The DPLL Procedure

Cesare Tinelli

tinelli@cs.uiowa.edu

The University of Iowa

Propositional Satisfiability: SAT

- Deciding the satisfiability of a propositional formula is a well-studied and important problem.
- Theoretical interest: first established NP-Complete problem, phase transition, ...
- Practical interest: applications to scheduling, planning, logic synthesis, verification, ...
- Development of algorithms and enhancements.
- Implementation of extremely efficient tools.
- Solvers based on the DPLL procedure have been the most successful so far.

The Original DPLL

- Tries to build incrementally a satisfying truth assignment M for a CNF formula F.
- M is grown by
- deducing the truth value of a literal from M and F, or
- guessing a truth value.
- If a wrong guess for a literal leads to an inconsistency, the procedure backtracks and tries the opposite value.

The Original DPLL - Example

Operation	Assign.	Formula
		$1 \vee 2,2 \vee \overline{3} \vee 4, \overline{1} \vee \overline{2}, \overline{1} \vee \overline{3} \vee \overline{4}, 1$

The Original DPLL - Example

Operation	Assign.	Formula
		$1 \vee 2,2 \vee \overline{3} \vee 4, \overline{1} \vee \overline{2}, \overline{1} \vee \overline{3} \vee \overline{4}, 1$
deduce 1	1	$1 \vee 2,2 \vee \overline{3} \vee 4, \overline{1} \vee \overline{2}, \overline{1} \vee \overline{3} \vee \overline{4}, 1$

The Original DPLL - Example

Operation	Assign.	Formula
		$1 \vee 2,2 \vee \overline{3} \vee 4, \overline{1} \vee \overline{2}, \overline{1} \vee \overline{3} \vee \overline{4}, 1$
deduce 1	1	$1 \vee 2,2 \vee \overline{3} \vee 4, \overline{1} \vee \overline{2}, \overline{1} \vee \overline{3} \vee \overline{4}, 1$
deduce $\overline{2}$	$1, \overline{2}$	$1 \vee 2,2 \vee \overline{3} \vee 4, \overline{1} \vee \overline{2}, \overline{1} \vee \overline{3} \vee \overline{4}, 1$

The Original DPLL - Example

Operation	Assign.	Formula
		$1 \vee 2,2 \vee \overline{3} \vee 4, \overline{1} \vee \overline{2}, \overline{1} \vee \overline{3} \vee \overline{4}, 1$
deduce 1	1	$1 \vee 2,2 \vee \overline{3} \vee 4, \overline{1} \vee \overline{2}, \overline{1} \vee \overline{3} \vee \overline{4}, 1$
deduce $\overline{2}$	$1, \overline{2}$	$1 \vee 2,2 \vee \overline{3} \vee 4, \overline{1} \vee \overline{2}, \overline{1} \vee \overline{3} \vee \overline{4}, 1$
try 3	$1, \overline{2}, 3$	$1 \vee 2,2 \vee \overline{3} \vee 4, \overline{1} \vee \overline{2}, \overline{1} \vee \overline{3} \vee \overline{4}, 1$

The Original DPLL - Example

Operation	Assign.	Formula
		$1 \vee 2,2 \vee \overline{3} \vee 4, \overline{1} \vee \overline{2}, \overline{1} \vee \overline{3} \vee \overline{4}, 1$
deduce 1	1	$1 \vee 2,2 \vee \overline{3} \vee 4, \overline{1} \vee \overline{2}, \overline{1} \vee \overline{3} \vee \overline{4}, 1$
deduce $\overline{2}$	$1, \overline{2}$	$1 \vee 2,2 \vee \overline{3} \vee 4, \overline{1} \vee \overline{2}, \overline{1} \vee \overline{3} \vee \overline{4}, 1$
try 3	$1, \overline{2}, 3$	$1 \vee 2,2 \vee \overline{3} \vee 4, \overline{1} \vee \overline{2}, \overline{1} \vee \overline{3} \vee \overline{4}, 1$
deduce 4	$1, \overline{2}, 3,4$	$1 \vee 2,2 \vee \overline{3} \vee 4, \overline{1} \vee \overline{2}, \overline{1} \vee \overline{3} \vee \overline{4}, 1$

