
CS:4350 Logic in Computer Science

Propositional Logic

Cesare Tinelli

Spring 2021

1 / 28

Credits

These slides are largely based on slides originally developed by Andrei Voronkov
at the University of Manchester. Adapted by permission.

2 / 28

Propositional Logic

• Syntax: set of formulas built with propositional variables and
connectives

• Semantics: formulas are assigned a Boolean value (true, false)

• Inference system: several

The sentences of the language (formulas) are also called propositions

3 / 28

Propositional Logic

• Syntax: set of formulas built with propositional variables and
connectives

• Semantics: formulas are assigned a Boolean value (true, false)

• Inference system: several

The sentences of the language (formulas) are also called propositions

3 / 28

Propositions in mathematical logic
Formalize natural language statements that can be either true or
false

Basic propositions are called atomic
Examples:
1. 0 < 1
2. Alan Turing was born in Manchester
3. 1+ 1 = 10

More complex propositions are built from simpler ones via small
number of constructs
Examples:
1. If 0 < 1 then Alan Turing was born in Manchester
2. 1+ 1 = 10 or 1+ 1 6= 10

4 / 28

Propositions in mathematical logic
Formalize natural language statements that can be either true or
false

Basic propositions are called atomic
Examples:
1. 0 < 1
2. Alan Turing was born in Manchester
3. 1+ 1 = 10

More complex propositions are built from simpler ones via small
number of constructs
Examples:
1. If 0 < 1 then Alan Turing was born in Manchester
2. 1+ 1 = 10 or 1+ 1 6= 10

4 / 28

Propositions in mathematical logic
Formalize natural language statements that can be either true or
false

Basic propositions are called atomic
Examples:
1. 0 < 1
2. Alan Turing was born in Manchester
3. 1+ 1 = 10

More complex propositions are built from simpler ones via small
number of constructs
Examples:
1. If 0 < 1 then Alan Turing was born in Manchester
2. 1+ 1 = 10 or 1+ 1 6= 10

4 / 28

Propositions in mathematical logic
Formalize natural language statements that can be either true or
false

Basic propositions are called atomic
Examples:
1. 0 < 1
2. Alan Turing was born in Manchester
3. 1+ 1 = 10

More complex propositions are built from simpler ones via small
number of constructs
Examples:
1. If 0 < 1 then Alan Turing was born in Manchester
2. 1+ 1 = 10 or 1+ 1 6= 10

4 / 28

Truth of atomic propositions

Each proposition formalizes a statement that is either true or false

The truth value (true, false) of an atomic proposition P depends on
P’s interpretation

ExampleWhat is the true value of 1+ 1 = 10?

• false, if we interpret 1 and 10 as integers in decimal notation, and
+ as addition
• true, if we interpret 1 and 10 as integers in binary notation, and+
as addition

5 / 28

Truth of atomic propositions

Each proposition formalizes a statement that is either true or false

The truth value (true, false) of an atomic proposition P depends on
P’s interpretation

ExampleWhat is the true value of 1+ 1 = 10?

• false, if we interpret 1 and 10 as integers in decimal notation, and
+ as addition
• true, if we interpret 1 and 10 as integers in binary notation, and+
as addition

5 / 28

Truth of atomic propositions

Each proposition formalizes a statement that is either true or false

The truth value (true, false) of an atomic proposition P depends on
P’s interpretation

ExampleWhat is the true value of 1+ 1 = 10?

• false, if we interpret 1 and 10 as integers in decimal notation, and
+ as addition
• true, if we interpret 1 and 10 as integers in binary notation, and+
as addition

5 / 28

Truth of atomic propositions

Each proposition formalizes a statement that is either true or false

The truth value (true, false) of an atomic proposition P depends on
P’s interpretation

ExampleWhat is the true value of 1+ 1 = 10?

• false, if we interpret 1 and 10 as integers in decimal notation, and
+ as addition
• true, if we interpret 1 and 10 as integers in binary notation, and+
as addition

5 / 28

Truth of atomic propositions

Each proposition formalizes a statement that is either true or false

The truth value (true, false) of an atomic proposition P depends on
P’s interpretation

ExampleWhat is the true value of 1+ 1 = 10?

• false, if we interpret 1 and 10 as integers in decimal notation, and
+ as addition
• true, if we interpret 1 and 10 as integers in binary notation, and+
as addition

5 / 28

Truth of complex propositions

Consider a complex proposition C built
with a construct c from simpler propositions S1, . . . , Sn

The truth value of C depends
1. the meaning of c
2. the truth value of S1, . . . , Sn

More precisely, it is a function (namely, the meaning of c) of truth
values of S1, . . . , Sn

Example (1+ 1 = 10 or 1+ 1 6= 10) is true if at least one of 1+ 1 = 10,
1+ 1 6= 10 is true

6 / 28

Truth of complex propositions

Consider a complex proposition C built
with a construct c from simpler propositions S1, . . . , Sn

The truth value of C depends
1. the meaning of c
2. the truth value of S1, . . . , Sn

More precisely, it is a function (namely, the meaning of c) of truth
values of S1, . . . , Sn

Example (1+ 1 = 10 or 1+ 1 6= 10) is true if at least one of 1+ 1 = 10,
1+ 1 6= 10 is true

6 / 28

Truth of complex propositions

Consider a complex proposition C built
with a construct c from simpler propositions S1, . . . , Sn

The truth value of C depends
1. the meaning of c
2. the truth value of S1, . . . , Sn

More precisely, it is a function (namely, the meaning of c) of truth
values of S1, . . . , Sn

Example (1+ 1 = 10 or 1+ 1 6= 10) is true if at least one of 1+ 1 = 10,
1+ 1 6= 10 is true

6 / 28

Truth of complex propositions

Consider a complex proposition C built
with a construct c from simpler propositions S1, . . . , Sn

The truth value of C depends
1. the meaning of c
2. the truth value of S1, . . . , Sn

More precisely, it is a function (namely, the meaning of c) of truth
values of S1, . . . , Sn

Example (1+ 1 = 10 or 1+ 1 6= 10) is true if at least one of 1+ 1 = 10,
1+ 1 6= 10 is true

6 / 28

Propositional logic: syntax

Assume a countable set of propositional variables ({p, p1, p2, . . . , q, q1, q2, . . .})

Propositional formula:
• Every propositional variable (aka, atom) is a formula
• > and⊥ are formulas
• If A1, . . . , An are formulas, where n ≥ 2, then A1 ∧ . . . ∧ An and A1 ∨ . . . ∨ An are
formulas

• If A is a formula, then ¬A is a formula
• If A and B are formulas, then A→ B and A↔ B are formulas
• Nothing else is a formula

The symbols>,⊥,∧,∨,¬,→,↔ are called connectives

Note: The book considers also⊕ (exclusive or), ↓ (nor), and ↑ (nand)

7 / 28

Propositional logic: syntax

Assume a countable set of propositional variables ({p, p1, p2, . . . , q, q1, q2, . . .})

Propositional formula:
• Every propositional variable (aka, atom) is a formula
• > and⊥ are formulas
• If A1, . . . , An are formulas, where n ≥ 2, then A1 ∧ . . . ∧ An and A1 ∨ . . . ∨ An are
formulas

• If A is a formula, then ¬A is a formula
• If A and B are formulas, then A→ B and A↔ B are formulas
• Nothing else is a formula

The symbols>,⊥,∧,∨,¬,→,↔ are called connectives

Note: The book considers also⊕ (exclusive or), ↓ (nor), and ↑ (nand)

7 / 28

Propositional logic: syntax

Assume a countable set of propositional variables ({p, p1, p2, . . . , q, q1, q2, . . .})

Propositional formula:
• Every propositional variable (aka, atom) is a formula
• > and⊥ are formulas
• If A1, . . . , An are formulas, where n ≥ 2, then A1 ∧ . . . ∧ An and A1 ∨ . . . ∨ An are
formulas

