The DPLL Procedure

Cesare Tinelli

tinelli@cs.uiowa.edu

The University of Iowa

Propositional Satisfiability: SAT

- Deciding the satisfiability of a propositional formula is a well-studied and important problem.
- Theoretical interest: first established NP-Complete problem, phase transition, . . .
- Practical interest: applications to scheduling, planning, logic synthesis, verification, . . .
 - Development of algorithms and enhancements.
 - Implementation of extremely efficient tools.
 - Solvers based on the DPLL procedure have been the most successful so far.

The Original DPLL

- Tries to build incrementally a satisfying truth assignment M for a CNF formula F.
- M is grown by
 - deducing the truth value of a literal from M and F, or
 - guessing a truth value.
- If a wrong guess for a literal leads to an inconsistency, the procedure backtracks and tries the opposite value.

Operation	Assign.	Formula	
		$\boxed{1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1}$	

Operation	Assign.	Formula	
		$\boxed{1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1}$	
deduce 1	1	$1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1$	

Operation	Assign.	Formula	
		$\boxed{1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1}$	
deduce 1	1	$1 \lor 2, 2 \lor \overline{3} \lor 4, \overline{1} \lor \overline{2}, \overline{1} \lor \overline{3} \lor \overline{4}, 1$	
deduce $\overline{2}$	$1, \overline{2}$	$1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1$	

Operation	_	Formula	
		$\boxed{1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1}$	
deduce 1	1	$1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1$	
deduce $\overline{2}$	$1, \overline{2}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
try 3	$1, \overline{2}, 3$	$1 \lor 2$, $2 \lor \overline{3} \lor 4$, $\overline{1} \lor \overline{2}$, $\overline{1} \lor \overline{3} \lor \overline{4}$, $\overline{1}$	

Operation		Formula	
		$\boxed{1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1}$	
deduce 1	1	$1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1$	
deduce $\overline{2}$	$1, \overline{2}$	$1 \lor 2$, $2 \lor \overline{3} \lor 4$, $\overline{1} \lor \overline{2}$, $\overline{1} \lor \overline{3} \lor \overline{4}$, $\overline{1}$	
try 3	$1, \overline{2}, 3$	$1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1$	
deduce 4	$1, \overline{2}, 3, 4$		

Operation		Formula	
		$\boxed{1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1}$	
deduce 1	1	$1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1$	
deduce $\overline{2}$	$1, \overline{2}$	$1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1$	
try 3	$1, \overline{2}, 3$	$1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1$	
deduce 4	$1, \overline{2}, 3, 4$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	

Inconsistency!

Operation	Assign.	Formula	
deduce 1	1	$1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1$	
deduce $\overline{2}$	$1, \overline{2}$	$1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1$	
try 3	$1, \overline{2}, 3$	$1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1$	
deduce 4	$1, \overline{2}, 3, 4$	$1 \lor 2$, $2 \lor \overline{3} \lor 4$, $\overline{1} \lor \overline{2}$, $\overline{1} \lor \overline{3} \lor \overline{4}$, $\overline{1}$	
undo 3	$1, \overline{2}$	$1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1$	

Operation	Assign.	Formula	
		$\boxed{1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1}$	
deduce 1	1	$1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1$	
deduce $\overline{2}$	$1, \overline{2}$	$\boxed{1 \vee 2, \ 2 \vee \overline{3} \vee 4, \ \overline{1} \vee \overline{2}, \ \overline{1} \vee \overline{3} \vee \overline{4}, \ 1}$	
try 3	$1, \overline{2}, 3$	$1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1$	
deduce 4	$1, \overline{2}, 3, 4$	$\boxed{1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1}$	
undo 3	$1, \overline{2}$	$1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1$	
try $\overline{3}$	$1, \overline{2}, \overline{3}$	$1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1$	

Operation	Assign.	Formula
		$\boxed{1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1}$
deduce 1	1	$1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1$
deduce $\overline{2}$	$1, \overline{2}$	$1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1$
try 3	$1, \overline{2}, 3$	$1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1$
deduce 4	$1, \overline{2}, 3, 4$	$1 \lor 2$, $2 \lor \overline{3} \lor 4$, $\overline{1} \lor \overline{2}$, $\overline{1} \lor \overline{3} \lor \overline{4}$, $\overline{1}$
undo 3	$1, \overline{2}$	$1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1$
try $\overline{3}$	$1, \overline{2}, \overline{3}$	$1 \lor 2, \ 2 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2}, \ \overline{1} \lor \overline{3} \lor \overline{4}, \ 1$

Model Found!

