
1

Imperative languages, environment
and store, micro-C

Copyright 20013-16, Peter Sestoft and Cesare Tinelli.
Created by Cesare Tinelli at the University of Iowa from notes originally developed by Peter Sestoft at the University of
Copenhagen. These notes are copyrighted materials and may not be used in other course settings outside of the
University of Iowa in their current form or modified form without the express written permission of one of the copyright
holders. During this course, students are prohibited from selling notes to or being paid for taking notes by any person or
commercial firm without the express written permission of one of the copyright holders.

CS:3820
Programming Language Concepts

2

Overview

• A Naive imperative language
• C concepts

– Pointers and pointer arithmetics, arrays
– Lvalue and rvalue
– Parameter passing by value and by reference
– Expression statements

• Micro-C, a subset of C
– abstract syntax
– lexing and parsing
– interpretation

3

A naive-store imperative language
• Naive store model:

– a variable name maps to an integer value
– so store is just a runtime environment
sum = 0;
for i = 0 to 100 do
sum = sum + i;

i = 1;
sum = 0;
while sum < 10000 do begin
sum = sum + i;
i = 1 + i;

end;

i

sum

100

5050

i

sum

142

10011

4

Naive-store statement execution, 1
• Executing a statement gives a new store
• Assignment x = e updates the store
• Expressions do not affect the store

let rec exec stmt (store : naivestore) : naivestore =
match stmt with
| Asgn(x, e) ->
setSto store (x, eval e store)

| If(e1, stmt1, stmt2) ->
if eval e1 store <> 0 then exec stmt1 store

else exec stmt2 store
| ...

Update store
at x with
value of e

Naive-store statement execution, 2
• A block {s1; …; sn} executes s1 then s2 …
• Example:
exec (Block [s1; s2]) store // F# interpreter

= loop [s1; s2] store
= exec s2 (exec s1 store)

let rec exec stmt (store : naivestore) : naivestore =
match stmt with
| Block stmts ->
let rec loop ss sto =

match ss with
| [] -> sto
| s1::sr -> loop sr (exec s1 sto)

loop stmts store
| ...

6

Naive-store statement execution, 3
• for and while update the store sequentially

let rec exec stmt (store : naivestore) : naivestore =
match stmt with
| ...
| For(x, estart, estop, stmt) -> ...
| While(e, stmt) ->
let rec loop sto =

if eval e sto = 0 then sto
else loop (exec stmt sto)

loop store

7

Environment and store, micro-C
• The naive model cannot describe pointers

and variable aliasing
• A more realistic store model:

– Environment maps a variable name to an address
– Store maps address to value

100 … 5050…
41 42 43 44 45

i: 42
sum: 44

Environment

Store

The essence of C: Pointers

• Main innovations of C (1972) over Algol 60:
– Structs, as in COBOL and Pascal
– Pointers, pointer arithmetic, pointer types, array

indexing as pointer indexing
– Syntax: { } for blocks, as in C++, Java, C#

• Very different from Java and C#, which have
no pointer arithmetic, but garbage collection

Desirable language features
C C++ F#/ML Smtalk Haskell Java C#

Garbage
collection

Exceptions

Bounds checks

Static types

Generic types
(para. polym.)

Pattern
matching

Reflection

Refl. on type
parameters

Anonymous
functions (λ)

Streams

Lazy eval.

10

C variable basics
• A variable x refers to an address (storage

location)
• Addresses are mapped to values in the store
• Pointers are variables whose values is an

address

44 … 5050…
41 42 43 44 45

p: 42
sum: 44

*(p+1)

11

C pointer basics

• The value of a pointer p is a storage
location (address)

• The dereference expression *p means:
– the content of the location (rvalue) as in
*p + 4

– the storage location itself (lvalue), as in
*p = x+4

12

C pointer basics

• The pointer that points to x is &x

• Pointer arithmetic:
*(p+1) is the content of the loc just after p

• If p equals &a[0]
then *(p+i) equals p[i] equals a[i],
so an array is a pointer

• a[0] equals *a

13

Lvalue and rvalue of an expression

• Rvalue is “normal”
value, right-hand side
of assignment: 17, true

• Lvalue is “location”,
left-hand side of
assignment: x, a[2]

• In assignment e1 = e2,
expression e1 must
have lvalue

Has
lvalue

Has
rvalue

x yes yes
a[2] yes yes
*p yes yes
x+2 no yes
&x no yes

14

C variable declarations

Declaration Meaning
int n n is an integer
int *p p is a pointer to integer

int ia[3] ia is array of 3 integers

int *ipa[4] ipa is array of 4 pointers to integers

int (*iap)[3] iap is pointer to array of 3 integers

int *(*ipap)[4] ipap is pointer to array of 4 pointers to ints

Unix program cdecl or www.cdecl.org may help:

cdecl> explain int *(*ipap)[4]
declare ipap as pointer to array 4 of pointer to int
cdecl> declare n as array 7 of pointer to pointer to int
int **n[7]