• If A is a formula, then ¬A is a formula
• If A and B are formulas, then A→ B and A↔ B are formulas
• Nothing else is a formula

The symbols>,⊥,∧,∨,¬,→,↔ are called connectives

Note: The book considers also⊕ (exclusive or), ↓ (nor), and ↑ (nand)

7 / 28

Propositional logic: syntax

Assume a countable set of propositional variables ({p, p1, p2, . . . , q, q1, q2, . . .})

Propositional formula:
• Every propositional variable (aka, atom) is a formula
• > and⊥ are formulas
• If A1, . . . , An are formulas, where n ≥ 2, then A1 ∧ . . . ∧ An and A1 ∨ . . . ∨ An are
formulas

• If A is a formula, then ¬A is a formula
• If A and B are formulas, then A→ B and A↔ B are formulas
• Nothing else is a formula

The symbols>,⊥,∧,∨,¬,→,↔ are called connectives

Note: The book considers also⊕ (exclusive or), ↓ (nor), and ↑ (nand)

7 / 28

Propositional logic: syntax

Assume a countable set of propositional variables ({p, p1, p2, . . . , q, q1, q2, . . .})

Propositional formula:
• Every propositional variable (aka, atom) is a formula
• > and⊥ are formulas
• If A1, . . . , An are formulas, where n ≥ 2, then A1 ∧ . . . ∧ An and A1 ∨ . . . ∨ An are
formulas

• If A is a formula, then ¬A is a formula
• If A and B are formulas, then A→ B and A↔ B are formulas
• Nothing else is a formula

The symbols>,⊥,∧,∨,¬,→,↔ are called connectives

Note: The book considers also⊕ (exclusive or), ↓ (nor), and ↑ (nand)

7 / 28

Propositional logic: syntax

Assume a countable set of propositional variables ({p, p1, p2, . . . , q, q1, q2, . . .})

Propositional formula:
• Every propositional variable (aka, atom) is a formula
• > and⊥ are formulas
• If A1, . . . , An are formulas, where n ≥ 2, then A1 ∧ . . . ∧ An and A1 ∨ . . . ∨ An are
formulas

• If A is a formula, then ¬A is a formula
• If A and B are formulas, then A→ B and A↔ B are formulas
• Nothing else is a formula

The symbols>,⊥,∧,∨,¬,→,↔ are called connectives

Note: The book considers also⊕ (exclusive or), ↓ (nor), and ↑ (nand)

7 / 28

Propositional logic: syntax

Assume a countable set of propositional variables ({p, p1, p2, . . . , q, q1, q2, . . .})

Propositional formula:
• Every propositional variable (aka, atom) is a formula
• > and⊥ are formulas
• If A1, . . . , An are formulas, where n ≥ 2, then A1 ∧ . . . ∧ An and A1 ∨ . . . ∨ An are
formulas

• If A is a formula, then ¬A is a formula
• If A and B are formulas, then A→ B and A↔ B are formulas
• Nothing else is a formula

The symbols>,⊥,∧,∨,¬,→,↔ are called connectives

Note: The book considers also⊕ (exclusive or), ↓ (nor), and ↑ (nand)

7 / 28

Propositional logic: syntax

Assume a countable set of propositional variables ({p, p1, p2, . . . , q, q1, q2, . . .})

Propositional formula:
• Every propositional variable (aka, atom) is a formula
• > and⊥ are formulas
• If A1, . . . , An are formulas, where n ≥ 2, then A1 ∧ . . . ∧ An and A1 ∨ . . . ∨ An are
formulas

• If A is a formula, then ¬A is a formula
• If A and B are formulas, then A→ B and A↔ B are formulas
• Nothing else is a formula

The symbols>,⊥,∧,∨,¬,→,↔ are called connectives

Note: The book considers also⊕ (exclusive or), ↓ (nor), and ↑ (nand)

7 / 28

Propositional logic: syntax

Assume a countable set of propositional variables ({p, p1, p2, . . . , q, q1, q2, . . .})

Propositional formula:
• Every propositional variable (aka, atom) is a formula
• > and⊥ are formulas
• If A1, . . . , An are formulas, where n ≥ 2, then A1 ∧ . . . ∧ An and A1 ∨ . . . ∨ An are
formulas

• If A is a formula, then ¬A is a formula
• If A and B are formulas, then A→ B and A↔ B are formulas
• Nothing else is a formula

The symbols>,⊥,∧,∨,¬,→,↔ are called connectives

Note: The book considers also⊕ (exclusive or), ↓ (nor), and ↑ (nand)

7 / 28

Parsing expressions

In general, we use parentheses to disambiguate the parsing of
expressions

Parenthesis clutter can be reduced by assigning precedence to
operators

Example In arithmetic we know that the expression

x · y + 2 · z stands for (x · y) + (2 · z)

since · has a higher precedence than+

8 / 28

Parsing expressions

In general, we use parentheses to disambiguate the parsing of
expressions

Parenthesis clutter can be reduced by assigning precedence to
operators

Example In arithmetic we know that the expression

x · y + 2 · z stands for (x · y) + (2 · z)

since · has a higher precedence than+

8 / 28

Parsing expressions

In general, we use parentheses to disambiguate the parsing of
expressions

Parenthesis clutter can be reduced by assigning precedence to
operators

Example In arithmetic we know that the expression

x · y + 2 · z stands for (x · y) + (2 · z)

since · has a higher precedence than+

8 / 28

Propositional connectives and their precedence

Connective Name Precedence
> verum
⊥ falsum
¬ negation 5
∧ conjunction 4
∨ disjunction 3
→ implication 2
↔ equivalence 1

Implication is right-associative:

A→ B→ C is parsed as
A→ (B→ C)

9 / 28

Propositional connectives and their precedence

Connective Name Precedence
> verum
⊥ falsum
¬ negation 5
∧ conjunction 4
∨ disjunction 3
→ implication 2
↔ equivalence 1

Implication is right-associative:

A→ B→ C is parsed as
A→ (B→ C)

9 / 28

Parsing Formulas

Let us parse

¬A ∧ B→ C ∨ D↔ E

Connective Precedence
>
⊥
¬ 5
∧ 4
∨ 3
→ 2
↔ 1

Inside-out (starting with the highest precedence connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E

Outside-in (starting with the lowest precedence connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E

10 / 28

Parsing Formulas

Let us parse

¬A ∧ B→ C ∨ D↔ E

Connective Precedence
>
⊥
¬ 5
∧ 4
∨ 3
→ 2
↔ 1

Inside-out (starting with the highest precedence connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E

Outside-in (starting with the lowest precedence connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E

10 / 28

Parsing Formulas

Let us parse

¬A ∧ B→ C ∨ D↔ E

Connective Precedence
>
⊥
¬ 5
∧ 4
∨ 3
→ 2
↔ 1

Inside-out (starting with the highest precedence connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E

Outside-in (starting with the lowest precedence connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E

10 / 28

Parsing Formulas

Let us parse

¬A ∧ B→ C ∨ D↔ E

Connective Precedence
>
⊥
¬ 5
∧ 4
∨ 3
→ 2
↔ 1

Inside-out (starting with the highest precedence connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E

Outside-in (starting with the lowest precedence connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E

10 / 28

Parsing Formulas

Let us parse

¬A ∧ B→ C ∨ D↔ E

Connective Precedence
>
⊥
¬ 5
∧ 4
∨ 3
→ 2
↔ 1

Inside-out (starting with the highest precedence connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E

Outside-in (starting with the lowest precedence connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E

10 / 28

Parsing Formulas

Let us parse

¬A ∧ B→ C ∨ D↔ E

Connective Precedence
>
⊥
¬ 5
∧ 4
∨ 3
→ 2
↔ 1

Inside-out (starting with the highest precedence connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E