An Abstract Framework for DPLL

- The DPLL procedure can be described declaratively by simple sequent-style calculi.
- Such calculi however cannot model meta-logical features such as backtracking, learning and restarts.
- We model DPLL and its enhancements as transition systems instead.
- A transition system is a binary relation over states, induced by a set of conditional transition rules.

An Abstract Framework for DPLL

Our states:

$$fail$$
 or $M \parallel F$

where F is a CNF formula, a set of clauses, and M is a sequence of annotated literals denoting a partial truth assignment.

An Abstract Framework for DPLL

Our states:

$$fail$$
 or $M \parallel F$

Initial state:

• $\emptyset \parallel F$, where F is to be checked for satisfiability.

Expected final states:

- fail, if F is unsatisfiable
- $M \parallel G$, where M is a model of G and G is logically equivalent to F.

Extending the assignment:

Propagate

$$M \parallel F, C \lor l \rightarrow M \ l \parallel F, C \lor l \ \text{ if } \begin{cases} M \ \text{falsifies } C, \\ l \ \text{is undefined in } M \end{cases}$$

Extending the assignment:

Propagate

Decide

$$M \parallel F \rightarrow M l^{\bullet} \parallel F$$
 if $\begin{cases} l \text{ or } \overline{l} \text{ occurs in } F, \\ l \text{ is undefined in } M \end{cases}$

Notation: l^{\bullet} annotates l as a decision literal.

Repairing the assignment:

Fail

$$M \parallel F, C \rightarrow fail$$
 if $\begin{cases} M \text{ falsifies } C, \\ M \text{ contains no decision literals} \end{cases}$

Repairing the assignment:

Fail

$$M \parallel F, C \rightarrow fail$$
 if $\begin{cases} M \text{ falsifies } C, \\ M \text{ contains no decision literals} \end{cases}$

Backtrack

$$M \, l^{\bullet} \, N \parallel F, C \rightarrow M \, \overline{l} \parallel F, C \quad \text{if} \quad \begin{cases} M \, l^{\bullet} \, N \text{ falsifies } C, \\ l \text{ last decision literal} \end{cases}$$

$$F := 1. \ \overline{p_1} \lor p_2, \quad 2. \ \overline{p_3} \lor p_4, \quad 3. \ \overline{p_6} \lor \overline{p_5} \lor \overline{p_2}$$
$$4. \ \overline{p_5} \lor p_6, \quad 5. \ p_5 \lor p_7, \quad 6. \ \overline{p_1} \lor p_5 \lor \overline{p_7}$$

$$F := 1. \ \overline{p_1} \lor p_2, \quad 2. \ \overline{p_3} \lor p_4, \quad 3. \ \overline{p_6} \lor \overline{p_5} \lor \overline{p_2}$$
$$4. \ \overline{p_5} \lor p_6, \quad 5. \ p_5 \lor p_7, \quad 6. \ \overline{p_1} \lor p_5 \lor \overline{p_7}$$

M	Rule
p_1^{\bullet}	Decide

$$F := 1. \ \overline{p_1} \lor p_2, \quad 2. \ \overline{p_3} \lor p_4, \quad 3. \ \overline{p_6} \lor \overline{p_5} \lor \overline{p_2}$$
$$4. \ \overline{p_5} \lor p_6, \quad 5. \ p_5 \lor p_7, \quad 6. \ \overline{p_1} \lor p_5 \lor \overline{p_7}$$

M	Rule
p_1^{\bullet}	Decide
p_1^{\bullet}, p_2	Propagate 1 .

$$F := 1. \ \overline{p_1} \lor p_2, \quad 2. \ \overline{p_3} \lor p_4, \quad 3. \ \overline{p_6} \lor \overline{p_5} \lor \overline{p_2}$$
$$4. \ \overline{p_5} \lor p_6, \quad 5. \ p_5 \lor p_7, \quad 6. \ \overline{p_1} \lor p_5 \lor \overline{p_7}$$

M	Rule
p_1^{ullet}	Decide
p_1^{\bullet}, p_2	Propagate 1 .
$p_1^{\bullet}, p_2, p_3^{\bullet}$	Decide

$$F := 1. \ \overline{p_1} \lor p_2, \quad 2. \ \overline{p_3} \lor p_4, \quad 3. \ \overline{p_6} \lor \overline{p_5} \lor \overline{p_2}$$
$$4. \ \overline{p_5} \lor p_6, \quad 5. \ p_5 \lor p_7, \quad 6. \ \overline{p_1} \lor p_5 \lor \overline{p_7}$$