The Original DPLL - Example

Operation	Assign.	Formula
		$1 \vee 2,2 \vee \overline{3} \vee 4, \overline{1} \vee \overline{2}, \overline{1} \vee \overline{3} \vee \overline{4}, 1$
deduce 1	1	$1 \vee 2,2 \vee \overline{3} \vee 4, \overline{1} \vee \overline{2}, \overline{1} \vee \overline{3} \vee \overline{4}, 1$
deduce $\overline{2}$	$1, \overline{2}$	$1 \vee 2,2 \vee \overline{3} \vee 4, \overline{1} \vee \overline{2}, \overline{1} \vee \overline{3} \vee \overline{4}, 1$
try 3	$1, \overline{2}, 3$	$1 \vee 2,2 \vee \overline{3} \vee 4, \overline{1} \vee \overline{2}, \overline{1} \vee \overline{3} \vee \overline{4}, 1$
deduce 4	$1, \overline{2}, 3,4$	$1 \vee 2,2 \vee \overline{3} \vee 4, \overline{1} \vee \overline{2}, \overline{1} \vee \overline{3} \vee \overline{4}, 1$

Inconsistency!

The Original DPLL - Example

Operation	Assign.	Formula
		$1 \vee 2,2 \vee \overline{3} \vee 4, \overline{1} \vee \overline{2}, \overline{1} \vee \overline{3} \vee \overline{4}, 1$
deduce 1	1	$1 \vee 2,2 \vee \overline{3} \vee 4, \overline{1} \vee \overline{2}, \overline{1} \vee \overline{3} \vee \overline{4}, 1$
deduce $\overline{2}$	$1, \overline{2}$	$1 \vee 2,2 \vee \overline{3} \vee 4, \overline{1} \vee \overline{2}, \overline{1} \vee \overline{3} \vee \overline{4}, 1$
try 3	$1, \overline{2}, 3$	$1 \vee 2,2 \vee \overline{3} \vee 4, \overline{1} \vee \overline{2}, \overline{1} \vee \overline{3} \vee \overline{4}, 1$
deduce 4	$1, \overline{2}, 3,4$	$1 \vee 2,2 \vee \overline{3} \vee 4, \overline{1} \vee \overline{2}, \overline{1} \vee \overline{3} \vee \overline{4}, 1$
undo 3	$1, \overline{2}$	$1 \vee 2,2 \vee \overline{3} \vee 4, \overline{1} \vee \overline{2}, \overline{1} \vee \overline{3} \vee \overline{4}, 1$

The Original DPLL - Example

Operation	Assign.	Formula
		$1 \vee 2,2 \vee \overline{3} \vee 4, \overline{1} \vee \overline{2}, \overline{1} \vee \overline{3} \vee \overline{4}, 1$
deduce 1	1	$1 \vee 2,2 \vee \overline{3} \vee 4, \overline{1} \vee \overline{2}, \overline{1} \vee \overline{3} \vee \overline{4}, 1$
deduce $\overline{2}$	$1, \overline{2}$	$1 \vee 2,2 \vee \overline{3} \vee 4, \overline{1} \vee \overline{2}, \overline{1} \vee \overline{3} \vee \overline{4}, 1$
try 3	$1, \overline{2}, 3$	$1 \vee 2,2 \vee \overline{3} \vee 4, \overline{1} \vee \overline{2}, \overline{1} \vee \overline{3} \vee \overline{4}, 1$
deduce 4	$1, \overline{2}, 3,4$	$1 \vee 2,2 \vee \overline{3} \vee 4, \overline{1} \vee \overline{2}, \overline{1} \vee \overline{3} \vee \overline{4}, 1$
undo 3	$1, \overline{2}$	$1 \vee 2,2 \vee \overline{3} \vee 4, \overline{1} \vee \overline{2}, \overline{1} \vee \overline{3} \vee \overline{4}, 1$
try $\overline{3}$	$1, \overline{2}, \overline{3}$	$1 \vee 2,2 \vee \overline{3} \vee 4, \overline{1} \vee \overline{2}, \overline{1} \vee \overline{3} \vee \overline{4}, 1$

