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1 TriviaThe word trivial has an interesting entymology. It is 
omposed of \tri" (meaning\3") and \via" (meaning \ways"). It originally referred to the trivium, the threefundamental 
urri
ulae: grammar, rhetori
s, and logi
. Mastery of these sub-je
ts was 
onsidered essential before study 
ould 
ontinue with the quadrivium,whi
h 
onsisted of arithmeti
, geometry, musi
, and astronomy.Why was logi
 
onsidered to be fundamental to one's edu
ation? To answerthis question, it is ne
essary to explain what we mean by the term \logi
".Lewis Carroll, Through the Looking Glass:\Contrariwise," 
ontinued Tweedledee, \if it was so, it might be;<and if it were so, it would be; but as it isn't, it ain't. That's logi
."Some attempts by the 
lass to de�ne logi
 were:1. The ability to determine 
orre
t answers through a standardized pro
ess.2. The study of formal inferen
e.3. A sequen
e of veri�ed statements.4. Reasoning, as opposed to intuition.5. The dedu
tion of statements from a set of statements.In a sense, all of these de�nitions are 
orre
t.Logi
 was originally studied by the Sophists, who engaged in formal debates.Eventually, they sought to devise an obje
tive system of rules to determine be-yond any doubt who had won an argument. Logi
 was devised for this purpose.As Fran
is Ba
on put it, in 1605,\Logi
 di�ereth from rhetori
..in this, that logi
 handleth reasonexa
t and in truth, and rhetori
 handleth it as it is planted in popularopinions and manners." 1



So logi
 deals with a set of rules for reasoning and arguing. Thus, it deals witha fundamental problem in intelle
tual pursuits: how to distinguish what is truefrom what is false, what is right from what is wrong.2 The First Age of Logi
: Symboli
 Logi
 (500B.C. - 19th Century)Originally, logi
 dealt with arguments in the natural languages used by humans.For example, it would be used to demonstrate the 
orre
tness of arguments likethe following:All men are mortal.So
rates is a man.Therefore, So
rates is mortal.If we 
hange \all" to \some", the argument doesn't hold. But how 
ould wedemonstrate this? We 
ould attempt to de�ne words su
h as \all" and \some"in terms of what inferen
es we 
ould draw from them. Then the demonstrationwould follow from these de�nitions. The problem is that natural language turnsout to be very ambiguous. For example, 
onsider the word \any". In thesenten
e\Eri
 does not believe that Mary 
an pass any test."it 
ould be taken to mean either \all" or \one". (Note: in this 
lass, or in anyte
hni
al 
ontext, don't use the term \any").Also, 
onsider the senten
e\I only borrowed your 
ar.".Di�erent in
e
tions imply di�erent meanings.Another problem with natural language was that it led to many paradoxes.The most famous is The Liar's Paradox. Consider the senten
e\This senten
e is a lie."If it were true, then it must be a lie, as it says, but this is impossible. Similarly,if it were a lie, then what it says is true!Other examples are:The Sophist's Paradox. A Sophist is sued for his tuition by the s
hool thatedu
ated him. He argues that he must win, sin
e, if he loses, the s
hooldidn't edu
ate him well enough, and doesn't deserve the money. Thes
hool argues that he must lose, sin
e, if he wins, he was edu
ated wellenough and therefore should pay for it.2



The Surprise paradox. A logi
 professor announ
es to his 
lass that there willbe a test next week, but he won't tell whi
h day. He promises, \Whenyou get it, you'll be surprised.". The students dedu
e that the test 
an'tbe given on Friday: if it were, then, 
ome Friday morning, they wouldknow it had to be given on that day, and, therefore, they wouldn't besurprised. But sin
e they now know it 
an't be on Friday, they reason thatit 
an't be on Thursday either, sin
e they would no longer be surprised onThursday morning. Similarly, it 
ouldn't be held on Wednesday, Tuesday,or Monday, But on Tuesday, the professor does give the test, and thestudents are very surprised.These paradoxes, along with the ambiguities of natural language, eventuallyled to the e�ort to formulate logi
 in a symboli
 language.3 The 2nd Age of Logi
: Algebrai
 Logi
 (Midto late 19th Century)In 1847, George Boole, in \The Mathemati
al Analysis of Logi
" attempted toformulate logi
 in terms of a mathemati
al language. Rules of inferen
e weremodeled after various laws for manipulating algebrai
 expressions:\The design of the following treatise is to investigate the funda-mental laws of the operations of the mind by whi
h reasoning isperformed; to give expressions to them in the symboli
 language ofa 
al
ulus, and upon this foundation to establish the s
ien
e of logi
and 
onstru
t its methods."The basis for his work was the similarity between the relationship of set unionand interse
tion and that of numeri
al addition and multipli
ation, e.g.,a(b+ 
) = (ab) + (a
) is similar to x \ (y [ z) = (x \ y) [ (x \ z).Unfortunately, Boole would sometimes take the analogy too far. For example,he tried to �nd a set operation analogous to division, even though no su
hoperation exists in logi
.Soon to follow Boole's work was that of Charles Ludwig Dodgeson, knownas Lewis Carol, who published several texts on the subje
t, and developed VennDiagrams as a means of reasoning about sets.It was also during this period that Ernst S
hr�oeder anti
ipated the impor-tan
e of developing fast algorithms to de
ide various logi
al and mathemati
alproblems. In \The Algebra of Logi
" he writes:\Getting a handle on the 
onsequen
es of any premisses, or at leastthe fastest method for obtaining these 
onsequen
es, seems to me tobe one of the noblest, if not the ultimate goal of mathemati
s andlogi
."On
e symboli
 logi
 matured, it be
ame tremendously useful in resolving manyserious problems developing in mathemati
s.3