M	Rule
p_1^{ullet}	Decide
p_1^{\bullet}, p_2	Propagate 1.
$p_1^{\bullet}, p_2, p_3^{\bullet}$	Decide
$p_1^{\bullet}, p_2, p_3^{\bullet}, p_4$	Propagate 2 .

$$F := 1. \ \overline{p_1} \lor p_2, \quad 2. \ \overline{p_3} \lor p_4, \quad 3. \ \overline{p_6} \lor \overline{p_5} \lor \overline{p_2}$$
$$4. \ \overline{p_5} \lor p_6, \quad 5. \ p_5 \lor p_7, \quad 6. \ \overline{p_1} \lor p_5 \lor \overline{p_7}$$

M	Rule
p_1^{ullet}	Decide
p_1^{\bullet}, p_2	Propagate 1.
$p_1^{\bullet}, p_2, p_3^{\bullet}$	Decide
$p_1^{\bullet}, p_2, p_3^{\bullet}, p_4$	Propagate 2 .
$p_1^{\bullet}, p_2, p_3^{\bullet}, p_4, p_5^{\bullet}$	Decide

$$F := 1. \ \overline{p_1} \lor p_2, \quad 2. \ \overline{p_3} \lor p_4, \quad 3. \ \overline{p_6} \lor \overline{p_5} \lor \overline{p_2}$$
$$4. \ \overline{p_5} \lor p_6, \quad 5. \ p_5 \lor p_7, \quad 6. \ \overline{p_1} \lor p_5 \lor \overline{p_7}$$

M	Rule
p_1^{ullet}	Decide
p_1^{\bullet}, p_2	Propagate 1.
$p_1^{\bullet}, p_2, p_3^{\bullet}$	Decide
$p_1^{\bullet}, p_2, p_3^{\bullet}, p_4$	Propagate 2.
$p_1^{\bullet}, p_2, p_3^{\bullet}, p_4, p_5^{\bullet}$	Decide
$p_1^{\bullet}, p_2, p_3^{\bullet}, p_4, p_5^{\bullet}, \overline{p_6}$	Propagate 3 .

$$F := 1. \ \overline{p_1} \lor p_2, \quad 2. \ \overline{p_3} \lor p_4, \quad 3. \ \overline{p_6} \lor \overline{p_5} \lor \overline{p_2}$$
$$4. \ \overline{p_5} \lor p_6, \quad 5. \ p_5 \lor p_7, \quad 6. \ \overline{p_1} \lor p_5 \lor \overline{p_7}$$

M	Rule
p_1^{ullet}	Decide
p_1^{\bullet}, p_2	Propagate 1.
$p_1^{\bullet}, p_2, p_3^{\bullet}$	Decide
$p_1^{\bullet}, p_2, p_3^{\bullet}, p_4$	Propagate 2.
$p_1^{\bullet}, p_2, p_3^{\bullet}, p_4, p_5^{\bullet}$	Decide
$p_1^{\bullet}, p_2, p_3^{\bullet}, p_4, p_5^{\bullet}, \overline{p_6}$	Propagate 3.
$p_1^{\bullet}, p_2, p_3^{\bullet}, p_4, \overline{p_5}$	Backtrack 4 .

$$F := 1. \ \overline{p_1} \lor p_2, \quad 2. \ \overline{p_3} \lor p_4, \quad 3. \ \overline{p_6} \lor \overline{p_5} \lor \overline{p_2}$$
$$4. \ \overline{p_5} \lor p_6, \quad 5. \ p_5 \lor p_7, \quad 6. \ \overline{p_1} \lor p_5 \lor \overline{p_7}$$

M	Rule
p_1^{\bullet}	Decide
p_1^{\bullet}, p_2	Propagate 1.
$p_1^{\bullet}, p_2, p_3^{\bullet}$	Decide
$p_1^{\bullet}, p_2, p_3^{\bullet}, p_4$	Propagate 2 .
$p_1^{\bullet}, p_2, p_3^{\bullet}, p_4, p_5^{\bullet}$	Decide
$p_1^{\bullet}, p_2, p_3^{\bullet}, p_4, p_5^{\bullet}, \overline{p_6}$	Propagate 3 .
$p_1^{\bullet}, p_2, p_3^{\bullet}, p_4, \overline{p_5}$	Backtrack 4 .
$p_1^{\bullet}, p_2, p_3^{\bullet}, p_4, \overline{p_5}, p_7$	Propagate 5 .

