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Overview

• A Naive imperative language
• C concepts

– Pointers and pointer arithmetics, arrays
– Lvalue and rvalue
– Parameter passing by value and by reference
– Expression statements

• Micro-C, a subset of C
– abstract syntax
– lexing and parsing 
– interpretation
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A naive-store imperative language
• Naive store model: 

– a variable name maps to an integer value
– so store is just a runtime environment
sum = 0;
for i = 0 to 100 do 
sum = sum + i;

i = 1;
sum = 0;
while sum < 10000 do begin
sum = sum + i;
i = 1 + i;

end;

i

sum

100

5050

i

sum

142

10011
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Naive-store statement execution, 1
• Executing a statement gives a new store
• Assignment x = e updates the store
• Expressions do not affect the store

let rec exec stmt (store : naivestore) : naivestore =
match stmt with
| Asgn(x, e) -> 
setSto store (x, eval e store)

| If(e1, stmt1, stmt2) -> 
if eval e1 store <> 0 then exec stmt1 store

else exec stmt2 store
| ...

Update store 
at x with 
value of e



Naive-store statement execution, 2
• A block {s1; …; sn} executes s1 then s2 …
• Example:
exec (Block [s1; s2]) store // F# interpreter

= loop [s1; s2] store
= exec s2 (exec s1 store)

let rec exec stmt (store : naivestore) : naivestore =
match stmt with
| Block stmts -> 
let rec loop ss sto = 

match ss with 
| []     -> sto
| s1::sr -> loop sr (exec s1 sto)

loop stmts store
| ...
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Naive-store statement execution, 3
• for and while update the store sequentially

let rec exec stmt (store : naivestore) : naivestore =
match stmt with
| ...
| For(x, estart, estop, stmt) -> ...
| While(e, stmt) -> 
let rec loop sto =

if eval e sto = 0 then sto
else loop (exec stmt sto)

loop store
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Environment and store, micro-C
• The naive model cannot describe pointers 

and variable aliasing 
• A more realistic store model:

– Environment maps a variable name to an address
– Store maps address to value

100 … 5050…
41 42 43 44 45

i:   42
sum: 44

Environment

Store



The essence of C: Pointers

• Main innovations of C (1972) over Algol 60:
– Structs, as in COBOL and Pascal
– Pointers, pointer arithmetic, pointer types, array 

indexing as pointer indexing
– Syntax: { } for blocks, as in C++, Java, C#

• Very different from Java and C#, which have 
no pointer arithmetic, but garbage collection



Desirable language features
C C++ F#/ML Smtalk Haskell Java C#

Garbage 
collection

Exceptions

Bounds checks

Static types

Generic types 
(para. polym.)

Pattern 
matching

Reflection

Refl. on type 
parameters

Anonymous 
functions (λ)

Streams

Lazy eval.
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C variable basics
• A variable x refers to an address (storage 

location)
• Addresses are mapped to values in the store
• Pointers are variables whose values is an 

address

44 … 5050…
41 42 43 44 45

p:   42
sum: 44

*(p+1)
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C pointer basics

• The value of a pointer p is a storage 
location (address)

• The dereference expression *p means:  
– the content of the location (rvalue) as in
*p + 4

– the storage location itself (lvalue), as in
*p = x+4
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C pointer basics

• The pointer that points to  x is  &x

• Pointer arithmetic:
*(p+1) is the content of the loc just after p

• If  p equals  &a[0]
then  *(p+i) equals  p[i] equals  a[i], 
so an array is a pointer

• a[0] equals  *a
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Lvalue and rvalue of an expression

• Rvalue is “normal” 
value, right-hand side 
of assignment: 17, true

• Lvalue is “location”, 
left-hand side of 
assignment: x, a[2]

• In assignment e1 = e2, 
expression e1 must 
have lvalue

Has
lvalue

Has
rvalue

x yes yes
a[2] yes yes
*p yes yes
x+2 no yes
&x no yes
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C variable declarations

Declaration Meaning
int n n is an integer
int *p p is a pointer to integer

int ia[3] ia is array of 3 integers

int *ipa[4] ipa is array of 4 pointers to integers

int (*iap)[3] iap is pointer to array of 3 integers

int *(*ipap)[4] ipap is pointer to array of 4 pointers to ints

Unix program cdecl or www.cdecl.org may help:

cdecl> explain int *(*ipap)[4]
declare ipap as pointer to array 4 of pointer to int
cdecl> declare n as array 7 of pointer to pointer to int
int **n[7]
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Using pointers for return values
• Example ex5.c, computing square(x):

void main(int n) {
...
int r;
square(n, &r);
print r;

}

void square(int i, int *rp) {
*rp = i * i;

