
CS:3820	
Programming	Language	Concepts

Fall	2016

Introduction	and	Overview

Copyright 2016, Cesare Tinelli and others.
Parts of these notes were originally developed by Allen Tucker, Robert Noonan and Peter Sestoft and are used
with permission. They are copyrighted materials and may not be used in other course settings outside of the
University of Iowa in their current form or modified form without the express written permission of one of the
copyright holders. During this course, students are prohibited from selling notes to or being paid for taking notes
by any person or commercial firm without the express written permission of one of the copyright holders.

Distinguishing	programming	languages	properties:
– Syntax
– Names
– Types
– Abstractions
– Semantics

For	any	language:
– Its	designers	must	define	these	properties
– Its	programmers	must	master	these	properties

1	Principles

The	syntax of	a	programming	language	is	a	precise	
description	of	all	its	grammatically	correct	programs

When	studying	syntax,	we	ask	questions	like:
– What	is	the	grammar	for	the	language?
– What	is	the	basic	vocabulary?
– How	are	syntax	errors	detected?

Syntax

Various	kinds	of	entities	in	a	program	have	names:
variables,	types,	functions,	parameters,	classes,	objects,	…

Named	entities	are	bound	in	a	running	program	to:
– Scope
– Visibility
– Type
– Lifetime

Names

A	type is	a	collection	of	values	and	of	operations	on	
those	values

• Simple	types
– numbers,	characters,	Booleans,	…

• Structured	types
– Strings,	lists,	trees,	hash	tables,	…

• A	language’s	type	system can	help:
– determine	legal	operations
– detect	type	errors
– optimize	certain	operations

Types

Mechanisms	for	generalizing	computations	or	data:
– Procedures/functions
– Modules
– Abstract	data	types
– Classes
– Memory	models

Abstractions

The	meaning	of	a	program	is	called	its	semantics
In	studying	semantics,	we	ask	questions	like:
– When	a	program	is	running,	what	happens	to	the	values	of	
the	variables?

– What	does	each	construct	do?
– What	underlying	model	governs	run-time	behavior,	such	
as	function	call?

– How	are	variables	and	objects	allocated	to	memory	at	run-
time?

Semantics

A	programming	paradigm is	a	pattern	of	problem-
solving	thought	that	underlies	a	particular	genre	of	
programs	and	languages

There	are	several	main	programming	paradigms:
– Imperative
– Object-oriented
– Functional
– Logic
– Dataflow

} focus of this course

2		Paradigms

Follows	the	classic	von	Neumann-Eckert	model:
– Program	and	data	are	indistinguishable	in	memory
– Program	=	sequence	of	commands	modifying	current	state
– State	=	values	of	all	variables	when	program	runs
– Large	programs	use	procedural	abstraction

Example	imperative	languages:	
– Cobol,	Fortran,	C,	Ada,	Perl,	…

Imperative	Paradigm

An	OO	Program	is	a	collection	of	objects	that	interact	
by	passing	messages	that	transform	local	state

Major	features:
– Encapsulated	State
– Message	passing
– Inheritance
– Subtype	Polymorphism

Example	OO	languages:
Smalltalk,	Java,	C++,	C#,	Python,	…

Object-oriented	(OO)	Paradigm

Functional	programming	models	a	computation	as	a	
collection	of	mathematical	functions
– Input	=	domain
– Output	=	range

Major	features
– Functional	composition
– Recursion
– Referential	transparency

Example	functional	languages:
– Lisp,	Scheme,	ML,	Haskell,	F#,…

Functional	Paradigm

Functional	programming	models	a	computation	as	a	
collection	of	mathematical	functions
– Input	=	domain
– Output	=	range

Notable	features	of	modern	functional	languages:
– Functions	as	values
– Symbolic	data	types
– Pattern	matching
– Sophisticated	type	systems	and	module	systems

Functional	Paradigm

Logic	programming	declares	what	outcome	of	the	
program	should	be,	rather	than	how	it	should	be	
achieved

Major	features:
– Programs	as	sets	of	constraints	on	a	problem
– Computation	of	all	possible	solutions
– Nondeterministic	computation

Example	logic	programming	languages:	
– Prolog,	Datalog

Logic	Paradigm

How	and	when	did	programming	languages	evolve?