$$F := 1. \ \overline{p_1} \lor p_2, \quad 2. \ \overline{p_3} \lor p_4, \quad 3. \ \overline{p_6} \lor \overline{p_5} \lor \overline{p_2}$$
$$4. \ \overline{p_5} \lor p_6, \quad 5. \ p_5 \lor p_7, \quad 6. \ \overline{p_1} \lor p_5 \lor \overline{p_7}$$

M	Rule
p_1^{\bullet}	Decide
p_1^{\bullet}, p_2	Propagate 1.
$p_1^{\bullet}, p_2, p_3^{\bullet}$	Decide
$p_1^{\bullet}, p_2, p_3^{\bullet}, p_4$	Propagate 2 .
$p_1^{\bullet}, p_2, p_3^{\bullet}, p_4, p_5^{\bullet}$	Decide
$p_1^{\bullet}, p_2, p_3^{\bullet}, p_4, p_5^{\bullet}, \overline{p_6}$	Propagate 3.
$p_1^{\bullet}, p_2, p_3^{\bullet}, p_4, \overline{p_5}$	Backtrack 4 .
$p_1^{\bullet}, p_2, p_3^{\bullet}, p_4, \overline{p_5}, p_7$	Propagate 5.
$p_1^{\bullet}, p_2, \overline{p_3}$	Backtrack 6.

$$F := 1. \ \overline{p_1} \lor p_2, \quad 2. \ \overline{p_3} \lor p_4, \quad 3. \ \overline{p_6} \lor \overline{p_5} \lor \overline{p_2}$$
$$4. \ \overline{p_5} \lor p_6, \quad 5. \ p_5 \lor p_7, \quad 6. \ \overline{p_1} \lor p_5 \lor \overline{p_7}$$

M	Rule
p_1^{ullet}	Decide
p_1^{\bullet}, p_2	Propagate 1.
$p_1^{\bullet}, p_2, p_3^{\bullet}$	Decide
$p_1^{\bullet}, p_2, p_3^{\bullet}, p_4$	Propagate 2 .
$p_1^{\bullet}, p_2, p_3^{\bullet}, p_4, p_5^{\bullet}$	Decide
$p_1^{\bullet}, p_2, p_3^{\bullet}, p_4, p_5^{\bullet}, \overline{p_6}$	Propagate 3 .
$p_1^{\bullet}, p_2, p_3^{\bullet}, p_4, \overline{p_5}$	Backtrack 4 .
$p_1^{\bullet}, p_2, p_3^{\bullet}, p_4, \overline{p_5}, p_7$	Propagate 5.
$p_1^{\bullet}, p_2, \overline{p_3}$	Backtrack 6.

. . .

From Backtracking to Backjumping

Backtrack

$$M \ l^{\bullet} \ N \parallel F, C \rightarrow M \ \overline{l} \parallel F, C \quad \text{if} \quad \begin{cases} M \ l^{\bullet} \ N \text{ falsifies } C, \\ l \text{ last decision literal} \end{cases}$$

From Backtracking to Backjumping

Backtrack

$$M \, l^{\bullet} \, N \parallel F, C \rightarrow M \, \overline{l} \parallel F, C \quad \text{if} \quad \begin{cases} M \, l^{\bullet} \, N \text{ falsifies } C, \\ l \text{ last decision literal} \end{cases}$$

Backjump

$$M l^{\bullet} N \parallel F, C \rightarrow M k \parallel F, C$$
 if

- 1. $M l^{\bullet} N$ falsifies C, 2. for some clause $D \vee k$:

From Backtracking to Backjumping

Backtrack

$$M \ l^{\bullet} \ N \parallel F, C \rightarrow M \ \overline{l} \parallel F, C \quad \text{if} \quad \begin{cases} M \ l^{\bullet} \ N \text{ falsifies } C, \\ l \text{ last decision literal} \end{cases}$$

Backjump

$$M l^{\bullet} N \parallel F, C \rightarrow M k \parallel F, C$$
 if

- 1. $M l^{\bullet} N$ falsifies C, 2. for some clause $D \vee k$:

Note: $D \lor k$ is computed by conflict analysis.