4 The 3rd Age of Logi
: Mathemati
al Logi
(late 19th to mid 20th Century)As mathemati
al proofs be
ame more sophisti
ated, paradoxes began to showup in them just as they did in natural language.For example, in 1820: Cau
hy \proved" that for all in�nite sequen
esf1(x); f2(x); f2(x); � � �of 
ontinous fun
tions, the sumf(x) = 1Xi=1 fi(x)was also 
ontinuous. But in 1826 Abel found a 
ounterexample!To deal with issues su
h as these, in 1879, Frege proposed logi
 as a lan-guage for mathemati
s. This development was anti
ipated 
enturies earlier byLeibnitz, but it wasn't until the late 19th Century that the logi
al tools existedto allow for it. The rigor of mathemati
al proofs in
reased dramati
ally. Inthe �eld of analysis, the now standard epsilon-delta de�nition of limits resolvedambiguities su
h as the one above.With the rigor of this new foundation, Cantor was able to analyze the notionof in�nity in ways that were previously impossible. He 
on
luded that, instead ofthere being just one in�nity, there was a whole hierar
hy of them. His argumentwas follows:Consider the set 2N of all subsets natural numbers. Suppose, for a 
ontra-di
tion, that there is only one in�nity. Then this set, whi
h is in�nitely large,must be of the same size as the natural numbers, whi
h is also in�nitely large.Therefore, we 
ould assign ea
h subset of N a distin
t n 2 N , forming an in�-nite sequen
e P0; P1; P2; : : : of subsets of N . Now 
onsider the set Q of naturalnumbers n su
h that n 62 Pn. Sin
e Q 2 2N , it must have been assigned somenumber j. But then 
onsider the question of whether j 2 Q:j 2 Q, j 2 Pj , j 62 QA 
ontradi
tion.Therefore, our original supposition is in
orre
t, and 2N is stri
tly larger thanN . (Note that this leaves open the question of the existen
e of other sets withsizes falling in between these 
onstru
ted sizes. See below.) We 
ould furtherdevise an analogous argument that 22N is stri
tly larger than 2N , and so on,forming an in�nite hierar
hy of in�nities.So how do we determine the size of in�nite sets? Cantor de�ned the relativesize of two sets as follows:De�nition: jAj � jBj i� there exists a one-to-one fun
tion from A toB. 4



This leads to a range of all possible sizes known as the 
ardinal numbers. Itstarts with a size for ea
h of the natural numbers, and then 
ontinues with sizesfor in�nitely large sets. These new sizes are denoted with the symbol � (readas \aleph"). The �rst su
h size (�0) is the size of the natural numbers.0; 1; :::�0;�1; : : :Then, at the turn of the 20th Century, David Hilbert, the most prominentmathemati
ian of his time, proposed a grand program to devise a single formalpro
edure that would derive all mathemati
al truth:\On
e a logi
al formalism is established one 
an expe
t that a sys-temati
, so-to-say 
omputational, treatment of logi
 formulas is pos-sible, whi
h would somewhat 
orrespond to the theory of equationsin algebra."The �rst major stumbling blo
k 
ame when Bertrand Russell dis
overed thatnaive set theory, again like the natural language logi
s, led to paradoxes. Russellwondered whether the 
olle
tion of all sets is a set. He 
on
luded that this leadsto the so-
alled Russell's Paradox: Consider the setT = fSjS 62 SgThen T 2 T , T 62 T (a 
ontradi
tion).Russell worked around this problem by reformulating mathemati
s in termsof a hierar
hy of sets. Sets of a given hierar
hy 
ould only 
ontain sets fromlower hierar
hies. His work 
ulminated in the Prin
ipia Mathemati
a, a jointwork with Alfred North Whitehead. This work formally proved (i.e., with sheersymboli
 manipulation) the bulk of the mathemati
al knowledge of its time.In addition, mathemati
ians soon took advantage of the fa
t that symboli
logi
, being a formal system, 
ould itself be the obje
t of mathemati
al investi-gation. To the limited extent that logi
 formed a foundation for mathemati
s,the results of this investigation yielded results on the nature of mathemati
sitself.For example, a natural question that arose from Cantor's proof of higherin�nities was: what is the relationship between 2�0 and �1? It was 
onje
turedthat 2�0 = �1. This was known as the Continuum Hypothesis (CH). Despitemany attempts to prove and disprove it, nobody su