The Original DPLL - Example

Operation	Assign.	Formula
		$1 \vee 2,2 \vee \overline{3} \vee 4, \overline{1} \vee \overline{2}, \overline{1} \vee \overline{3} \vee \overline{4}, 1$
deduce 1	1	$1 \vee 2,2 \vee \overline{3} \vee 4, \overline{1} \vee \overline{2}, \overline{1} \vee \overline{3} \vee \overline{4}, 1$
deduce $\overline{2}$	$1, \overline{2}$	$1 \vee 2,2 \vee \overline{3} \vee 4, \overline{1} \vee \overline{2}, \overline{1} \vee \overline{3} \vee \overline{4}, 1$
try 3	$1, \overline{2}, 3$	$1 \vee 2,2 \vee \overline{3} \vee 4, \overline{1} \vee \overline{2}, \overline{1} \vee \overline{3} \vee \overline{4}, 1$
deduce 4	$1, \overline{2}, 3,4$	$1 \vee 2,2 \vee \overline{3} \vee 4, \overline{1} \vee \overline{2}, \overline{1} \vee \overline{3} \vee \overline{4}, 1$
undo 3	$1, \overline{2}$	$1 \vee 2,2 \vee \overline{3} \vee 4, \overline{1} \vee \overline{2}, \overline{1} \vee \overline{3} \vee \overline{4}, 1$
try $\overline{3}$	$1, \overline{2}, \overline{3}$	$1 \vee 2,2 \vee \overline{3} \vee 4, \overline{1} \vee \overline{2}, \overline{1} \vee \overline{3} \vee \overline{4}, 1$
Model Found!		

An Abstract Framework for DPLL

- The DPLL procedure can be described declaratively by simple sequent-style calculi.
- Such calculi however cannot model meta-logical features such as backtracking, learning and restarts.
- We model DPLL and its enhancements as transition systems instead.
- A transition system is a binary relation over states, induced by a set of conditional transition rules.

An Abstract Framework for DPLL

Our states:

$$
\text { fail or } \quad M \| F
$$

where F is a CNF formula, a set of clauses, and M is a sequence of annotated literals denoting a partial truth assignment.

An Abstract Framework for DPLL

Our states:

$$
\text { fail or } \quad M \| F
$$

Initial state:

- $\emptyset \| F$, where F is to be checked for satisfiability.

Expected final states:

- fail, if F is unsatisfiable
$M \| G$, where M is a model of G and G is logically equivalent to F.

Transition Rules for the Original DPLL

Extending the assignment:

Propagate

$$
M\|F, C \vee l \rightarrow M l\| F, C \vee l \text { if }\left\{\begin{array}{l}
M \text { falsifies } C, \\
l \text { is undefined in } M
\end{array}\right.
$$

Transition Rules for the Original DPLL

Extending the assignment:

Propagate

$$
M\|F, C \vee l \rightarrow M l\| F, C \vee l \text { if }\left\{\begin{array}{l}
M \text { falsifies } C, \\
l \text { is undefined in } M
\end{array}\right.
$$

Decide

$$
M\left\|F \quad \rightarrow \quad M l^{\bullet}\right\| F \quad \text { if }\left\{\begin{array}{l}
l \text { or } \bar{l} \text { occurs in } F \\
l \text { is undefined in } M
\end{array}\right.
$$

Notation: l^{\bullet} annotates l as a decision literal.

Transition Rules for the Original DPLL

Repairing the assignment:

Fail
$M \| F, C \rightarrow$ fail if $\left\{\begin{array}{l}M \text { falsifies } C, \\ M \text { contains no decision literals }\end{array}\right.$

Transition Rules for the Original DPLL

Repairing the assignment:

Fail
$M \| F, C \rightarrow$ fail if $\left\{\begin{array}{l}M \text { falsifies } C, \\ M \text { contains no decision literals }\end{array}\right.$

Backtrack
$M l^{\bullet} N\|F, C \quad \rightarrow \quad M \bar{l}\| F, C$ if $\left\{\begin{array}{l}M l^{\bullet} N \text { falsifies } C, \\ l \text { last decision literal }\end{array}\right.$

Original DPLL System - Example

$$
\begin{array}{rlll}
F:= & 1 . \overline{p_{1}} \vee p_{2}, & 2 \cdot \overline{p_{3}} \vee p_{4}, & \text { 3. } \overline{p_{6}} \vee \overline{p_{5}} \vee \overline{p_{2}} \\
& \text { 4. } \overline{p_{5}} \vee p_{6}, & \text { 5. } p_{5} \vee p_{7}, & \text { 6. } \overline{p_{1}} \vee p_{5} \vee \overline{p_{7}}
\end{array}
$$

Original DPLL System - Example

$$
\begin{array}{rlll}
F:= & 1 . \overline{p_{1}} \vee p_{2}, & \text { 2. } \overline{p_{3}} \vee p_{4}, & \text { 3. } \overline{p_{6}} \vee \overline{p_{5}} \vee \overline{p_{2}} \\
& 4 . \overline{p_{5}} \vee p_{6}, & \text { 5. } p_{5} \vee p_{7}, & \text { 6. } \overline{p_{1}} \vee p_{5} \vee \overline{p_{7}}
\end{array}
$$