Example Revised

$$F := 1. \ \overline{p_1} \lor p_2, \quad 2. \ \overline{p_3} \lor p_4, \quad 3. \ \overline{p_6} \lor \overline{p_5} \lor \overline{p_2}$$
$$4. \ \overline{p_5} \lor p_6, \quad 5. \ p_5 \lor p_7, \quad 6. \ \overline{p_1} \lor p_5 \lor \overline{p_7}$$

M	Rule
p_1^{\bullet}	Decide
p_1^{\bullet}, p_2	Propagate 1.
$p_1^{\bullet}, p_2, p_3^{\bullet}$	Decide
$p_1^{\bullet}, p_2, p_3^{\bullet}, p_4$	Propagate 2.
$p_1^{\bullet}, p_2, p_3^{\bullet}, p_4, p_5^{\bullet}$	Decide
$p_1^{\bullet}, p_2, p_3^{\bullet}, p_4, p_5^{\bullet}, \overline{p_6}$	Propagate 3.

Example Revised

$$F := 1. \ \overline{p_1} \lor p_2, \quad 2. \ \overline{p_3} \lor p_4, \quad 3. \ \overline{p_6} \lor \overline{p_5} \lor \overline{p_2}$$
$$4. \ \overline{p_5} \lor p_6, \quad 5. \ p_5 \lor p_7, \quad 6. \ \overline{p_1} \lor p_5 \lor \overline{p_7}$$

M	Rule
p_1^{\bullet}	Decide
p_1^{\bullet}, p_2	Propagate 1.
$p_1^{\bullet}, p_2, p_3^{\bullet}$	Decide
$p_1^{\bullet}, p_2, p_3^{\bullet}, p_4$	Propagate 2.
$p_1^{\bullet}, p_2, p_3^{\bullet}, p_4, p_5^{\bullet}$	Decide
$p_1^{\bullet}, p_2, p_3^{\bullet}, p_4, p_5^{\bullet}, \overline{p_6}$	Propagate 3.
$p_1^{\bullet}, p_2, \overline{p_5}$	Backjump with $\overline{p_2} \vee \overline{p_5}$.

Example Revised

$$F := 1. \ \overline{p_1} \lor p_2, \quad 2. \ \overline{p_3} \lor p_4, \quad 3. \ \overline{p_6} \lor \overline{p_5} \lor \overline{p_2}$$
$$4. \ \overline{p_5} \lor p_6, \quad 5. \ p_5 \lor p_7, \quad 6. \ \overline{p_1} \lor p_5 \lor \overline{p_7}$$

M	Rule
p_1^{ullet}	Decide
p_1^{\bullet}, p_2	Propagate 1.
$p_1^{\bullet}, p_2, p_3^{\bullet}$	Decide
$p_1^{\bullet}, p_2, p_3^{\bullet}, p_4$	Propagate 2.
$p_1^{\bullet}, p_2, p_3^{\bullet}, p_4, p_5^{\bullet}$	Decide
$p_1^{\bullet}, p_2, p_3^{\bullet}, p_4, p_5^{\bullet}, \overline{p_6}$	Propagate 3.
$p_1^{\bullet}, p_2, \overline{p_5}$	Backjump with $\overline{p_2} \vee \overline{p_5}$.

Basic DPLL System

At the core, current DPLL-based SAT solvers are implementations of the transition system:

Basic DPLL

- Propagate
- Decide
- Fail
- Backjump

The Basic DPLL System – Correctness

Some terminology

Irreducible state: state to which no transition rule applies.

Execution: sequence of transitions allowed by the rules and starting with states of the form $\emptyset \parallel F$.

Exhausted execution: execution ending in an irreducible state.

The Basic DPLL System – Correctness

Some terminology

Irreducible state: state to which no transition rule applies.

Execution: sequence of transitions allowed by the rules and starting with states of the form $\emptyset \parallel F$.

Exhausted execution: execution ending in an irreducible state.

Proposition (Strong Termination) Every execution in Basic DPLL is finite.

Note: This is not so immediate, because of Backjump.

The Basic DPLL System – Correctness

Some terminology

Irreducible state: state to which no transition rule applies.

Execution: sequence of transitions allowed by the rules and starting with states of the form $\emptyset \parallel F$.

Exhausted execution: execution ending in an irreducible state.

Proposition (Soundness) For every exhausted execution starting with $\emptyset \parallel F$ and ending in $M \parallel F$, M satisfies F.

Proposition (Completeness) If F is unsatisfiable, every exhausted execution starting with $\emptyset \parallel F$ ends with fail.