eeded. Later, in the 1930's,Kurt G�odel proved that, within the framework of logi
 and formal set theoryas the foundation of mathemati
s, supposing CH to be true will never lead to a
ontradi
tion. Then, in the 1960's, Cohen proved that supposing the negation ofCH wouldn't lead to a 
ontradi
tion either. This established the independen
eof CH from mathemati
s as based on set theory.Although the analysis of logi
 as a mathemati
al obje
t proved to be a verypowerful te
hnique, it was soon to yield two results that proved devastating toHilbert's Program:1. G�odel's First In
ompleteness Theorem. Kurt G�odel proved that, in aformal system powerful enough to form statements about what it 
an5



prove, there will always be true statements that the system 
an express but
an't prove. These statements 
ould be proven with even more powerfulsystems, but these new systems 
ould then express new statements thatthey 
ouldn't prove, and so on.2. G�odel's Se
ond In
ompleteness Theorem. Kurt G�odel proved that a for-mal system powerful enough to form statements about arithmeti
s 
annotprove its own 
onsisten
y.3. Alonzo Chur
h and Alan Turing showed that there are some problems thatno algorithm 
ould ever solve. If su
h problems exist, then there 
ould beno hope of �nding a single algorithm to produ
e all mathemati
al truth.Despite these results, logi
 
ontinued to 
ourish, not as the universally a

eptedultimate foundation of all mathemati
s, but simply as another bran
h of it. Also,various independent formal systems 
ould still serve as the foundations for theindividual, well-de�ned, bran
hes of mathemati
s.5 The 4th Age of Logi
: Logi
 in Computer S
i-en
eLogi
 gave us 
hara
terization of 
omputability or solvability. Before 1920'speople did 
omputing in their heads, whi
h be
ame in
redibly 
ompli
ated withtime. Today, with the advent of the ele
troni
 
omputer, a new home has beenfound for logi
: 
omputer s
ien
e. In 
omputer s
ien
e, we design and studysystems through the use of formal languages that 
an themselves be interpretedby a formal system. In short, \Des
ription is our business". So it is quitenatural that the formal des
riptive languages of modern logi
 
ould serve as aworking tool for 
omputer s
ien
e. Some of the most basi
 appli
ations of thistool are:1. Boolean 
ir
uits: The design of hardware built out of gates that implementBoolean logi
 primitives. This forms the foundation of modern digitaldesign. ENIAC - an early digital 
omputer implemented in de
imal digits.But it was found that working in boolean logi
 is mu
h easier. Billionsof dollars are spent yearly in this industry. Boole intended to dis
overedthe \laws of the mind", but his biggest impa
t has been on the 
omputerindustry. In Ele
tri
al Engineering boolean logi
 is hardware 
onsisting ofgates.2. Some problems seem to be so hard that 
omputers 
annot solve them nomatter how fast they are. The reason for the diÆ
ulty is a 
ombinatorialexplosion that seem to be inherent in this problems. Logi
 played a 
ru
ialrole in the development of the theory of NP-
ompleteness, whi
h formalizethe 
on
ept of 
ombinatorial explosion.6



3. A 
omputer has to be told what to do, in very pre
ise and formal way. Anappli
ation of this exa
t des
ription is SQL (Standard Query Language):a language used for interfa
ing with databases. Although the syntax isdi�erent, it is essentially equivalent to standard �rst-order logi
.4. Semanti
s: To make sure that di�erent implementation of a programminglanguage yield the same results, programming languages need to have aformal semanti
s. Logi
 provides the tool to develop su
h a semanti
s.5. Design Validation and veri�
ation: to verify the 
orre
tness of a designwith a 
ertainty beyond that of 
onventional testing. It uses temporal loi
.The famous Intel bug of 1995, involving faulty 
oating point divisions 
ost500 million dollars.6. AI: me
hanized reasoning and expert systems. There are many domainsin whi
h expertise, a
quired by humans over de
ades, 
an be des
ribedwith a formal system. The resulting system 
an often yield results onpar with the human expert, and sometimes better. It tries to 
apture"
ommon-sense reasoning" in a formal way.7. Se
urity: With in
reasing use of network, se
urity has be
ome a big issue.Hen
e, the 
on
ept of proof-
arrying 
ode. If an applet 
ame with it's ownproof of safety and 
orre
tness, then it would be really ni
e.As our understanding of 
omputer s
ien
e, and logi
, improve, in
reasinglydeeper 
onne
tions are made. As a result, logi
 is sometimes des
ribed as the\
al
ulus of 
omputer s
ien
e". We will learn propositional and First-OrderLogi
, with appli
ations in Complexity, Database, and Veri�
ation.
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