Outside-in (starting with the lowest precedence connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E

10 / 28

Parsing Formulas

Let us parse

¬A ∧ B→ C ∨ D↔ E

Connective Precedence
>
⊥
¬ 5
∧ 4
∨ 3
→ 2
↔ 1

Inside-out (starting with the highest precedence connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E

Outside-in (starting with the lowest precedence connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E

10 / 28

Parsing Formulas

Let us parse

¬A ∧ B→ C ∨ D↔ E

Connective Precedence
>
⊥
¬ 5
∧ 4
∨ 3
→ 2
↔ 1

Inside-out (starting with the highest precedence connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E

Outside-in (starting with the lowest precedence connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E

10 / 28

Parsing Formulas

Let us parse

¬A ∧ B→ C ∨ D↔ E

Connective Precedence
>
⊥
¬ 5
∧ 4
∨ 3
→ 2
↔ 1

Inside-out (starting with the highest precedence connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E

Outside-in (starting with the lowest precedence connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E

10 / 28

Parsing Formulas

Let us parse

¬A ∧ B→ C ∨ D↔ E

Connective Precedence
>
⊥
¬ 5
∧ 4
∨ 3
→ 2
↔ 1

Inside-out (starting with the highest precedence connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E

Outside-in (starting with the lowest precedence connectives):

(((¬A) ∧ B)→ (C ∨ D))↔ E

10 / 28

Semantics, Interpretation

In arithmetic the meaning of expressions with variables like

x · y + 2 · z

is defined as follows:

1. fix a mapping from variables to (integer) values,
e.g., { x 7→ 1, y 7→ 7, z 7→ −3 }

2. then, under this mapping the expression has the value 1

11 / 28

Semantics, Interpretation

In arithmetic the meaning of expressions with variables like

x · y + 2 · z

is defined as follows:

1. fix a mapping from variables to (integer) values,
e.g., { x 7→ 1, y 7→ 7, z 7→ −3 }

2. then, under this mapping the expression has the value 1

11 / 28

Semantics, Interpretation

In arithmetic the meaning of expressions with variables like

x · y + 2 · z

is defined as follows:

1. fix a mapping from variables to (integer) values,
e.g., { x 7→ 1, y 7→ 7, z 7→ −3 }

2. then, under this mapping the expression has the value 1

11 / 28

Semantics, Interpretation

In arithmetic the meaning of expressions with variables like

x · y + 2 · z

is defined as follows:

1. fix a mapping from variables to (integer) values,
e.g., { x 7→ 1, y 7→ 7, z 7→ −3 }

2. then, under this mapping the expression has the value 1

11 / 28

In other words:
we can determine the value of an expression once
we interpret its variables as specific values

Semantics, Interpretation

The semantics of propositional formulas can be defined too by
assigning values to variables

• There are two Boolean/truth values:
true (denoted by 1) and false (denoted by 0)

• An interpretation for a set P of propositional variables is a
mapping I : P→ { 1, 0 }

• Interpretations are also called truth assignments

12 / 28

Semantics, Interpretation

The semantics of propositional formulas can be defined too by
assigning values to variables

• There are two Boolean/truth values:
true (denoted by 1) and false (denoted by 0)

• An interpretation for a set P of propositional variables is a
mapping I : P→ { 1, 0 }

• Interpretations are also called truth assignments

12 / 28

Semantics, Interpretation

The semantics of propositional formulas can be defined too by
assigning values to variables

• There are two Boolean/truth values:
true (denoted by 1) and false (denoted by 0)

• An interpretation for a set P of propositional variables is a
mapping I : P→ { 1, 0 }

• Interpretations are also called truth assignments

12 / 28

Semantics, Interpretation

The semantics of propositional formulas can be defined too by
assigning values to variables

• There are two Boolean/truth values:
true (denoted by 1) and false (denoted by 0)

• An interpretation for a set P of propositional variables is a
mapping I : P→ { 1, 0 }

• Interpretations are also called truth assignments

12 / 28

Interpreting formulas

The truth value of a complex formula is determined by the truth
values of its components

An interpretation I extends to a mapping from all formulas to truth
values as follows:

1. I(>) = 1 and I(⊥) = 0
2. I(A1 ∧ . . . ∧ An) = 1 i� I(Ai) = 1 for all i
3. I(A1 ∨ . . . ∨ An) = 1 i� I(Ai) = 1 for some i
4. I(¬A) = 1 i� I(A) = 0
5. I(A1 → A2) = 1 i� I(A1) = 0 or I(A2) = 1
6. I(A1 ↔ A2) = 1 i� I(A1) = I(A2)

13 / 28

Interpreting formulas

The truth value of a complex formula is determined by the truth
values of its components

An interpretation I extends to a mapping from all formulas to truth
values as follows:

1. I(>) = 1 and I(⊥) = 0
2. I(A1 ∧ . . . ∧ An) = 1 i� I(Ai) = 1 for all i
3. I(A1 ∨ . . . ∨ An) = 1 i� I(Ai) = 1 for some i
4. I(¬A) = 1 i� I(A) = 0
5. I(A1 → A2) = 1 i� I(A1) = 0 or I(A2) = 1
6. I(A1 ↔ A2) = 1 i� I(A1) = I(A2)

13 / 28

Interpreting formulas

The truth value of a complex formula is determined by the truth
values of its components

An interpretation I extends to a mapping from all formulas to truth
values as follows:

1. I(>) = 1 and I(⊥) = 0
2. I(A1 ∧ . . . ∧ An) = 1 i� I(Ai) = 1 for all i
3. I(A1 ∨ . . . ∨ An) = 1 i� I(Ai) = 1 for some i
4. I(¬A) = 1 i� I(A) = 0
5. I(A1 → A2) = 1 i� I(A1) = 0 or I(A2) = 1
6. I(A1 ↔ A2) = 1 i� I(A1) = I(A2)

13 / 28

Interpreting formulas

The truth value of a complex formula is determined by the truth
values of its components

An interpretation I extends to a mapping from all formulas to truth
values as follows:

1. I(>) = 1 and I(⊥) = 0
2. I(A1 ∧ . . . ∧ An) = 1 i� I(Ai) = 1 for all i
3. I(A1 ∨ . . . ∨ An) = 1 i� I(Ai) = 1 for some i
4. I(¬A) = 1 i� I(A) = 0
5. I(A1 → A2) = 1 i� I(A1) = 0 or I(A2) = 1
6. I(A1 ↔ A2) = 1 i� I(A1) = I(A2)

13 / 28

Interpreting formulas

The truth value of a complex formula is determined by the truth
values of its components

An interpretation I extends to a mapping from all formulas to truth
values as follows:

1. I(>) = 1 and I(⊥) = 0
2. I(A1 ∧ . . . ∧ An) = 1 i� I(Ai) = 1 for all i
3. I(A1 ∨ . . . ∨ An) = 1 i� I(Ai) = 1 for some i
4. I(¬A) = 1 i� I(A) = 0
5. I(A1 → A2) = 1 i� I(A1) = 0 or I(A2) = 1
6. I(A1 ↔ A2) = 1 i� I(A1) = I(A2)

13 / 28

Interpreting formulas

The truth value of a complex formula is determined by the truth
values of its components

An interpretation I extends to a mapping from all formulas to truth
values as follows:

1. I(>) = 1 and I(⊥) = 0
2. I(A1 ∧ . . . ∧ An) = 1 i� I(Ai) = 1 for all i
3. I(A1 ∨ . . . ∨ An) = 1 i� I(Ai) = 1 for some i
4. I(¬A) = 1 i� I(A) = 0
5. I(A1 → A2) = 1 i� I(A1) = 0 or I(A2) = 1
6. I(A1 ↔ A2) = 1 i� I(A1) = I(A2)

13 / 28

Interpreting formulas

The truth value of a complex formula is determined by the truth
values of its components