Learn

$$M \parallel F \rightarrow M \parallel F, C \quad \text{if} \quad \begin{cases} \text{all atoms of } C \text{ occur in } F, \\ F \models C \end{cases}$$

Learn

$$M \parallel F \rightarrow M \parallel F, C$$
 if $\begin{cases} \text{all atoms of } C \text{ occur in } F, \\ F \models C \end{cases}$

Forget

$$M \parallel F, C \rightarrow M \parallel F \text{ if } F \models C$$

Learn

$$M \parallel F \rightarrow M \parallel F, C$$
 if $\begin{cases} \text{all atoms of } C \text{ occur in } F, \\ F \models C \end{cases}$

Forget

$$M \parallel F, C \rightarrow M \parallel F \text{ if } F \models C$$

Usually C is a clause identified during conflict analysis.

Learn

$$M \parallel F \rightarrow M \parallel F, C$$
 if $\begin{cases} \text{all atoms of } C \text{ occur in } F, \\ F \models C \end{cases}$

Forget

$$M \parallel F, C \rightarrow M \parallel F \text{ if } F \models C$$

Restart

$$M \parallel F \rightarrow \emptyset \parallel F$$
 if ... you want to

Learn

$$M \parallel F \rightarrow M \parallel F, C$$
 if $\begin{cases} \text{all atoms of } C \text{ occur in } F, \\ F \models C \end{cases}$

Forget

$$M \parallel F, C \rightarrow M \parallel F \text{ if } F \models C$$

Restart

$$M \parallel F \rightarrow \emptyset \parallel F$$
 if ... you want to

The DPLL system = {Propagate, Decide, Fail, Backjump, Learn, Forget, Restart}

 Applying one Basic DPLL rule between each two Learn and applying Restart less and less often ensures termination.

- Applying one Basic DPLL rule between each two Learn and applying Restart less and less often ensures termination.
- In practice, Learn is usually (but not only) applied right after Backjump.

- Applying one Basic DPLL rule between each two Learn and applying Restart less and less often ensures termination.
- In practice, Learn is usually (but not only) applied right after Backjump.
- A common strategy is to apply the rules with these priorities:

- Applying one Basic DPLL rule between each two Learn and applying Restart less and less often ensures termination.
- In practice, Learn is usually (but not only) applied right after Backjump.
- A common strategy is to apply the rules with these priorities:
 - 1. If n > 0 conflicts have been found so far, increase n and apply Restart.

- Applying one Basic DPLL rule between each two Learn and applying Restart less and less often ensures termination.
- In practice, Learn is usually (but not only) applied right after Backjump.
- A common strategy is to apply the rules with these priorities:
 - 1. If n > 0 conflicts have been found so far, increase n and apply Restart.
 - 2. If a current clause is falsified by the current assignment, apply Fail or Backjump + Learn.

- Applying one Basic DPLL rule between each two Learn and applying Restart less and less often ensures termination.
- In practice, Learn is usually (but not only) applied right after Backjump.
- A common strategy is to apply the rules with these priorities:
 - 1. If n > 0 conflicts have been found so far, increase n and apply Restart.
 - 2. If a current clause is falsified by the current assignment, apply Fail or Backjump + Learn.
 - 3. Apply Propagate

The DPLL System – Correctness

Proposition (Termination) Every execution in which

- (a) Learn/Forget are applied only finitely many times and
- (b) Restart is applied with increased periodicity is finite.

The DPLL System – Correctness

Proposition (Termination) Every execution in which

- (a) Learn/Forget are applied only finitely many times and
- (b) Restart is applied with increased periodicity is finite.

Proposition (Soundness) For every execution $\emptyset \parallel F \Longrightarrow \cdots \Longrightarrow M \parallel F$ with $M \parallel F$ irreducible wrt. Basic DPLL, M models F.

The DPLL System – Correctness

Proposition (Termination) Every execution in which

- (a) Learn/Forget are applied only finitely many times and
- (b) Restart is applied with increased periodicity is finite.

Proposition (Soundness) For every execution $\emptyset \parallel F \Longrightarrow \cdots \Longrightarrow M \parallel F$ with $M \parallel F$ irreducible wrt. Basic DPLL, M models F.

Proposition (Completeness) If F is unsatisfiable, for every execution $\emptyset \parallel F \Longrightarrow \cdots \Longrightarrow S$ with S irreducible wrt. Basic DPLL, S = fail.