M	Rule
$p_{1}{ }^{\bullet}$	Decide

Original DPLL System - Example

$$
\begin{array}{rll}
F:= & 1 . \overline{p_{1}} \vee p_{2}, & \text { 2. } \overline{p_{3}} \vee p_{4}, \\
& \text { 3. } \overline{p_{6}} \vee \overline{p_{5}} \vee \overline{p_{2}} \\
& 4 . \overline{p_{5}} \vee p_{6}, & \text { 5. } p_{5} \vee p_{7}, \\
\text { 6. } \overline{p_{1}} \vee p_{5} \vee \overline{p_{7}}
\end{array}
$$

M	Rule
$p_{1} \bullet$	Decide
$p_{1}{ }^{\bullet}, p_{2}$	Propagate 1.

Original DPLL System - Example

$$
\begin{array}{rll}
F:= & 1 . \overline{p_{1}} \vee p_{2}, & \text { 2. } \overline{p_{3}} \vee p_{4}, \\
& \text { 3. } \overline{p_{6}} \vee \overline{p_{5}} \vee \overline{p_{2}} \\
& 4 . \overline{p_{5}} \vee p_{6}, & \text { 5. } p_{5} \vee p_{7}, \\
\text { 6. } \overline{p_{1}} \vee p_{5} \vee \overline{p_{7}}
\end{array}
$$

M	Rule
p_{1}^{\bullet}	Decide
$p_{1} \bullet, p_{2}$	Propagate 1.
$p_{1} \bullet, p_{2}, p_{3} \bullet$	Decide

Original DPLL System - Example

$$
\begin{array}{rll}
F:= & 1 . \overline{p_{1}} \vee p_{2}, & 2 . \overline{p_{3}} \vee p_{4}, \\
& \text { 3. } \overline{p_{6}} \vee \overline{p_{5}} \vee \overline{p_{2}} \\
& 4 . \overline{p_{5}} \vee p_{6}, & \text { 5. } p_{5} \vee p_{7}, \\
\text { 6. } \overline{p_{1}} \vee p_{5} \vee \overline{p_{7}}
\end{array}
$$

M	Rule
$p_{1} \bullet$	Decide
$p_{1} \bullet, p_{2}$	Propagate 1.
$p_{1} \bullet, p_{2}, p_{3} \bullet$	Decide
$p_{1} \bullet, p_{2}, p_{3} \bullet, p_{4}$	Propagate 2.

Original DPLL System - Example

$$
\begin{array}{rlll}
F:= & 1 . \overline{p_{1}} \vee p_{2}, & \text { 2. } \overline{p_{3}} \vee p_{4}, & \text { 3. } \overline{p_{6}} \vee \overline{p_{5}} \vee \overline{p_{2}} \\
& 4 . \overline{p_{5}} \vee p_{6}, & \text { 5. } p_{5} \vee p_{7}, & \text { 6. } \overline{p_{1}} \vee p_{5} \vee \overline{p_{7}}
\end{array}
$$

M	Rule
$p_{1} \bullet$	Decide
$p_{1} \bullet, p_{2}$	Propagate 1.
$p_{1} \bullet, p_{2}, p_{3} \bullet$	Decide
$p_{1}^{\bullet}, p_{2}, p_{3}{ }^{\bullet}, p_{4}$	Propagate 2.
$p_{1} \bullet, p_{2}, p_{3}{ }^{\bullet}, p_{4}, p_{5} \bullet$	Decide

Original DPLL System - Example

$$
\begin{array}{rlll}
F:= & 1 . \overline{p_{1}} \vee p_{2}, & 2 . \overline{p_{3}} \vee p_{4}, & \text { 3. } \overline{p_{6}} \vee \overline{p_{5}} \vee \overline{p_{2}} \\
& 4 . \overline{p_{5}} \vee p_{6}, & \text { 5. } p_{5} \vee p_{7}, & \text { 6. } \overline{p_{1}} \vee p_{5} \vee \overline{p_{7}}
\end{array}
$$

M	Rule
$p_{1} \bullet$	Decide
$p_{1} \bullet, p_{2}$	Propagate 1.
$p_{1} \bullet, p_{2}, p_{3} \bullet$	Decide
$p_{1} \bullet, p_{2}, p_{3} \bullet, p_{4}$	Propagate 2.
$p_{1} \bullet, p_{2}, p_{3} \bullet, p_{4}, p_{5}^{\bullet}$	Decide
$p_{1}^{\bullet}, p_{2}, p_{3} \bullet, p_{4}, p_{5}^{\bullet}, \overline{p_{6}}$	Propagate 3.

