
 Logic as a Query Language:

 from Frege to XML

 Victor Vianu

U.C. San Diego

Logic and Databases: a success story

• FO lies at the core of modern database systems

• Relational query languages are based on FO:

 SQL, QBE

• More powerful query languages (all the way to XML)

 are based on extensions of FO

 • Foundations lie in classical logic

 FO : Frege relational algebra : Tarski

Why is FO so successful as a query language?

• easy to use syntactic variants

 SQL, QBE

• efficient implementation via relational algebra

 amenable to analysis and simplification

• potential for perfect scaling to large databases

 very fast response can be achieved

 using parallel processing

A relational database:

drinker bar
frequents serves

 bar beer
 Joe King’s
 Joe Molly’s
 Sue Molly’s

………...

 King’s Bud
 King’s Bass

 Molly’s Bass
 ……………

• logically a finite first-order structure

Find the drinkers who frequent some bar serving Bass

 FO:

 {d:drinker | ∃ b:bar (frequents(d,b) ∧ serves(b, Bass))}

QBE:

drinker bar
frequents serves

 bar beer

 d b b Bass

drinker
answer

 d

Find the drinkers who frequent some bar serving Bass

 FO:

 {d:drinker | ∃ b:bar (frequents(d,b) ∧ serves(b, Bass))}

QBE:

drinker bar
frequents serves

 bar beer

 d b b Bass

drinker
answer

 d

not

¬

¬

• Naïve implementation: nested loops

for each drinker

 for each bar

 check the pattern

Number of checks: |drinkers| × |bars|

Roughly n : unacceptable for large databases!2

 • Better approach: relational algebra

{d:drinker | ∃ b:bar (frequents(d,b) ∧ serves(b, Bass))}

Relational algebra operations

• union, difference

 • selection σ σ (serves) =beer = Bass

 bar beer
 King’s Bass

 Molly’s Bass
 ……………

 • projection π π (serves) = bar

 bar

 King’s
 Molly’s
 ……

 ……………

 • join |×| frequents |×| serves

 King’s Bass
 Molly’s Bass
 …………… Joe King’s Bud

 …………… Sue Molly’s Bass

 Joe King’s Bass

drinker bar beer

drinker bar
frequents serves

 bar beer
 Joe King’s
 Joe Molly’s
 Sue Molly’s

………...

 King’s Bud
 King’s Bass

 Molly’s Bass
 ……………

frequents |×| serves

 Joe Molly’s Bass

Relational algebra queries

Find the drinkers who frequent some bar serving Bass

π (σ (frequents |×| serves)) beer = Bass drinker

Theorem: Relational algebra and FO are equivalent

 King’s Bass
 Molly’s Bass
 …………… Joe King’s Bud

 ……………
 Sue Molly’s Bass

 Joe King’s Bass

drinker bar beer

 Joe Molly’s Bass

 King’s Bass
 Molly’s Bass
 ……………

 ……………
 Sue Molly’s Bass

 Joe King’s Bass

drinker bar beer

 Joe Molly’s Bass

drinker

Joe

Sue

…..

Journey of a Query

FO (SQL) ∃z(P(xz) ∧ Q(zy)) ∧ …

Relational Algebra π13(P><Q) >< …

Query Rewriting π14(P><S) >< Q >< R

Query Execution Plan

Execution

Physical Level

><

><

>< π14

Q R
P S

• rewriting rules for algebra queries

π (σ (frequents |×| serves)) beer = Bass drinker

 cost: roughly n (log n)

 much better than n for large databases!2

• efficient algorithms for individual operations

Indexes: special “directories” to data

• rewriting rules for algebra queries

π (σ (frequents |×| serves)) beer = Bass drinker

π [frequents |×| π (σ (serves))] beer = Bass drinker bar

 cost: roughly n (log n)

 much better than n for large databases!2

• efficient algorithms for individual operations

Indexes: special “directories” to data

Most spectacular: theoretical potential for perfect scaling!