An interpretation I extends to a mapping from all formulas to truth
values as follows:

1. I(>) = 1 and I(⊥) = 0
2. I(A1 ∧ . . . ∧ An) = 1 i� I(Ai) = 1 for all i
3. I(A1 ∨ . . . ∨ An) = 1 i� I(Ai) = 1 for some i
4. I(¬A) = 1 i� I(A) = 0
5. I(A1 → A2) = 1 i� I(A1) = 0 or I(A2) = 1
6. I(A1 ↔ A2) = 1 i� I(A1) = I(A2)

13 / 28

Interpreting formulas

The truth value of a complex formula is determined by the truth
values of its components

An interpretation I extends to a mapping from all formulas to truth
values as follows:

1. I(>) = 1 and I(⊥) = 0
2. I(A1 ∧ . . . ∧ An) = 1 i� I(Ai) = 1 for all i
3. I(A1 ∨ . . . ∨ An) = 1 i� I(Ai) = 1 for some i
4. I(¬A) = 1 i� I(A) = 0
5. I(A1 → A2) = 1 i� I(A1) = 0 or I(A2) = 1
6. I(A1 ↔ A2) = 1 i� I(A1) = I(A2)

13 / 28

Interpreting formulas

The truth value of a complex formula is determined by the truth
values of its components

An interpretation I extends to a mapping from all formulas to truth
values as follows:

1. I(>) = 1 and I(⊥) = 0
2. I(A1 ∧ . . . ∧ An) = 1 i� I(Ai) = 1 for all i
3. I(A1 ∨ . . . ∨ An) = 1 i� I(Ai) = 1 for some i
4. I(¬A) = 1 i� I(A) = 0
5. I(A1 → A2) = 1 i� I(A1) = 0 or I(A2) = 1
6. I(A1 ↔ A2) = 1 i� I(A1) = I(A2)

13 / 28

Operation tables

I(A1 ∨ A2) = 1 i� I(A1) = 1 or I(A2) = 1

I(A1 ↔ A2) = 1 i� I(A1) = I(B2)

∧ 1 0
1 1 0
0 0 0

∨ 1 0
1 1 1
0 1 0

¬
1 0
0 1

→ 1 0
1 1 0
0 1 1

↔ 1 0
1 1 0
0 0 1

Therefore, every connective can be considered as a function on truth
values

14 / 28

Operation tables

I(A1 ∨ A2) = 1 i� I(A1) = 1 or I(A2) = 1

I(A1 ↔ A2) = 1 i� I(A1) = I(B2)

∧ 1 0
1 1 0
0 0 0

∨ 1 0
1 1 1
0 1 0

¬
1 0
0 1

→ 1 0
1 1 0
0 1 1

↔ 1 0
1 1 0
0 0 1

Therefore, every connective can be considered as a function on truth
values

14 / 28

Operation tables

I(A1 ∨ A2) = 1 i� I(A1) = 1 or I(A2) = 1

I(A1 ↔ A2) = 1 i� I(A1) = I(B2)

∧ 1 0
1 1 0
0 0 0

∨ 1 0
1 1 1
0 1 0

¬
1 0
0 1

→ 1 0
1 1 0
0 1 1

↔ 1 0
1 1 0
0 0 1

Therefore, every connective can be considered as a function on truth
values

14 / 28

Operation tables

I(A1 ∨ A2) = 1 i� I(A1) = 1 or I(A2) = 1

I(A1 ↔ A2) = 1 i� I(A1) = I(B2)

∧ 1 0
1 1 0
0 0 0

∨ 1 0
1 1 1
0 1 0

¬
1 0
0 1

→ 1 0
1 1 0
0 1 1

↔ 1 0
1 1 0
0 0 1

Therefore, every connective can be considered as a function on truth
values

14 / 28

Satisfiability, validity, equivalence

Let A and B be two formulas and I an interpretation

• If I(A) = 1, we write I |= A and say, equivalently, that
A is true in I, I satisfies A, or I is amodel of A
• If I(A) = 0, we write I 6|= A and say, equivalently, that
A is false in I, I falsifies A, or I is not a model of A
• A is satisfiable if it is true in some interpretation,
and is unsatisfiable otherwise
• A is valid, or a tautology, if it is true in every interpretation,
and is invalid, or falsifiable, otherwise
• A and B are equivalent, written A ≡ B, if they have exactly the
samemodels

15 / 28

Satisfiability, validity, equivalence

Let A and B be two formulas and I an interpretation

• If I(A) = 1, we write I |= A and say, equivalently, that
A is true in I, I satisfies A, or I is amodel of A
• If I(A) = 0, we write I 6|= A and say, equivalently, that
A is false in I, I falsifies A, or I is not a model of A
• A is satisfiable if it is true in some interpretation,
and is unsatisfiable otherwise
• A is valid, or a tautology, if it is true in every interpretation,
and is invalid, or falsifiable, otherwise
• A and B are equivalent, written A ≡ B, if they have exactly the
samemodels

15 / 28

Satisfiability, validity, equivalence

Let A and B be two formulas and I an interpretation

• If I(A) = 1, we write I |= A and say, equivalently, that
A is true in I, I satisfies A, or I is amodel of A
• If I(A) = 0, we write I 6|= A and say, equivalently, that
A is false in I, I falsifies A, or I is not a model of A
• A is satisfiable if it is true in some interpretation,
and is unsatisfiable otherwise
• A is valid, or a tautology, if it is true in every interpretation,
and is invalid, or falsifiable, otherwise
• A and B are equivalent, written A ≡ B, if they have exactly the
samemodels

15 / 28

Satisfiability, validity, equivalence

Let A and B be two formulas and I an interpretation

• If I(A) = 1, we write I |= A and say, equivalently, that
A is true in I, I satisfies A, or I is amodel of A
• If I(A) = 0, we write I 6|= A and say, equivalently, that
A is false in I, I falsifies A, or I is not a model of A
• A is satisfiable if it is true in some interpretation,
and is unsatisfiable otherwise
• A is valid, or a tautology, if it is true in every interpretation,
and is invalid, or falsifiable, otherwise
• A and B are equivalent, written A ≡ B, if they have exactly the
samemodels

15 / 28

Satisfiability, validity, equivalence

Let A and B be two formulas and I an interpretation

• If I(A) = 1, we write I |= A and say, equivalently, that
A is true in I, I satisfies A, or I is amodel of A
• If I(A) = 0, we write I 6|= A and say, equivalently, that
A is false in I, I falsifies A, or I is not a model of A
• A is satisfiable if it is true in some interpretation,
and is unsatisfiable otherwise
• A is valid, or a tautology, if it is true in every interpretation,
and is invalid, or falsifiable, otherwise
• A and B are equivalent, written A ≡ B, if they have exactly the
samemodels

15 / 28

Satisfiability, validity, equivalence

Let A and B be two formulas and I an interpretation

• If I(A) = 1, we write I |= A and say, equivalently, that
A is true in I, I satisfies A, or I is amodel of A
• If I(A) = 0, we write I 6|= A and say, equivalently, that
A is false in I, I falsifies A, or I is not a model of A
• A is satisfiable if it is true in some interpretation,
and is unsatisfiable otherwise
• A is valid, or a tautology, if it is true in every interpretation,
and is invalid, or falsifiable, otherwise
• A and B are equivalent, written A ≡ B, if they have exactly the
samemodels

15 / 28

Satisfiability, validity, equivalence

Let A and B be two formulas and I an interpretation

• If I(A) = 1, we write I |= A and say, equivalently, that
A is true in I, I satisfies A, or I is amodel of A
• If I(A) = 0, we write I 6|= A and say, equivalently, that
A is false in I, I falsifies A, or I is not a model of A
• A is satisfiable if it is true in some interpretation,
and is unsatisfiable otherwise
• A is valid, or a tautology, if it is true in every interpretation,
and is invalid, or falsifiable, otherwise
• A and B are equivalent, written A ≡ B, if they have exactly the
samemodels