Original DPLL System - Example

$$
\begin{array}{rlll}
F:= & 1 . \overline{p_{1}} \vee p_{2}, & 2 . \overline{p_{3}} \vee p_{4}, & \text { 3. } \overline{p_{6}} \vee \overline{p_{5}} \vee \overline{p_{2}} \\
& 4 . \overline{p_{5}} \vee p_{6}, & \text { 5. } p_{5} \vee p_{7}, & \text { 6. } \overline{p_{1}} \vee p_{5} \vee \overline{p_{7}}
\end{array}
$$

M	Rule
p_{1}^{\bullet}	Decide
$p_{1}{ }^{\bullet}, p_{2}$	Propagate 1.
$p_{1} \bullet, p_{2}, p_{3} \bullet$	Decide
$p_{1}^{\bullet}, p_{2}, p_{3} \bullet, p_{4}$	Propagate 2.
$p_{1}^{\bullet}, p_{2}, p_{3} \bullet, p_{4}, p_{5}^{\bullet}$	Decide
$p_{1}^{\bullet}, p_{2}, p_{3} \bullet, p_{4}, p_{5}^{\bullet}, \overline{p_{6}}$	Propagate 3.
$p_{1}^{\bullet}, p_{2}, p_{3} \bullet, p_{4}, \overline{p_{5}}$	Backtrack 4.

Original DPLL System - Example

$$
\begin{array}{rlll}
F:= & 1 . \overline{p_{1}} \vee p_{2}, & 2 . \overline{p_{3}} \vee p_{4}, & \text { 3. } \overline{p_{6}} \vee \overline{p_{5}} \vee \overline{p_{2}} \\
& 4 . \overline{p_{5}} \vee p_{6}, & \text { 5. } p_{5} \vee p_{7}, & \text { 6. } \overline{p_{1}} \vee p_{5} \vee \overline{p_{7}}
\end{array}
$$

M	Rule
$p_{1} \bullet$	Decide
$p_{1} \bullet, p_{2}$	Propagate 1.
$p_{1} \bullet, p_{2}, p_{3} \bullet$	Decide
$p_{1} \bullet, p_{2}, p_{3} \bullet, p_{4}$	Propagate 2.
$p_{1} \bullet, p_{2}, p_{3} \bullet, p_{4}, p_{5}^{\bullet}$	Decide
$p_{1} \bullet, p_{2}, p_{3} \bullet, p_{4}, p_{5}^{\bullet}, \overline{p_{6}}$	Propagate 3.
$p_{1}^{\bullet}, p_{2}, p_{3} \bullet, p_{4}, \overline{p_{5}}$	Backtrack 4.
$p_{1} \bullet, p_{2}, p_{3} \bullet, p_{4}, \overline{p_{5}}, p_{7}$	Propagate 5.

Original DPLL System - Example

$$
\begin{array}{rlll}
F:= & 1 . \overline{p_{1}} \vee p_{2}, & 2 . \overline{p_{3}} \vee p_{4}, & \text { 3. } \overline{p_{6}} \vee \overline{p_{5}} \vee \overline{p_{2}} \\
& 4 . \overline{p_{5}} \vee p_{6}, & \text { 5. } p_{5} \vee p_{7}, & \text { 6. } \overline{p_{1}} \vee p_{5} \vee \overline{p_{7}}
\end{array}
$$

M	Rule
p_{1}^{\bullet}	Decide
$p_{1} \bullet, p_{2}$	Propagate 1.
$p_{1} \bullet, p_{2}, p_{3} \bullet$	Decide
$p_{1}^{\bullet}, p_{2}, p_{3} \bullet, p_{4}$	Propagate 2.
$p_{1} \bullet, p_{2}, p_{3} \bullet, p_{4}, p_{5}^{\bullet}$	Decide
$p_{1}^{\bullet}, p_{2}, p_{3} \bullet, p_{4}, p_{5}^{\bullet}, \overline{p_{6}}$	Propagate 3.
$p_{1}^{\bullet}, p_{2}, p_{3} \bullet, p_{4}, \overline{p_{5}}$	Backtrack 4.
$p_{1}^{\bullet}, p_{2}, p_{3} \bullet, p_{4}, \overline{p_{5}}, p_{7}$	Propagate 5.
$p_{1}^{\bullet}, p_{2}, \bar{p}_{3}$	Backtrack 6.