}

for input

for return value: a 
pointer to where to 
put the result
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Recursion and return values
• Computing factorial with micro-C/ex9.c
void main(int i) {
int r;
fac(i, &r);
print r;

}

void fac(int n, int *res) {
if (n == 0)
*res = 1;

else {
int tmp;
fac(n-1, &tmp);
*res = tmp * n;

}
}

• n is input parameter
• res is output parameter:

a pointer to where to
put the result

• tmp holds the result
of the recursive call

• &tmp gets a pointer
to tmp



Possible evaluation of main(3)
main(3):

fac(3, 117): &r is 117
fac(2, 118): &tmp is 118

fac(1, 119): &tmp is 119
fac(0, 120): &tmp is 120

*120 = 1
*119 = 1 * 1 n is 1

*118 = 1 * 2 n is 2
*117 = 2 * 3 n is 3

print 6

2 1 1 ...6
117 118 119 120 121

...
...



Storage model for micro-C

• The store is an indexable stack
– Bottom: global variables at fixed addresses
– Plus, a stack of activation records

• An activation record is an executing function
– return address and other administrative data
– parameters and local variables
– temporary results

globals main fac(3) fac(2) fac(1) fac(0) 

admin. data params+locals temps 



Call-by-value and call-by-reference, C#

static void swapR(ref int x, ref int y) {
int tmp = x; x = y; y = tmp;

}

static void swapV(int x, int y) {
int tmp = x; x = y; y = tmp;

}

int a = 11;
int b = 22;
swapV(a, b);
swapR(ref a, ref b);

11
41 44

2222 11
42 43

a: 41
b: 42

45

x:   43
y:   44
tmp: 45

11

by
 v

al
ue

by
 r

ef
er

en
ce

addresses

store

x:   41
y:   42
tmp: 43
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micro-C array layout
• An array int arr[4] consists of 

– its 4 int elements
– a pointer to arr[0]

• This is the uniform array representation of B
• Actual C treats array parameters and local 

arrays differently; complicates compiler

…
41 44 46 47

7167 73 79 42
42 43 45

…

arr: 46
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micro-C syntactic concepts
• Types                  Abstract Syntax

int TypI
int *x TypP(TypI)
int x[4] TypA(TypI, Some 4)

• Expressions
(*p + 1) * 12

• Statements
if (x != 0) y = 1/x;

• Declarations
– of global or local variables
int x;

– of global functions
void swap(int *x, int *y) { ... }



type typ =
| TypI                             (* Type int                    *)
| TypC                             (* Type char                   *)
| TypA of typ * int option         (* Array type                  *)
| TypP of typ                      (* Pointer type                *)

and expr =                                                         
| Access of access                 (* x    or  *p    or  a[e]     *)
| Assign of access * expr          (* x=e  or  *p=e  or  a[e]=e   *)
| Addr of access                   (* &x   or  &*p   or  &a[e]    *)
| CstI of int                      (* Constant                    *)
| Prim1 of string * expr           (* Unary primitive operator    *)
| Prim2 of string * expr * expr    (* Binary primitive operator   *)
| Andalso of expr * expr           (* Sequential and              *)
| Orelse of expr * expr            (* Sequential or               *)
| Call of string * expr list       (* Function call f(...)        *)

and access =                                                       
| AccVar of string                 (* Variable access        x    *) 
| AccDeref of expr                 (* Pointer dereferencing  *p   *)
| AccIndex of access * expr        (* Array indexing         a[e] *)

and stmt =                                                         
| If of expr * stmt * stmt         (* Conditional                 *)
| While of expr * stmt             (* While loop                  *)
| Expr of expr                     (* Expression statement   e;   *)
| Return of expr option            (* Return from method          *)
| Block of stmtordec list          (* Block: grouping and scope   *)

and stmtordec =                                                    
| Dec of typ * string              (* Local variable declaration  *)
| Stmt of stmt                     (* A statement                 *)

and topdec = 
| Fundec of typ option * string * (typ * string) list * stmt
| Vardec of typ * string

and program = 
| Prog of topdec list

m
ic

ro
-C

 a
bs

tr
ac
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sy

nt
ax



Lexer specification for micro-C
• New: endline comments     // blah blah

and delimited comments    if (x /* y? */)

and EndLineComment = parse
| ['\n' '\r'] { () }
| (eof | '\026')  { () }
| _               { EndLineComment lexbuf }

and Comment = parse
| "/*"            { Comment lexbuf; Comment lexbuf }
| "*/"            { () }
| ['\n' '\r']     { Comment lexbuf }
| (eof | '\026')  { lexerError lexbuf "Unterminated" }
| _               { Comment lexbuf }

rule Token = parse
| ...
| "//"     { EndLineComment lexbuf; Token lexbuf }
| "/*"      { Comment lexbuf; Token lexbuf }
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Parsing C variable declarations