15

Using pointers for return values
• Example ex5.c, computing square(x):

void main(int n) {
...
int r;
square(n, &r);
print r;

}

void square(int i, int *rp) {
*rp = i * i;

}

for input

for return value: a
pointer to where to
put the result

16

Recursion and return values
• Computing factorial with micro-C/ex9.c
void main(int i) {
int r;
fac(i, &r);
print r;

}

void fac(int n, int *res) {
if (n == 0)
*res = 1;

else {
int tmp;
fac(n-1, &tmp);
*res = tmp * n;

}
}

• n is input parameter
• res is output parameter:

a pointer to where to
put the result

• tmp holds the result
of the recursive call

• &tmp gets a pointer
to tmp

Possible evaluation of main(3)
main(3):

fac(3, 117): &r is 117
fac(2, 118): &tmp is 118

fac(1, 119): &tmp is 119
fac(0, 120): &tmp is 120

*120 = 1
*119 = 1 * 1 n is 1

*118 = 1 * 2 n is 2
*117 = 2 * 3 n is 3

print 6

2 1 1 ...6
117 118 119 120 121

...
...

Storage model for micro-C

• The store is an indexable stack
– Bottom: global variables at fixed addresses
– Plus, a stack of activation records

• An activation record is an executing function
– return address and other administrative data
– parameters and local variables
– temporary results

globals main fac(3) fac(2) fac(1) fac(0)

admin. data params+locals temps

Call-by-value and call-by-reference, C#

static void swapR(ref int x, ref int y) {
int tmp = x; x = y; y = tmp;

}

static void swapV(int x, int y) {
int tmp = x; x = y; y = tmp;

}

int a = 11;
int b = 22;
swapV(a, b);
swapR(ref a, ref b);

11
41 44

2222 11
42 43

a: 41
b: 42

45

x: 43
y: 44
tmp: 45

11

by
 v

al
ue

by
 r

ef
er

en
ce

addresses

store

x: 41
y: 42
tmp: 43

20

micro-C array layout
• An array int arr[4] consists of

– its 4 int elements
– a pointer to arr[0]

• This is the uniform array representation of B
• Actual C treats array parameters and local

arrays differently; complicates compiler

…
41 44 46 47

7167 73 79 42
42 43 45

…

arr: 46

21

micro-C syntactic concepts
• Types Abstract Syntax

int TypI
int *x TypP(TypI)
int x[4] TypA(TypI, Some 4)

• Expressions
(*p + 1) * 12

• Statements
if (x != 0) y = 1/x;

• Declarations
– of global or local variables
int x;

– of global functions
void swap(int *x, int *y) { ... }

type typ =
| TypI (* Type int *)
| TypC (* Type char *)
| TypA of typ * int option (* Array type *)
| TypP of typ (* Pointer type *)

and expr =
| Access of access (* x or *p or a[e] *)
| Assign of access * expr (* x=e or *p=e or a[e]=e *)
| Addr of access (* &x or &*p or &a[e] *)
| CstI of int (* Constant *)
| Prim1 of string * expr (* Unary primitive operator *)
| Prim2 of string * expr * expr (* Binary primitive operator *)
| Andalso of expr * expr (* Sequential and *)
| Orelse of expr * expr (* Sequential or *)
| Call of string * expr list (* Function call f(...) *)

and access =
| AccVar of string (* Variable access x *)
| AccDeref of expr (* Pointer dereferencing *p *)
| AccIndex of access * expr (* Array indexing a[e] *)

and stmt =
| If of expr * stmt * stmt (* Conditional *)
| While of expr * stmt (* While loop *)
| Expr of expr (* Expression statement e; *)
| Return of expr option (* Return from method *)
| Block of stmtordec list (* Block: grouping and scope *)

and stmtordec =
| Dec of typ * string (* Local variable declaration *)
| Stmt of stmt (* A statement *)

and topdec =
| Fundec of typ option * string * (typ * string) list * stmt
| Vardec of typ * string

and program =
| Prog of topdec list

m
ic

ro
-C

 a
bs

tr
ac

t
sy

nt
ax

Lexer specification for micro-C
• New: endline comments // blah blah

and delimited comments if (x /* y? */)

and EndLineComment = parse
| ['\n' '\r'] { () }
| (eof | '\026') { () }
| _ { EndLineComment lexbuf }

and Comment = parse
| "/*" { Comment lexbuf; Comment lexbuf }
| "*/" { () }
| ['\n' '\r'] { Comment lexbuf }
| (eof | '\026') { lexerError lexbuf "Unterminated" }
| _ { Comment lexbuf }

rule Token = parse
| ...
| "//" { EndLineComment lexbuf; Token lexbuf }
| "/*" { Comment lexbuf; Token lexbuf }