Original DPLL System - Example

$$
\begin{array}{rlll}
F:= & 1 . \overline{p_{1}} \vee p_{2}, & 2 . \overline{p_{3}} \vee p_{4}, & \text { 3. } \overline{p_{6}} \vee \overline{p_{5}} \vee \overline{p_{2}} \\
& \text { 4. } \overline{p_{5}} \vee p_{6}, & \text { 5. } p_{5} \vee p_{7}, & \text { 6. } \overline{p_{1}} \vee p_{5} \vee \overline{p_{7}}
\end{array}
$$

M	Rule
p_{1}^{\bullet}	Decide
p_{1}^{\bullet}, p_{2}	Propagate 1.
$p_{1} \bullet, p_{2}, p_{3} \bullet$	Decide
$p_{1}^{\bullet}, p_{2}, p_{3} \bullet, p_{4}$	Propagate 2.
$p_{1}^{\bullet}, p_{2}, p_{3} \bullet, p_{4}, p_{5}^{\bullet}$	Decide
$p_{1}^{\bullet}, p_{2}, p_{3} \bullet, p_{4}, p_{5}^{\bullet}, \overline{p_{6}}$	Propagate 3.
$p_{1}^{\bullet}, p_{2}, p_{3} \bullet, p_{4}, \overline{p_{5}}$	Backtrack 4.
$p_{1}^{\bullet}, p_{2}, p_{3} \bullet, p_{4}, \overline{p_{5}}, p_{7}$	Propagate 5.
$p_{1}^{\bullet}, p_{2}, \overline{p_{3}}$	Backtrack 6.

From Backtracking to Backjumping

Backtrack
$M l^{\bullet} N\|F, C \rightarrow M \bar{l}\| F, C$ if $\left\{\begin{array}{l}M l^{\bullet} N \text { falsifies } C, \\ l \text { last decision literal }\end{array}\right.$

From Backtracking to Backjumping

Backtrack

$$
M l^{\bullet} N\|F, C \quad \rightarrow \quad M \bar{l}\| F, C \quad \text { if }\left\{\begin{array}{l}
M l^{\bullet} N \text { falsifies } C \\
l \text { last decision literal }
\end{array}\right.
$$

Backjump
$M l^{\bullet} N\|F, C \rightarrow M k\| F, C$ if $\left\{\begin{array}{l}1 . M l^{\bullet} N \text { falsifies } C, \\ 2 . \text { for some clause } D \vee \\ F, C \models D \vee k, \\ M \text { falsifies } D, \\ k \text { is undefined in } M, \\ k \text { or } \bar{k} \text { occurs in } \\ M l^{\bullet} N \| F, C\end{array}\right.$

From Backtracking to Backjumping

Backtrack

$$
M l^{\bullet} N\|F, C \quad \rightarrow \quad M \bar{l}\| F, C \quad \text { if }\left\{\begin{array}{l}
M l^{\bullet} N \text { falsifies } C \\
l \text { last decision literal }
\end{array}\right.
$$

Backjump
$M l^{\bullet} N\|F, C \rightarrow M k\| F, C$ if $\left\{\begin{array}{l}1 . M l^{\bullet} N \text { falsifies } C, \\ 2 . \\ \text { for some clause } D \vee k: \\ F, C \models D \vee k, \\ M \text { falsifies } D, \\ k \text { is undefined in } M, \\ k \text { or } \bar{k} \text { occurs in } \\ M l^{\bullet} N \| F, C\end{array}\right.$

Note: $D \vee k$ is computed by conflict analysis.

Example Revised

$$
\begin{array}{rlll}
F:= & 1 . \overline{p_{1}} \vee p_{2}, & 2 \cdot \overline{p_{3}} \vee p_{4}, & \text { 3. } \overline{p_{6}} \vee \overline{p_{5}} \vee \overline{p_{2}} \\
& 4 . \overline{p_{5}} \vee p_{6}, & \text { 5. } p_{5} \vee p_{7}, & \text { 6. } \overline{p_{1}} \vee p_{5} \vee \overline{p_{7}}
\end{array}
$$

M	Rule
$p_{1} \bullet$	Decide
$p_{1} \bullet, p_{2}$	Propagate 1.
$p_{1}{ }^{\bullet}, p_{2}, p_{3} \bullet$	Decide
$p_{1} \bullet, p_{2}, p_{3} \bullet, p_{4}$	Propagate 2.
$p_{1} \bullet, p_{2}, p_{3} \bullet, p_{4}, p_{5}^{\bullet}$	Decide
$p_{1}^{\bullet}, p_{2}, p_{3}{ }^{\bullet}, p_{4}, p_{5}^{\bullet}, \overline{p_{6}}$	Propagate 3.