What	communities	have	developed	and	used	them?
– Artificial	Intelligence
– Computer	Science	Education
– Science	and	Engineering
– Information	Systems
– Systems	and	Networks
– World	Wide	Web
– …

3		A	Brief	History

ML

SASL HASKELL

LISP

COBOL

VISUAL BASIC

GJ

JAVA

2000

C#

BASIC

CCPL BBCPL

FORTRAN77

BETA

2010

Java 5

C# 2 C# 4

STANDARD ML
OCAMLCAML LIGHT

VB.NET 10

Go

F#

Scala

FORTRAN90

ADA ADA95 ADA2005

FORTRAN2003

FORTRAN

ALGOL

PASCAL

C++ALGOL 68

SIMULA

SMALLTALK

PROLOG

1956 1970 1980 19901960

SCHEME

Language	Genealogy

ML

SASL HASKELL

LISP

COBOL

VISUAL BASIC

GJ

JAVA

2000

C#

BASIC

CCPL BBCPL

FORTRAN77

BETA

2010

Java 5

C# 2 C# 4

STANDARD ML
OCAMLCAML LIGHT

VB.NET 10

Go

F#

Scala

FORTRAN90

ADA ADA95 ADA2005

FORTRAN2003

FORTRAN

ALGOL

PASCAL

C++ALGOL 68

SIMULA

SMALLTALK

PROLOG

1956 1970 1980 19901960

SCHEME

Language	Genealogy
Mostly

academic

Old
mainstream

Modern
mainstream

Design	Constraints
– Computer	architecture
– Technical	setting
– Standards
– Legacy	systems

Design	Outcomes	and	Goals

4		On	Language	Design

Key	characteristics:
– Simplicity	and	readability
– Reliability
– Support
– Abstraction
– Orthogonality
– Libraries
– Efficient	implementation
– Community

What	makes	a	successful	language?

• Small	instruction	set
– E.g.,	Java	vs	Scheme

• Simple	syntax
– E.g.,	C/C++/Java	vs	Python

• Benefits:
– Ease	of	learning
– Ease	of	programming

Simplicity	and	Readability

• Program	behavior is	the	same	on	different	
platforms
• E.g.,	early	Fortran,	C

• Type	errors	are	detected
• E.g.,	C	vs	Haskell

• Semantic	errors	are	properly	trapped
• E.g.,	C	vs	C++

• Memory	leaks	are	prevented
• E.g.,	C	vs	Java

Reliability

• Accessible	(public	domain)	compilers/interpreters
• Good	texts	and	tutorials
• Wide	community	of	users
• Integrated	with	development	environments	(IDEs)

Language	Support

A	language	is	orthogonal if	its	features	are	built	upon	
a	small,	mutually	independent	set	of	primitive	
operations.

• Fewer	exceptional	rules	=	conceptual	simplicity
– E.g.,	restricting	types	of	arguments	to	a	function

• Tradeoffs with	efficiency

Orthogonality

• Embedded	systems
– Real-time	responsiveness	(e.g.,	navigation)
– Failures	of	early	Ada	implementations

• Web	applications
– Responsiveness	to	users	(e.g.,	Google	search)

• Corporate	database	applications
– Efficient	search	and	updating

• AI	applications
– Modeling human	behaviors

Efficiency	Issues

by the Trento people by the Trento people

Compiler	– produces	machine	code
Interpreter	– executes	instructions	on	a	virtual	machine
• Some	compiled	languages:
– Fortran,	C,	C++,	Rust,	Swift

• Some	interpreted	languages:
– Scheme,	Python,		Javascript

• Hybrid	compilation/interpretation
– Java	Virtual	Machine	(JVM)	languages	(Java,	Scala,	Clojure)
– .NET	languages	(C#,	F#)

5		Compilers	and	Interpreters

Compilation

Interpretation

• A	brief	intro	to	functional	programming	with	F#
• Lexical	analysis,	regular	expressions,	finite	automata,	lexer generators
• Syntax	analysis,	top-down	versus	bottom-up	parsing,		LL	versus	LR,

parser	generators
• Expression	evaluation,	stack	machines,	Postscript
• Compilation	of	a	subset	of	C	with	*p,	&x,	pointer	arithmetic,	arrays
• Type	checking,	type	inference,	statically	and	dynamically	typed	

languages
• The	machine	model	of	Java,	C#,	F#:	stack,	heap,	garbage	collection
• The	intermediate	bytecode	languages	of	the	Java	Virtual	Machine	

and	.NET
• Garbage	collection	techniques,	dynamic	memory	management
• Continuations,	exceptions,	a	language	with	backtracking
• Selected	advanced	topics

27

6 Course	Contents