15 / 28

Examples

A, B formulas p propositional variable

• A→ B, A ∨ ¬B, (A→ B)→ A, p are all satisfiable

• A→ B, A ∨ ¬B, (A→ B)→ A, p are all falsifiable

• A→ A, A ∨ ¬A, A→ (B→ A) are all valid

Note:
• > is valid and⊥ is unsatisfiable
• Every valid formula is satisfiable
• Every unsatisfiable formula is falsifiable

16 / 28

Examples

A, B formulas p propositional variable

• A→ B, A ∨ ¬B, (A→ B)→ A, p are all satisfiable

• A→ B, A ∨ ¬B, (A→ B)→ A, p are all falsifiable

• A→ A, A ∨ ¬A, A→ (B→ A) are all valid

Note:
• > is valid and⊥ is unsatisfiable
• Every valid formula is satisfiable
• Every unsatisfiable formula is falsifiable

16 / 28

Examples

A, B formulas p propositional variable

• A→ B, A ∨ ¬B, (A→ B)→ A, p are all satisfiable

• A→ B, A ∨ ¬B, (A→ B)→ A, p are all falsifiable

• A→ A, A ∨ ¬A, A→ (B→ A) are all valid

Note:
• > is valid and⊥ is unsatisfiable
• Every valid formula is satisfiable
• Every unsatisfiable formula is falsifiable

16 / 28

Examples

A, B formulas p propositional variable

• A→ B, A ∨ ¬B, (A→ B)→ A, p are all satisfiable

• A→ B, A ∨ ¬B, (A→ B)→ A, p are all falsifiable

• A→ A, A ∨ ¬A, A→ (B→ A) are all valid

Note:
• > is valid and⊥ is unsatisfiable
• Every valid formula is satisfiable
• Every unsatisfiable formula is falsifiable

16 / 28

Examples

A, B formulas p propositional variable

• A→ B, A ∨ ¬B, (A→ B)→ A, p are all satisfiable

• A→ B, A ∨ ¬B, (A→ B)→ A, p are all falsifiable

• A→ A, A ∨ ¬A, A→ (B→ A) are all valid

Note:
• > is valid and⊥ is unsatisfiable
• Every valid formula is satisfiable
• Every unsatisfiable formula is falsifiable

16 / 28

Examples: equivalences

For all formulas A and B, the following equivalences hold:

A→ ⊥ ≡ ¬A (1)
> → A ≡ A (2)
A→ B ≡ ¬A ∨ B (3)

≡ ¬(A ∧ ¬B) (4)
A ∧ B ≡ ¬(¬A ∨ ¬B) (5)
A ∨ B ≡ ¬A→ B (6)
A→ A ≡ > (7)
A ∧ ¬A ≡ ⊥ (8)

17 / 28

Connections between these notions

For all formulas A and B,

1. A is valid i� ¬A is unsatisfiable
2. A is satisfiable i� ¬A is falsifiable

3. A is valid i� A is equivalent to>
4. A and B are equivalent i� A↔ B is valid

5. A and B are equivalent i� ¬(A↔ B) is unsatisfiable
6. A is satisfiable i� A is not equivalent to⊥

18 / 28

Connections between these notions

For all formulas A and B,

1. A is valid i� ¬A is unsatisfiable
2. A is satisfiable i� ¬A is falsifiable

3. A is valid i� A is equivalent to>
4. A and B are equivalent i� A↔ B is valid

5. A and B are equivalent i� ¬(A↔ B) is unsatisfiable
6. A is satisfiable i� A is not equivalent to⊥

18 / 28

Connections between these notions

For all formulas A and B,

1. A is valid i� ¬A is unsatisfiable
2. A is satisfiable i� ¬A is falsifiable

3. A is valid i� A is equivalent to>
4. A and B are equivalent i� A↔ B is valid

5. A and B are equivalent i� ¬(A↔ B) is unsatisfiable
6. A is satisfiable i� A is not equivalent to⊥

18 / 28

Connections between these notions

For all formulas A and B,

1. A is valid i� ¬A is unsatisfiable
2. A is satisfiable i� ¬A is falsifiable

3. A is valid i� A is equivalent to>
4. A and B are equivalent i� A↔ B is valid

5. A and B are equivalent i� ¬(A↔ B) is unsatisfiable
6. A is satisfiable i� A is not equivalent to⊥

18 / 28

Syntactic vs. semantic symbols

For all formulas A and B,

• A is valid i� A ≡ >
• (A↔ B) is valid i� (A↔ B) ≡ >

What is the di�erence between≡ and↔?
↔ is a connective in the language of propositional logic

(A↔ B) is formula of the logic

≡ is mathematical notation to express formula equivalence

(A ≡ B) is a shorthand for a statement about the interpretations of A and B

19 / 28

Syntactic vs. semantic symbols

For all formulas A and B,

• A is valid i� A ≡ >
• (A↔ B) is valid i� (A↔ B) ≡ >

What is the di�erence between≡ and↔?
↔ is a connective in the language of propositional logic

(A↔ B) is formula of the logic

≡ is mathematical notation to express formula equivalence

(A ≡ B) is a shorthand for a statement about the interpretations of A and B

19 / 28

Syntactic vs. semantic symbols

For all formulas A and B,

• A is valid i� A ≡ >
• (A↔ B) is valid i� (A↔ B) ≡ >

What is the di�erence between≡ and↔?
↔ is a connective in the language of propositional logic

(A↔ B) is formula of the logic

≡ is mathematical notation to express formula equivalence

(A ≡ B) is a shorthand for a statement about the interpretations of A and B

19 / 28

Syntactic vs. semantic symbols

For all formulas A and B,

• A is valid i� A ≡ >
• (A↔ B) is valid i� (A↔ B) ≡ >

What is the di�erence between≡ and↔?
↔ is a connective in the language of propositional logic

(A↔ B) is formula of the logic

≡ is mathematical notation to express formula equivalence
(A ≡ B) is a shorthand for a statement about the interpretations of A and B

19 / 28

How to evaluate a formula?

Let’s evaluate the formula

A = (p→ q) ∧ (p ∧ q→ r)→ (p→ r)