Example Revised

$$
\left.\begin{array}{rll}
F:= & 1 . \overline{p_{1}} \vee p_{2}, & \text { 2. } \overline{p_{3}} \vee p_{4}, \\
& \text { 3. } \overline{p_{6}} \vee \overline{p_{5}} \vee \overline{p_{2}} \\
& 4 . \overline{p_{5}} \vee p_{6}, & \text { 5. } p_{5} \vee p_{7},
\end{array} \text { 6. } \overline{p_{1}} \vee p_{5} \vee \overline{p_{7}}\right) ~ .
$$

M	Rule
p_{1}^{\bullet}	Decide
$p_{1} \bullet, p_{2}$	Propagate 1.
$p_{1} \bullet, p_{2}, p_{3} \bullet$	Decide
$p_{1}^{\bullet}, p_{2}, p_{3} \bullet, p_{4}$	Propagate 2.
$p_{1} \bullet, p_{2}, p_{3} \bullet, p_{4}, p_{5}^{\bullet}$	Decide
$p_{1}^{\bullet}, p_{2}, p_{3} \bullet, p_{4}, p_{5}^{\bullet}, \overline{p_{6}}$	Propagate 3.
$p_{1}^{\bullet}, p_{2}, \overline{p_{5}}$	Backjump with $\overline{p_{2}} \vee \overline{p_{5}}$.

Example Revised

$$
\begin{array}{rll}
F:= & \text { 1. } \overline{p_{1}} \vee p_{2}, & \text { 2. } \overline{p_{3}} \vee p_{4}, \\
& \text { 3. } \overline{p_{6}} \vee \overline{p_{5}} \vee \overline{p_{2}} \\
& 4 . \overline{p_{5}} \vee p_{6}, & \text { 5. } p_{5} \vee p_{7}, \\
\text { 6. } \overline{p_{1}} \vee p_{5} \vee \overline{p_{7}}
\end{array}
$$

M	Rule
p_{1}^{\bullet}	Decide
$p_{1} \bullet, p_{2}$	Propagate 1.
$p_{1} \bullet, p_{2}, p_{3} \bullet$	Decide
$p_{1}^{\bullet}, p_{2}, p_{3} \bullet, p_{4}$	Propagate 2.
$p_{1} \bullet, p_{2}, p_{3} \bullet, p_{4}, p_{5}^{\bullet}$	Decide
$p_{1}^{\bullet}, p_{2}, p_{3} \bullet, p_{4}, p_{5}^{\bullet}, \overline{p_{6}}$	Propagate 3.
$p_{1}^{\bullet}, p_{2}, \overline{p_{5}}$	Backjump with $\overline{p_{2}} \vee \overline{p_{5}}$.

Basic DPLL System

At the core, current DPLL-based SAT solvers are implementations of the transition system:

Basic DPLL

- Propagate
- Decide
- Fail
- Backjump

The Basic DPLL System - Correctness

Some terminology
Irreducible state: state to which no transition rule applies.

Execution: sequence of transitions allowed by the rules and starting with states of the form $\emptyset \| F$.

Exhausted execution: execution ending in an irreducible state.

The Basic DPLL System - Correctness

Some terminology
Irreducible state: state to which no transition rule applies.

Execution: sequence of transitions allowed by the rules and starting with states of the form $\emptyset \| F$.

Exhausted execution: execution ending in an irreducible state.

Proposition (Strong Termination) Every execution in Basic DPLL is finite.

Note: This is not so immediate, because of Backjump.

The Basic DPLL System - Correctness

Some terminology
Irreducible state: state to which no transition rule applies.

Execution: sequence of transitions allowed by the rules and starting with states of the form $\emptyset \| F$.

Exhausted execution: execution ending in an irreducible state.

Proposition (Soundness) For every exhausted execution starting with $\emptyset \| F$ and ending in $M \| F, M$ satisfies F.

Proposition (Completeness) If F is unsatisfiable, every exhausted execution starting with $\emptyset \| F$ ends with fail.