• perfect scaling: given sufficient resources,

 performance does not degrade as the database

 becomes larger

• key: parallel processing

• cost: number of processors polynomial in the size

 of the database

• role of algebra: operations highlight parallelism

Example: projection

π (serves)bar

serves
 bar beer

 King’s Bud
 King’s Bass

 Molly’s Bass
 ……………

 bar

 King’s
 Molly’s
 ……

Each algebra operation can in principle be implemented

very efficiently in parallel

Constant parallel time!

Another example: join

frequents |×| serves

serves
 bar beer

 King’s Bud
 King’s Bass

 Molly’s Bass
 ……………

drinker bar
frequents Joe King’s

 Joe Molly’s
 Sue Molly’s

………... King’s Bass
 Molly’s Bass
 ……………

 drinker bar beer

 Joe King’s Bass

 Joe Molly’s Bass

 ……………

 Sue Molly’s Bass

 Joe King’s Bass
 Joe King’s Bud

Every relational algebra query takes constant parallel time!

π (σ (frequents |×| serves)) beer = Bass drinker

π drinker

σ beer = Bass

|×|

frequents serves

constant parallel time

Summary so far:

• Keys to the success of FO as a query language:

 -ease of use

 -efficient implementation via relational algebra

• Constant parallel complexity:

 the full potential of FO as a query language remains

 yet to be realized!

Beyond relational databases: the Web and XML

• relations replaced by trees (XML data)

• structure described by schemas (e.g., DTDs)

Again, logic provides the foundations:

• DTDs are equivalent to tree automata (MSO on trees)

• XML queries are essentially tree transducers

• Can use automata and logic to understand semantics

 and expressiveness, perform static analysis

• implementation based on same paradigm

• uses extensions of relational algebra

• query optimization builds upon relational techniques

Most XML query languages are extensions of SQL

XML and DTDs

dealer

UsedCars NewCars

ad ad

model year model

<dealer>
 <UsedCars>
 <ad>
 <model>Honda</model>
 <year>96</year>
 </ad>
 </UsedCars>
 <NewCars>
 <ad>
 <model>Acura</model>
 </ad>
 </NewCars>
</dealer>

Honda 96 Acura

Data Type Definition (DTD)

Σ: alphabet of element names, root ∈ Σ

 set of rules:

 e r

element name regular expression
over Σ

Documents satisfying a DTD

root

 e

e1 …. ek

∈ r

….

e r

Set of trees satisfying DTD d: T(d)

A DTD and a tree satisfying it:

 root section*;
 section intro,
section*,conclusions;

Example

 root

 section section

 intro section conc intro conc

 intro section section conc

 intro conc intro conc

dealer

UsedCars NewCars

ad ad

model year model

ad has different structure in different contexts

Specialization

Specialization

dealer

UsedCars NewCars

adnew

model year model

ad has different structure in different contexts

adused

• What sets of trees can be defined?

 Exactly the regular tree languages!

 --trees accepted by tree automata
 --trees defined by Monadic Second-Order Logic (MSO)

 • XML query languages are essentially tree transducers

 • Consequences:

 can use automata/logic techniques to analyze
 and manipulate DTDs and XML queries

XML Source XML Source

Common
DTD

Integrated View

Source DTDs

Example: static analysis for
 robust data integration

XML Source XML Source

Common
DTD

Source DTDs

Integrated View Tree automaton B

Tree automaton A

Tree transducer T

Example: static analysis for
 robust data integration

XML Source XML Source

Example: static analysis for
 robust data integration

Common
DTD

Source DTDs

Integrated View Tree automaton B

Tree automaton A

Tree transducer T

Need to check: T(A) ⊆ B

Key: T-1(B) definable in MSO

Conclusion

• Logic has provided the foundations of databases,

 from relational databases all the way to XML

• FO lies at the core of relational database systems

• XML and its query languages are founded upon

 tree automata, tree transducers, and logics on trees

• Implementation uses extensions of relational algebra

 and builds upon relational database techniques