in the interpretation

I = { p 7→ 1, q 7→ 0, r 7→ 1 }

20 / 28

Evaluating a formula

formula value
(p→ q) ∧ (p ∧ q→ r)→ (p→ r) 1

p→ r 1
(p→ q) ∧ (p ∧ q→ r) 0

p ∧ q→ r 1
p→ q 0

p ∧ q 0
p p p 1

q q 0
r r 1

I = { p 7→ 1, q 7→ 0, r 7→ 1 }

So the formula is true in interpretation I

21 / 28

Evaluating a formula

formula value
(p→ q) ∧ (p ∧ q→ r)→ (p→ r) 1

p→ r 1
(p→ q) ∧ (p ∧ q→ r) 0

p ∧ q→ r 1
p→ q 0

p ∧ q 0
p p p 1

q q 0
r r 1

I = { p 7→ 1, q 7→ 0, r 7→ 1 }

So the formula is true in interpretation I

21 / 28

Evaluating a formula

formula value
(p→ q) ∧ (p ∧ q→ r)→ (p→ r) 1

p→ r 1
(p→ q) ∧ (p ∧ q→ r) 0

p ∧ q→ r 1
p→ q 0

p ∧ q 0
p p p 1

q q 0
r r 1

I = { p 7→ 1, q 7→ 0, r 7→ 1 }

So the formula is true in interpretation I

21 / 28

Evaluating a formula

formula value
(p→ q) ∧ (p ∧ q→ r)→ (p→ r) 1

p→ r 1
(p→ q) ∧ (p ∧ q→ r) 0

p ∧ q→ r 1
p→ q 0

p ∧ q 0
p p p 1

q q 0
r r 1

I = { p 7→ 1, q 7→ 0, r 7→ 1 }

So the formula is true in interpretation I

21 / 28

Evaluating a formula

formula value
(p→ q) ∧ (p ∧ q→ r)→ (p→ r) 1

p→ r 1
(p→ q) ∧ (p ∧ q→ r) 0

p ∧ q→ r 1
p→ q 0

p ∧ q 0
p p p 1

q q 0
r r 1

I = { p 7→ 1, q 7→ 0, r 7→ 1 }

So the formula is true in interpretation I

21 / 28

Evaluating a formula

formula value
(p→ q) ∧ (p ∧ q→ r)→ (p→ r) 1

p→ r 1
(p→ q) ∧ (p ∧ q→ r) 0

p ∧ q→ r 1
p→ q 0

p ∧ q 0
p p p 1

q q 0
r r 1

I = { p 7→ 1, q 7→ 0, r 7→ 1 }

So the formula is true in interpretation I

21 / 28

Evaluating a formula

formula value
(p→ q) ∧ (p ∧ q→ r)→ (p→ r) 1

p→ r 1
(p→ q) ∧ (p ∧ q→ r) 0

p ∧ q→ r 1
p→ q 0

p ∧ q 0
p p p 1

q q 0
r r 1

I = { p 7→ 1, q 7→ 0, r 7→ 1 }

So the formula is true in interpretation I

21 / 28

Evaluating a formula

formula value
(p→ q) ∧ (p ∧ q→ r)→ (p→ r) 1

p→ r 1
(p→ q) ∧ (p ∧ q→ r) 0

p ∧ q→ r 1
p→ q 0

p ∧ q 0
p p p 1

q q 0
r r 1

I = { p 7→ 1, q 7→ 0, r 7→ 1 }

So the formula is true in interpretation I

21 / 28

Evaluating a formula

formula value
(p→ q) ∧ (p ∧ q→ r)→ (p→ r) 1

p→ r 1
(p→ q) ∧ (p ∧ q→ r) 0

p ∧ q→ r 1
p→ q 0

p ∧ q 0
p p p 1

q q 0
r r 1

I = { p 7→ 1, q 7→ 0, r 7→ 1 }

So the formula is true in interpretation I

21 / 28

Evaluating a formula

formula value
(p→ q) ∧ (p ∧ q→ r)→ (p→ r) 1

p→ r 1
(p→ q) ∧ (p ∧ q→ r) 0

p ∧ q→ r 1
p→ q 0

p ∧ q 0
p p p 1

q q 0
r r 1

I = { p 7→ 1, q 7→ 0, r 7→ 1 }

So the formula is true in interpretation I

21 / 28

Evaluating a formula

formula value
(p→ q) ∧ (p ∧ q→ r)→ (p→ r) 1

p→ r 1
(p→ q) ∧ (p ∧ q→ r) 0

p ∧ q→ r 1
p→ q 0

p ∧ q 0
p p p 1

q q 0
r r 1

I = { p 7→ 1, q 7→ 0, r 7→ 1 }

So the formula is true in interpretation I

21 / 28

Evaluating a formula

formula value
(p→ q) ∧ (p ∧ q→ r)→ (p→ r) 1

p→ r 1
(p→ q) ∧ (p ∧ q→ r) 0

p ∧ q→ r 1
p→ q 0

p ∧ q 0
p p p 1

q q 0
r r 1

I = { p 7→ 1, q 7→ 0, r 7→ 1 }

So the formula is true in interpretation I

21 / 28

Evaluating a formula

formula value
(p→ q) ∧ (p ∧ q→ r)→ (p→ r) 1

p→ r 1
(p→ q) ∧ (p ∧ q→ r) 0

p ∧ q→ r 1
p→ q 0

p ∧ q 0
p p p 1

q q 0
r r 1

I = { p 7→ 1, q 7→ 0, r 7→ 1 }

So the formula is true in interpretation I
21 / 28

Equivalent replacement

Let B[A] denote a formula Bwith a fixed occurrence of a subformula A
Let B[A′] then denote the formula obtained from B by replacing that
occurrence of A by A′

22 / 28

Equivalent replacement

Let B[A] denote a formula Bwith a fixed occurrence of a subformula A
Let B[A′] then denote the formula obtained from B by replacing that
occurrence of A by A′

Example

B = (p1 ∧ p2) ∨ (p1 ∧ p3) (9)

A = p1 ∧ p3 (10)

A′ = p1 ∨ ¬p4 (11)

B[A′] = (p1 ∧ p2) ∨ (p1 ∨ ¬p4) (12)

22 / 28

Equivalent replacement

Let B[A] denote a formula Bwith a fixed occurrence of a subformula A
Let B[A′] then denote the formula obtained from B by replacing that
occurrence of A by A′

Lemma (Equivalent Replacement)
Let I be an interpretation and I |= A1 ↔ A2. Then I |= B[A1]↔ B[A2].

22 / 28

Equivalent replacement

Let B[A] denote a formula Bwith a fixed occurrence of a subformula A
Let B[A′] then denote the formula obtained from B by replacing that
occurrence of A by A′

Lemma (Equivalent Replacement)
Let I be an interpretation and I |= A1 ↔ A2. Then I |= B[A1]↔ B[A2].

Theorem (Equivalent Replacement)
Let A1 ≡ A2. Then B[A1] ≡ B[A2].

22 / 28

Equivalent replacement

Let B[A] denote a formula Bwith a fixed occurrence of a subformula A
Let B[A′] then denote the formula obtained from B by replacing that
occurrence of A by A′

Lemma (Equivalent Replacement)
Let I be an interpretation and I |= A1 ↔ A2. Then I |= B[A1]↔ B[A2].

Theorem (Equivalent Replacement)
Let A1 ≡ A2. Then B[A1] ≡ B[A2].

Thanks to compositionality!

22 / 28

A purely syntactic formula evaluation algorithm

Let I be an interpretation

Note:
• If I |= p then I |= p↔ >
• If I 6|= p then I |= p↔ ⊥

By the previous lemma, we can replace a subformula by a formula
with the same value

Hence, we can replace every atom p by either> or⊥, depending on
the value of p in I

23 / 28

A purely syntactic formula evaluation algorithm

Let I be an interpretation

Note:
• If I |= p then I |= p↔ >
• If I 6|= p then I |= p↔ ⊥

By the previous lemma, we can replace a subformula by a formula
with the same value

Hence, we can replace every atom p by either> or⊥, depending on
the value of p in I

23 / 28

A purely syntactic formula evaluation algorithm

Let I be an interpretation

Note:
• If I |= p then I |= p↔ >
• If I 6|= p then I |= p↔ ⊥

By the previous lemma, we can replace a subformula by a formula
with the same value

Hence, we can replace every atom p by either> or⊥, depending on
the value of p in I

23 / 28

Rewrite rules for evaluating a formula

Consider a formula whose atoms consist only of⊥ and>

Any such formula, other than⊥ and>, can be rewritten to a smaller,
equivalent formula

Examples
• A→ > is equivalent to >
• A ∨ ⊥ is equivalent to A

This simplification process can be formalized as a rewrite rule system

24 / 28

Rewrite rules for evaluating a formula

Consider a formula whose atoms consist only of⊥ and>

Any such formula, other than⊥ and>, can be rewritten to a smaller,
equivalent formula

Examples
• A→ > is equivalent to >
• A ∨ ⊥ is equivalent to A

This simplification process can be formalized as a rewrite rule system

24 / 28

Rewrite rules for evaluating a formula

Consider a formula whose atoms consist only of⊥ and>

Any such formula, other than⊥ and>, can be rewritten to a smaller,
equivalent formula

Examples
• A→ > is equivalent to >
• A ∨ ⊥ is equivalent to A

This simplification process can be formalized as a rewrite rule system

24 / 28

Rewrite rules for evaluating a formula

Consider a formula whose atoms consist only of⊥ and>

Any such formula, other than⊥ and>, can be rewritten to a smaller,
equivalent formula

