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Distinguishing	programming	languages	properties:
– Syntax
– Names
– Types
– Abstractions
– Semantics

For	any	language:
– Its	designers	must	define	these	properties
– Its	programmers	must	master	these	properties

1	Principles



The	syntax of	a	programming	language	is	a	precise	
description	of	all	its	grammatically	correct	programs

When	studying	syntax,	we	ask	questions	like:
– What	is	the	grammar	for	the	language?
– What	is	the	basic	vocabulary?
– How	are	syntax	errors	detected?

Syntax



Various	kinds	of	entities	in	a	program	have	names:
variables,	types,	functions,	parameters,	classes,	objects,	…

Named	entities	are	bound	in	a	running	program	to:
– Scope
– Visibility
– Type
– Lifetime

Names



A	type is	a	collection	of	values	and	of	operations	on	
those	values

• Simple	types
– numbers,	characters,	Booleans,	…

• Structured	types
– Strings,	lists,	trees,	hash	tables,	…

• A	language’s	type	system can	help:
– determine	legal	operations
– detect	type	errors
– optimize	certain	operations

Types



Mechanisms	for	generalizing	computations	or	data:
– Procedures/functions
– Modules
– Abstract	data	types
– Classes
– Memory	models

Abstractions



The	meaning	of	a	program	is	called	its	semantics
In	studying	semantics,	we	ask	questions	like:
– When	a	program	is	running,	what	happens	to	the	values	of	
the	variables?

– What	does	each	construct	do?
– What	underlying	model	governs	run-time	behavior,	such	
as	function	call?

– How	are	variables	and	objects	allocated	to	memory	at	run-
time?

Semantics



A	programming	paradigm is	a	pattern	of	problem-
solving	thought	that	underlies	a	particular	genre	of	
programs	and	languages

There	are	several	main	programming	paradigms:
– Imperative
– Object-oriented
– Functional
– Logic
– Dataflow

} focus of this course

2		Paradigms



Follows	the	classic	von	Neumann-Eckert	model:
– Program	and	data	are	indistinguishable	in	memory
– Program	=	sequence	of	commands	modifying	current	state
– State	=	values	of	all	variables	when	program	runs
– Large	programs	use	procedural	abstraction

Example	imperative	languages:	
– Cobol,	Fortran,	C,	Ada,	Perl,	…

Imperative	Paradigm



An	OO	Program	is	a	collection	of	objects	that	interact	
by	passing	messages	that	transform	local	state

Major	features:
– Encapsulated	State
– Message	passing
– Inheritance
– Subtype	Polymorphism

Example	OO	languages:
Smalltalk,	Java,	C++,	C#,	Python,	…

Object-oriented	(OO)	Paradigm



Functional	programming	models	a	computation	as	a	
collection	of	mathematical	functions
– Input	=	domain
– Output	=	range

Major	features
– Functional	composition
– Recursion
– Referential	transparency

Example	functional	languages:
– Lisp,	Scheme,	ML,	Haskell,	F#,…

Functional	Paradigm



Functional	programming	models	a	computation	as	a	
collection	of	mathematical	functions
– Input	=	domain
– Output	=	range

Notable	features	of	modern	functional	languages:
– Functions	as	values
– Symbolic	data	types
– Pattern	matching
– Sophisticated	type	systems	and	module	systems

Functional	Paradigm



Logic	programming	declares	what	outcome	of	the	
program	should	be,	rather	than	how	it	should	be	
achieved

Major	features:
– Programs	as	sets	of	constraints	on	a	problem
– Computation	of	all	possible	solutions
– Nondeterministic	computation

Example	logic	programming	languages:	
– Prolog,	Datalog

Logic	Paradigm



How	and	when	did	programming	languages	evolve?

What	communities	have	developed	and	used	them?
– Artificial	Intelligence
– Computer	Science	Education
– Science	and	Engineering
– Information	Systems
– Systems	and	Networks
– World	Wide	Web
– …

3		A	Brief	History
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Design	Constraints
– Computer	architecture
– Technical	setting
– Standards
– Legacy	systems

Design	Outcomes	and	Goals

4		On	Language	Design



Key	characteristics:
– Simplicity	and	readability
– Reliability
– Support
– Abstraction
– Orthogonality
– Libraries
– Efficient	implementation
– Community

What	makes	a	successful	language?



• Small	instruction	set
– E.g.,	Java	vs	Scheme

• Simple	syntax
– E.g.,	C/C++/Java	vs	Python

• Benefits:
– Ease	of	learning
– Ease	of	programming

Simplicity	and	Readability



• Program	behavior is	the	same	on	different	
platforms
• E.g.,	early	Fortran,	C

• Type	errors	are	detected
• E.g.,	C	vs	Haskell

• Semantic	errors	are	properly	trapped
• E.g.,	C	vs	C++

• Memory	leaks	are	prevented
• E.g.,	C	vs	Java

Reliability



• Accessible	(public	domain)	compilers/interpreters
• Good	texts	and	tutorials
• Wide	community	of	users
• Integrated	with	development	environments	(IDEs)

Language	Support



A	language	is	orthogonal if	its	features	are	built	upon	
a	small,	mutually	independent	set	of	primitive	
operations.

• Fewer	exceptional	rules	=	conceptual	simplicity
– E.g.,	restricting	types	of	arguments	to	a	function

• Tradeoffs with	efficiency

Orthogonality



• Embedded	systems
– Real-time	responsiveness	(e.g.,	navigation)
– Failures	of	early	Ada	implementations

• Web	applications
– Responsiveness	to	users	(e.g.,	Google	search)

• Corporate	database	applications
– Efficient	search	and	updating

• AI	applications
– Modeling human	behaviors

Efficiency	Issues
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Compiler	– produces	machine	code
Interpreter	– executes	instructions	on	a	virtual	machine
• Some	compiled	languages:
– Fortran,	C,	C++,	Rust,	Swift

• Some	interpreted	languages:
– Scheme,	Python,		Javascript

• Hybrid	compilation/interpretation
– Java	Virtual	Machine	(JVM)	languages	(Java,	Scala,	Clojure)
– .NET	languages	(C#,	F#)

5		Compilers	and	Interpreters



Compilation



Interpretation



• A	brief	intro	to	functional	programming	with	F#
• Lexical	analysis,	regular	expressions,	finite	automata,	lexer generators
• Syntax	analysis,	top-down	versus	bottom-up	parsing,		LL	versus	LR,

parser	generators
• Expression	evaluation,	stack	machines,	Postscript
• Compilation	of	a	subset	of	C	with	*p,	&x,	pointer	arithmetic,	arrays
• Type	checking,	type	inference,	statically	and	dynamically	typed	

languages
• The	machine	model	of	Java,	C#,	F#:	stack,	heap,	garbage	collection
• The	intermediate	bytecode	languages	of	the	Java	Virtual	Machine	

and	.NET
• Garbage	collection	techniques,	dynamic	memory	management
• Continuations,	exceptions,	a	language	with	backtracking
• Selected	advanced	topics
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