• Hard, declarations are mixfix:  int *x[4]
• Parser trick: Parse a variable declaration as 

a type followed by a variable description:
int *x[4]

• Parse var description to get pair (f,x) of 
type function f, and variable name x

• Apply f to the declared type to get type of x
Vardec(TypA(TypP TypI,Some 4), “x”)

((fun t -> TypA (TypP t, Some 4)), “x”)TypI

type info
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Interpreting micro-C in F#
• Interpreter data:

– locEnv, environment mapping local variable names 
to store addresses

– gloEnv, environment mapping global variable 
names to store addresses, and global function 
names to (parameter list, body statement)

– store, mapping addresses to (integer) values

• Main interpreter functions:
exec: stmt -> locEnv -> gloEnv -> store -> store
eval: expr -> locEnv -> gloEnv -> store -> int * store
access: access -> locEnv -> gloEnv -> store -> 

address * store



micro-C statement execution
• As with the naive language, but two envs:
let rec exec stmt locEnv gloEnv store : store = 

match stmt with

| If(e, stmt1, stmt2) -> 
let (v, store1) = eval e locEnv gloEnv store
if v<>0 then exec stmt1 locEnv gloEnv store1

else exec stmt2 locEnv gloEnv store1

| While(e, body) ->
let rec loop store1 =

let (v, store2) = eval e locEnv gloEnv store1
if v<>0 then loop (exec body locEnv gloEnv store2)

else store2
loop store

| ... 



Expression statements
in C, C++, Java and C#

• The “assignment statement”
x = 2+4;

is really an expression
x = 2+4

followed by a semicolon

• The semicolon means: ignore value

Value: 6
Effect: change x

Value: none
Effect: change x

let rec exec stmt locEnv gloEnv store : store = 
match stmt with
| ...
| Expr e -> 
let (_, store1) = eval e locEnv gloEnv store 
store1 Evaluate expression 

then ignore its value



micro-C expression evaluation, 1
• Evaluation of an expression 

– takes local and global env and a store
– gives a resulting rvalue and a new store

and eval e locEnv gloEnv store : int * store = 
match e with
| ...
| CstI i -> (i, store)

| Prim2(ope, e1, e2) ->
let (i1, store1) = eval e1 locEnv gloEnv store
let (i2, store2) = eval e2 locEnv gloEnv store1
let res =

match ope with
| "*"  -> i1 * i2
| "+"  -> i1 + i2
| ...

(res, store2)



• To evaluate access expression x, *p, arr[i]
– find its lvalue, as a location loc
– look up the rvalue in the store, as store1[loc]

• To evaluate &e
– just evaluate e as lvalue
– return the lvalue

micro-C expression evaluation, 2

eval e locEnv gloEnv store : int * store = 
match e with
| Access acc -> 
let (loc, store1) = access acc locEnv gloEnv store
(getSto store1 loc, store1)

| Addr acc -> access acc locEnv gloEnv store
| ...

rvalue



micro-C access evaluation, to lvalue
• A variable x is looked up in environment
• A dereferencing *e just evaluates e to an address
• An array indexing arr[idx]

– evaluates arr to address a, then gets aval=store[a]
– evaluates idx to rvalue index i
– returns address (aval+i)

access acc locEnv gloEnv store : int * store = 
match acc with 
| AccVar x           -> (lookup (fst locEnv) x, store)

| AccDeref e         -> eval e locEnv gloEnv store

| AccIndex(arr, idx) -> 
let (a, store1) = access arr locEnv gloEnv store
let aval = getSto store1 a
let (i, store2) = eval idx locEnv gloEnv store1
(aval + i, store2) 

lvalue
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Operators &x and *p are inverses
• The address-of operator & in &e

– evaluates e to its lvalue (address) and returns it as an rvalue
Ex: &x == 41,  &p == 42

• The dereferencing operator * in *e
– evaluates e to its rvalue and returns as an lvalue
Ex:  *p is effectively the same as y

• It follows that
1. &(*e) equals e Ex:  &(*p) == &y == 45 == p
2. *(&e) equals e, 

provided e has lvalue Ex: *(&y) == *45 == 6 == y

1
41 44

745 8
42 43 45

6

x: 41
y: 45
p: 42



micro-C, interpreter and compiler
• So far: Interpretation of micro-C

micro-C
program

run in
Interp.fs Output

Input

micro-C
program Compiler “machine

code”
machine

.java Output

Input

• Next: Compilation of micro-C

P.classex1.c ex1.out

ex1.c