Examples
• A→ > is equivalent to >
• A ∨ ⊥ is equivalent to A

This simplification process can be formalized as a rewrite rule system

24 / 28

Rewrite system for formula evaluation

> ∧ . . . ∧ > ⇒ >
⊥ ∧ A1 ∧ . . . ∧ An ⇒ ⊥

>∨ A1 ∨ . . . ∨ An ⇒ >
⊥∨ . . . ∨ ⊥ ⇒ ⊥

¬> ⇒ ⊥
¬⊥ ⇒ >

A→ > ⇒ >
⊥ → A ⇒ >
> → ⊥ ⇒ ⊥

> ↔ > ⇒ >
> ↔ ⊥ ⇒ ⊥
⊥ ↔ > ⇒ ⊥
⊥ ↔ ⊥ ⇒ >

⇒ is a rewrite relation

25 / 28

Rewrite system for formula evaluation

> ∧ . . . ∧ > ⇒ >
⊥ ∧ A1 ∧ . . . ∧ An ⇒ ⊥

>∨ A1 ∨ . . . ∨ An ⇒ >
⊥∨ . . . ∨ ⊥ ⇒ ⊥

¬> ⇒ ⊥
¬⊥ ⇒ >

A→ > ⇒ >
⊥ → A ⇒ >
> → ⊥ ⇒ ⊥

> ↔ > ⇒ >
> ↔ ⊥ ⇒ ⊥
⊥ ↔ > ⇒ ⊥
⊥ ↔ ⊥ ⇒ >

⇒ is a rewrite relation

25 / 28

Rewrite system for formula evaluation

> ∧ . . . ∧ > ⇒ >
⊥ ∧ A1 ∧ . . . ∧ An ⇒ ⊥

>∨ A1 ∨ . . . ∨ An ⇒ >
⊥∨ . . . ∨ ⊥ ⇒ ⊥

¬> ⇒ ⊥
¬⊥ ⇒ >

A→ > ⇒ >
⊥ → A ⇒ >
> → ⊥ ⇒ ⊥

> ↔ > ⇒ >
> ↔ ⊥ ⇒ ⊥
⊥ ↔ > ⇒ ⊥
⊥ ↔ ⊥ ⇒ >

⇒ is a rewrite relation

Writing B⇒ B′means that B can be rewritten to B′ in one step using
one of the rules above

25 / 28

Rewrite system for formula evaluation

> ∧ . . . ∧ > ⇒ >
⊥ ∧ A1 ∧ . . . ∧ An ⇒ ⊥

>∨ A1 ∨ . . . ∨ An ⇒ >
⊥∨ . . . ∨ ⊥ ⇒ ⊥

¬> ⇒ ⊥
¬⊥ ⇒ >

A→ > ⇒ >
⊥ → A ⇒ >
> → ⊥ ⇒ ⊥

> ↔ > ⇒ >
> ↔ ⊥ ⇒ ⊥
⊥ ↔ > ⇒ ⊥
⊥ ↔ ⊥ ⇒ >

⇒ is a rewrite relation

A formula A is in normal form (wrt⇒) if it cannot be rewritten by any
of the rules above

25 / 28

A syntactic evaluation algorithm
evaluate evaluates any formula G in any interpretation I using the
previous rewrite system

procedure evaluate(G, I)
input: formula G, interpretation I
output: the boolean value I(G)
begin
forall atoms p occurring in G
if I |= p
then replace all occurrences of p in G by>
else replace all occurrences of p in G by⊥

rewrite G into a normal form using the rewrite rules
if G = > then return 1 else return 0
end

26 / 28

A syntactic evaluation algorithm
evaluate evaluates any formula G in any interpretation I using the
previous rewrite system

procedure evaluate(G, I)
input: formula G, interpretation I
output: the boolean value I(G)
begin
forall atoms p occurring in G
if I |= p
then replace all occurrences of p in G by>
else replace all occurrences of p in G by⊥

rewrite G into a normal form using the rewrite rules
if G = > then return 1 else return 0
end

26 / 28

A syntactic evaluation algorithm
evaluate evaluates any formula G in any interpretation I using the
previous rewrite system

procedure evaluate(G, I)
input: formula G, interpretation I
output: the boolean value I(G)
begin
forall atoms p occurring in G
if I |= p
then replace all occurrences of p in G by>
else replace all occurrences of p in G by⊥

rewrite G into a normal form using the rewrite rules
if G = > then return 1 else return 0
end

26 / 28

A syntactic evaluation algorithm
evaluate evaluates any formula G in any interpretation I using the
previous rewrite system

procedure evaluate(G, I)
input: formula G, interpretation I
output: the boolean value I(G)
begin
forall atoms p occurring in G
if I |= p
then replace all occurrences of p in G by>
else replace all occurrences of p in G by⊥

rewrite G into a normal form using the rewrite rules
if G = > then return 1 else return 0
end

26 / 28

Example

Let us evaluate the formula

G = (p→ q) ∧ (p ∧ q→ r)→ (p→ r)

in the interpretation

I = { p 7→ 1, q 7→ 0, r 7→ 1 }

Its value is equal to the value of

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)

27 / 28

Example

Let us evaluate the formula

G = (p→ q) ∧ (p ∧ q→ r)→ (p→ r)

in the interpretation

I = { p 7→ 1, q 7→ 0, r 7→ 1 }

Its value is equal to the value of

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)

27 / 28

Apply rewrite rules
Inside-out, le�-to-right:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (⊥ → >)→ (> → >)⇒
⊥∧> → (> → >)⇒
⊥→ (> → >)⇒
⊥→ >⇒
>

Outside-in, right-to-le�:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
(> → ⊥) ∧ (> ∧⊥ → >)→ >⇒

>

1. A ∧ ⊥ ⇒ ⊥
2. > → ⊥ ⇒ ⊥
3. A → > ⇒ >

The result will always be the same independently of the order of rewriting!

28 / 28

Apply rewrite rules
Inside-out, le�-to-right:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (⊥ → >)→ (> → >)⇒
⊥∧> → (> → >)⇒
⊥→ (> → >)⇒
⊥→ >⇒
>

Outside-in, right-to-le�:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
(> → ⊥) ∧ (> ∧⊥ → >)→ >⇒

>

1. A ∧ ⊥ ⇒ ⊥
2. > → ⊥ ⇒ ⊥
3. A → > ⇒ >

The result will always be the same independently of the order of rewriting!

28 / 28

Apply rewrite rules
Inside-out, le�-to-right:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (⊥ → >)→ (> → >)⇒
⊥∧> → (> → >)⇒
⊥→ (> → >)⇒
⊥→ >⇒
>

Outside-in, right-to-le�:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
(> → ⊥) ∧ (> ∧⊥ → >)→ >⇒

>

1. A ∧ ⊥ ⇒ ⊥
2. > → ⊥ ⇒ ⊥
3. A → > ⇒ >

The result will always be the same independently of the order of rewriting!

28 / 28

Apply rewrite rules
Inside-out, le�-to-right:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (⊥ → >)→ (> → >)⇒
⊥∧> → (> → >)⇒
⊥→ (> → >)⇒
⊥→ >⇒
>

Outside-in, right-to-le�:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
(> → ⊥) ∧ (> ∧⊥ → >)→ >⇒

>

1. A ∧ ⊥ ⇒ ⊥
2. > → ⊥ ⇒ ⊥
3. A → > ⇒ >

The result will always be the same independently of the order of rewriting!