24

Parsing C variable declarations

• Hard, declarations are mixfix: int *x[4]
• Parser trick: Parse a variable declaration as

a type followed by a variable description:
int *x[4]

• Parse var description to get pair (f,x) of
type function f, and variable name x

• Apply f to the declared type to get type of x
Vardec(TypA(TypP TypI,Some 4), “x”)

((fun t -> TypA (TypP t, Some 4)), “x”)TypI

type info

25

Interpreting micro-C in F#
• Interpreter data:

– locEnv, environment mapping local variable names
to store addresses

– gloEnv, environment mapping global variable
names to store addresses, and global function
names to (parameter list, body statement)

– store, mapping addresses to (integer) values

• Main interpreter functions:
exec: stmt -> locEnv -> gloEnv -> store -> store
eval: expr -> locEnv -> gloEnv -> store -> int * store
access: access -> locEnv -> gloEnv -> store ->

address * store

micro-C statement execution
• As with the naive language, but two envs:
let rec exec stmt locEnv gloEnv store : store =

match stmt with

| If(e, stmt1, stmt2) ->
let (v, store1) = eval e locEnv gloEnv store
if v<>0 then exec stmt1 locEnv gloEnv store1

else exec stmt2 locEnv gloEnv store1

| While(e, body) ->
let rec loop store1 =

let (v, store2) = eval e locEnv gloEnv store1
if v<>0 then loop (exec body locEnv gloEnv store2)

else store2
loop store

| ...

Expression statements
in C, C++, Java and C#

• The “assignment statement”
x = 2+4;

is really an expression
x = 2+4

followed by a semicolon

• The semicolon means: ignore value

Value: 6
Effect: change x

Value: none
Effect: change x

let rec exec stmt locEnv gloEnv store : store =
match stmt with
| ...
| Expr e ->
let (_, store1) = eval e locEnv gloEnv store
store1 Evaluate expression

then ignore its value

micro-C expression evaluation, 1
• Evaluation of an expression

– takes local and global env and a store
– gives a resulting rvalue and a new store

and eval e locEnv gloEnv store : int * store =
match e with
| ...
| CstI i -> (i, store)

| Prim2(ope, e1, e2) ->
let (i1, store1) = eval e1 locEnv gloEnv store
let (i2, store2) = eval e2 locEnv gloEnv store1
let res =

match ope with
| "*" -> i1 * i2
| "+" -> i1 + i2
| ...

(res, store2)

• To evaluate access expression x, *p, arr[i]
– find its lvalue, as a location loc
– look up the rvalue in the store, as store1[loc]

• To evaluate &e
– just evaluate e as lvalue
– return the lvalue

micro-C expression evaluation, 2

eval e locEnv gloEnv store : int * store =
match e with
| Access acc ->
let (loc, store1) = access acc locEnv gloEnv store
(getSto store1 loc, store1)

| Addr acc -> access acc locEnv gloEnv store
| ...

rvalue

micro-C access evaluation, to lvalue
• A variable x is looked up in environment
• A dereferencing *e just evaluates e to an address
• An array indexing arr[idx]

– evaluates arr to address a, then gets aval=store[a]
– evaluates idx to rvalue index i
– returns address (aval+i)

access acc locEnv gloEnv store : int * store =
match acc with
| AccVar x -> (lookup (fst locEnv) x, store)

| AccDeref e -> eval e locEnv gloEnv store

| AccIndex(arr, idx) ->
let (a, store1) = access arr locEnv gloEnv store
let aval = getSto store1 a
let (i, store2) = eval idx locEnv gloEnv store1
(aval + i, store2)

lvalue

31

Operators &x and *p are inverses
• The address-of operator & in &e

– evaluates e to its lvalue (address) and returns it as an rvalue
Ex: &x == 41, &p == 42

• The dereferencing operator * in *e
– evaluates e to its rvalue and returns as an lvalue
Ex: *p is effectively the same as y

• It follows that
1. &(*e) equals e Ex: &(*p) == &y == 45 == p
2. *(&e) equals e,

provided e has lvalue Ex: *(&y) == *45 == 6 == y

1
41 44

745 8
42 43 45

6

x: 41
y: 45
p: 42

micro-C, interpreter and compiler
• So far: Interpretation of micro-C

micro-C
program

run in
Interp.fs Output

Input

micro-C
program Compiler “machine

code”
machine

.java Output

Input

• Next: Compilation of micro-C

P.classex1.c ex1.out

ex1.c