Enhancements to Basic DPLL

Enhancements to Basic DPLL

Learn
$M\|F \rightarrow M\| F, C \quad$ if $\left\{\begin{array}{l}\text { all atoms of } C \text { occur in } F, \\ F \models C\end{array}\right.$

Enhancements to Basic DPLL

Learn
$M\|F \rightarrow M\| F, C \quad$ if $\left\{\begin{array}{l}\text { all atoms of } C \text { occur in } F, \\ F \models C\end{array}\right.$

Forget

$$
M\|F, C \quad \rightarrow \quad M\| F \quad \text { if } F \models C
$$

Enhancements to Basic DPLL

Learn

$$
M\|F \quad \rightarrow \quad M\| F, C \quad \text { if }\left\{\begin{array}{l}
\text { all atoms of } C \text { occur in } F, \\
F \models C
\end{array}\right.
$$

Forget

$$
M\|F, C \quad \rightarrow \quad M\| F \quad \text { if } F \models C
$$

Usually C is a clause identified during conflict analysis.

Enhancements to Basic DPLL

Learn
$M\|F \rightarrow M\| F, C \quad$ if $\left\{\begin{array}{l}\text { all atoms of } C \text { occur in } F, \\ F \models C\end{array}\right.$

Forget

$$
M\|F, C \quad \rightarrow \quad M\| F \quad \text { if } F \models C
$$

Restart
$M\|F \rightarrow \emptyset\| F$ if . . you want to

Enhancements to Basic DPLL

Learn

$$
M\|F \quad \rightarrow \quad M\| F, C \quad \text { if }\left\{\begin{array}{l}
\text { all atoms of } C \text { occur in } F, \\
F \models C
\end{array}\right.
$$

Forget

$$
M\|F, C \quad \rightarrow \quad M\| F \quad \text { if } F \models C
$$

Restart
$M\|F \rightarrow \emptyset\| F$ if ... you want to

The DPLL system =
\{Propagate, Decide, Fail, Backjump, Learn, Forget, Restart \}

The DPLL System - Strategies

- Applying one Basic DPLL rule between each two Learn and applying Restart less and less often ensures termination.

The DPLL System - Strategies

- Applying one Basic DPLL rule between each two Learn and applying Restart less and less often ensures termination.
- In practice, Learn is usually (but not only) applied right after Backjump.

The DPLL System - Strategies

- Applying one Basic DPLL rule between each two Learn and applying Restart less and less often ensures termination.
- In practice, Learn is usually (but not only) applied right after Backjump.
- A common strategy is to apply the rules with these priorities:

The DPLL System - Strategies

- Applying one Basic DPLL rule between each two Learn and applying Restart less and less often ensures termination.
- In practice, Learn is usually (but not only) applied right after Backjump.
- A common strategy is to apply the rules with these priorities:

1. If $n>0$ conflicts have been found so far, increase n and apply Restart.

The DPLL System - Strategies

- Applying one Basic DPLL rule between each two Learn and applying Restart less and less often ensures termination.
- In practice, Learn is usually (but not only) applied right after Backjump.
- A common strategy is to apply the rules with these priorities:

1. If $n>0$ conflicts have been found so far, increase n and apply Restart.
2. If a current clause is falsified by the current assignment, apply Fail or Backjump + Learn.

The DPLL System - Strategies

- Applying one Basic DPLL rule between each two Learn and applying Restart less and less often ensures termination.
- In practice, Learn is usually (but not only) applied right after Backjump.
- A common strategy is to apply the rules with these priorities:

1. If $n>0$ conflicts have been found so far, increase n and apply Restart.
2. If a current clause is falsified by the current assignment, apply Fail or Backjump + Learn.
3. Apply Propagate

The DPLL System - Correctness

Proposition (Termination) Every execution in which
(a) Learn/Forget are applied only finitely many times and
(b) Restart is applied with increased periodicity
is finite.

The DPLL System - Correctness

Proposition (Termination) Every execution in which
(a) Learn/Forget are applied only finitely many times and
(b) Restart is applied with increased periodicity
is finite.

Proposition (Soundness) For every execution $\emptyset\|F \Longrightarrow \cdots \Longrightarrow M\| F$ with $M \| F$ irreducible wrt. Basic
DPLL, M models F.

The DPLL System - Correctness

Proposition (Termination) Every execution in which
(a) Learn/Forget are applied only finitely many times and
(b) Restart is applied with increased periodicity
is finite.

Proposition (Soundness) For every execution $\emptyset\|F \Longrightarrow \cdots \Longrightarrow M\| F$ with $M \| F$ irreducible wrt. Basic DPLL, M models F.

Proposition (Completeness) If F is unsatisfiable, for every execution $\emptyset \| F \Longrightarrow \cdots \Longrightarrow S$ with S irreducible wrt. Basic DPLL, $\quad S=$ fail.