28 / 28

Apply rewrite rules
Inside-out, le�-to-right:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (⊥ → >)→ (> → >)⇒
⊥∧> → (> → >)⇒
⊥→ (> → >)⇒
⊥→ >⇒
>

Outside-in, right-to-le�:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
(> → ⊥) ∧ (> ∧⊥ → >)→ >⇒

>

1. A ∧ ⊥ ⇒ ⊥
2. > → ⊥ ⇒ ⊥
3. A → > ⇒ >

The result will always be the same independently of the order of rewriting!

28 / 28

Apply rewrite rules
Inside-out, le�-to-right:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (⊥ → >)→ (> → >)⇒
⊥∧> → (> → >)⇒
⊥→ (> → >)⇒
⊥→ >⇒
>

Outside-in, right-to-le�:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
(> → ⊥) ∧ (> ∧⊥ → >)→ >⇒

>

1. A ∧ ⊥ ⇒ ⊥
2. > → ⊥ ⇒ ⊥
3. A → > ⇒ >

The result will always be the same independently of the order of rewriting!

28 / 28

Apply rewrite rules
Inside-out, le�-to-right:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (⊥ → >)→ (> → >)⇒
⊥∧> → (> → >)⇒
⊥→ (> → >)⇒
⊥→ >⇒
>

Outside-in, right-to-le�:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
(> → ⊥) ∧ (> ∧⊥ → >)→ >⇒

>

1. A ∧ ⊥ ⇒ ⊥
2. > → ⊥ ⇒ ⊥
3. A → > ⇒ >

The result will always be the same independently of the order of rewriting!

28 / 28

Apply rewrite rules
Inside-out, le�-to-right:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (⊥ → >)→ (> → >)⇒
⊥∧> → (> → >)⇒
⊥→ (> → >)⇒
⊥→ >⇒
>

Outside-in, right-to-le�:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
(> → ⊥) ∧ (> ∧⊥ → >)→ >⇒

>

1. A ∧ ⊥ ⇒ ⊥
2. > → ⊥ ⇒ ⊥
3. A → > ⇒ >

The result will always be the same independently of the order of rewriting!

28 / 28

Apply rewrite rules
Inside-out, le�-to-right:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (⊥ → >)→ (> → >)⇒
⊥∧> → (> → >)⇒
⊥→ (> → >)⇒
⊥→ >⇒
>

Outside-in, right-to-le�:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
(> → ⊥) ∧ (> ∧⊥ → >)→ >⇒

>

1. A ∧ ⊥ ⇒ ⊥
2. > → ⊥ ⇒ ⊥
3. A → > ⇒ >

The result will always be the same independently of the order of rewriting!

28 / 28

Apply rewrite rules
Inside-out, le�-to-right:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (⊥ → >)→ (> → >)⇒
⊥∧> → (> → >)⇒
⊥→ (> → >)⇒
⊥→ >⇒
>

Outside-in, right-to-le�:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
(> → ⊥) ∧ (> ∧⊥ → >)→ >⇒

>

1. A ∧ ⊥ ⇒ ⊥
2. > → ⊥ ⇒ ⊥
3. A → > ⇒ >

The result will always be the same independently of the order of rewriting!

28 / 28

Apply rewrite rules
Inside-out, le�-to-right:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (⊥ → >)→ (> → >)⇒
⊥∧> → (> → >)⇒
⊥→ (> → >)⇒
⊥→ >⇒
>

Outside-in, right-to-le�:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
(> → ⊥) ∧ (> ∧⊥ → >)→ >⇒

>

1. A ∧ ⊥ ⇒ ⊥
2. > → ⊥ ⇒ ⊥
3. A → > ⇒ >

The result will always be the same independently of the order of rewriting!

28 / 28

Apply rewrite rules
Inside-out, le�-to-right:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (⊥ → >)→ (> → >)⇒
⊥∧> → (> → >)⇒
⊥→ (> → >)⇒
⊥→ >⇒
>

Outside-in, right-to-le�:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
(> → ⊥) ∧ (> ∧⊥ → >)→ >⇒

>

1. A ∧ ⊥ ⇒ ⊥
2. > → ⊥ ⇒ ⊥
3. A → > ⇒ >

The result will always be the same independently of the order of rewriting!

28 / 28

Apply rewrite rules
Inside-out, le�-to-right:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (⊥ → >)→ (> → >)⇒
⊥∧> → (> → >)⇒
⊥→ (> → >)⇒
⊥→ >⇒
>

Outside-in, right-to-le�:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
(> → ⊥) ∧ (> ∧⊥ → >)→ >⇒

>

1. A ∧ ⊥ ⇒ ⊥
2. > → ⊥ ⇒ ⊥
3. A → > ⇒ >

The result will always be the same independently of the order of rewriting!

28 / 28

Apply rewrite rules
Inside-out, le�-to-right:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (⊥ → >)→ (> → >)⇒
⊥∧> → (> → >)⇒
⊥→ (> → >)⇒
⊥→ >⇒
>

Outside-in, right-to-le�:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
(> → ⊥) ∧ (> ∧⊥ → >)→ >⇒

>

1. A ∧ ⊥ ⇒ ⊥
2. > → ⊥ ⇒ ⊥
3. A → > ⇒ >

The result will always be the same independently of the order of rewriting!

28 / 28

Apply rewrite rules
Inside-out, le�-to-right:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (⊥ → >)→ (> → >)⇒
⊥∧> → (> → >)⇒
⊥→ (> → >)⇒
⊥→ >⇒
>

Outside-in, right-to-le�:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
(> → ⊥) ∧ (> ∧⊥ → >)→ >⇒

>

1. A ∧ ⊥ ⇒ ⊥
2. > → ⊥ ⇒ ⊥
3. A → > ⇒ >

The result will always be the same independently of the order of rewriting!

28 / 28

Apply rewrite rules
Inside-out, le�-to-right:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (⊥ → >)→ (> → >)⇒
⊥∧> → (> → >)⇒
⊥→ (> → >)⇒
⊥→ >⇒
>

Outside-in, right-to-le�:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
(> → ⊥) ∧ (> ∧⊥ → >)→ >⇒

>

1. A ∧ ⊥ ⇒ ⊥
2. > → ⊥ ⇒ ⊥
3. A → > ⇒ >

The result will always be the same independently of the order of rewriting!

28 / 28

Apply rewrite rules
Inside-out, le�-to-right:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (⊥ → >)→ (> → >)⇒
⊥∧> → (> → >)⇒
⊥→ (> → >)⇒
⊥→ >⇒
>

Outside-in, right-to-le�:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
(> → ⊥) ∧ (> ∧⊥ → >)→ >⇒

>

1. A ∧ ⊥ ⇒ ⊥
2. > → ⊥ ⇒ ⊥
3. A → > ⇒ >

The result will always be the same independently of the order of rewriting!

28 / 28

Apply rewrite rules
Inside-out, le�-to-right:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (⊥ → >)→ (> → >)⇒
⊥∧> → (> → >)⇒
⊥→ (> → >)⇒
⊥→ >⇒
>

Outside-in, right-to-le�:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
(> → ⊥) ∧ (> ∧⊥ → >)→ >⇒

>

1. A ∧ ⊥ ⇒ ⊥
2. > → ⊥ ⇒ ⊥
3. A → > ⇒ >

The result will always be the same independently of the order of rewriting!

28 / 28

Apply rewrite rules
Inside-out, le�-to-right:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (> ∧⊥ → >)→ (> → >)⇒
⊥∧ (⊥ → >)→ (> → >)⇒
⊥∧> → (> → >)⇒
⊥→ (> → >)⇒
⊥→ >⇒
>

Outside-in, right-to-le�:

(> → ⊥) ∧ (> ∧⊥ → >)→ (> → >)⇒
(> → ⊥) ∧ (> ∧⊥ → >)→ >⇒

>

1. A ∧ ⊥ ⇒ ⊥
2. > → ⊥ ⇒ ⊥
3. A → > ⇒ >

The result will always be the same independently of the order of rewriting!

28 / 28

	Ideas
	Syntax
	Semantics
	Formula Evaluation

