0 2 1
313

39/39



Formalization

3 1 2

3

) 2|2
0 2 1

313

Introduce variables denoting arcs:
® v;: thereis a vertical arc between the nodes
(i,j)and (i,j+1)
® hj:thereis a horizontal arc between the
nodes (/,j) and (i + 1.j)

Example: Vo3 A V33 A h43

39/39



(&

Formalization

SRR
BERERE
JENERE
SENEIES
JEBENE

Introduce variables denoting arcs:
® v;: thereis a vertical arc between the nodes
(i,j)and (i,j+1)
® hj:thereis a horizontal arc between the
nodes (/.j) and (i +1.j)

Then almost all properties are formulated using
the formulas T, and these variables
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(&

Formalization

3 1. .2
.3.
o .2.2.
o .0.2.1
o .3.3.

Introduce variables denoting arcs:
® v;: thereis a vertical arc between the nodes
(i,j)and (i,j+1)
® hj:thereis a horizontal arc between the
nodes (/.j) and (i +1.j)

Then almost all properties are formulated using
the formulas T and these variables For example,

T3(vis, Vas, s, hig)
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Formalization

Introduce variables denoting arcs:

® v;: thereis a vertical arc between the nodes
(i,j)and (i,j+1)

31 2 2 ® hj:thereis a horizontal arc between the
e o o o . nodes (/,j) and (i + 1.j)
3
2 2 Then almost all properties are formulated using
e ° 0 ° 5 ° D ° the formulas T, and these variables For example,
® ® * ° ° ¢ TB(VWS-VZS\h15~h16)
N N 3 o 3 o o o To(V53,V54.,/744,h45) V Tz(V53,V54,h44.,h45)
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Formalization

3 1 2
3
) 2|2
0 2 1
313
T 2 3 4

Introduce variables denoting arcs:
® v;: thereis a vertical arc between the nodes
(i,j)and (i,j+1)
® hj:thereis a horizontal arc between the
nodes (/,j) and (i + 1.j)

Then almost all properties are formulated using
the formulas T and these variables For example,

T3(V15, Vas, his, h16)
To(Vs3, Vsa, aa, has) V To(Vs3, Vsa, Naa, has)

What we cannot express is the property to have a
single loop

There is no simple way of expressing this in PL
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